Landmark Based Reward Shaping in Reinforcement Learning with Hidden States

Extended Abstract

Alper Demir
Middle East Technical University
Ankara, Turkey
ademir@ceng.metu.edu.tr

Erkin Çilden
STM Defense Technologies
Engineering and Trade Inc.
Ankara, Turkey
erkin.cilden@stm.com.tr

Faruk Polat
Middle East Technical University
Ankara, Turkey
polat@ceng.metu.edu.tr

ABSTRACT

While most of the work on reward shaping focuses on fully observable problems, there are very few studies that couple reward shaping with partial observability. Moreover, for problems with hidden states, where there is no prior information about the underlying states, reward shaping opportunities are unexplored. In this paper, we show that landmarks can be used to shape the rewards in reinforcement learning with hidden states. Proposed approach is empirically shown to improve the learning performance in terms of speed and quality.

KEYWORDS

reward shaping; landmarks; reinforcement learning; hidden states

ACM Reference Format:

1 INTRODUCTION AND RELATED WORK

In Reinforcement Learning (RL) context, Reward Shaping (RS) methods aim to provide the agent with additional rewards for a problem with sparse or late rewards, so that the agent avoids extensive and probably unnecessary exploration throughout learning. RS is shown to guarantee policy invariance under Markov Decision Process (MDP) model assumption [19].

For most problems, however, the environment is not fully observable as in the MDP. Partially Observable MDP (POMDP) model is a generalization of MDP to fulfill this requirement, where the agent has indirect access to the state space through observation space via an observation function of states and actions [12]. An interpretation of POMDP assumes the set of states are entirely hidden, and the model provides a limited set of observations, violating Markov property and giving rise to perceptual aliasing [1, 23].

Although perceptual aliasing makes it very difficult, sometimes even impossible, to solve the problem, the agent can benefit from any information that can completely distinguish its state. A landmark corresponds to such an information and takes place as a distinctive indicator in different fields of the related literature, such as planning [5, 13] and robotic navigation [6, 21]. Although there is no agreed definition of a landmark, the one used in our work fuses the ideas from the “unique observation” interpretation in [11] and “memory-based” approach used in [14].

Known RL algorithms like Q-Learning [22] lose convergence guarantees when the task is non-Markovian as in POMDP with hidden states [20]. Eligibility traces are used to overcome this problem where the agent leaves decaying traces over the previous transitions and employs value updates based on these traces [15, 22]. James et al., proposed an adaptation of the well-known eligibility trace based Sarsa(λ) algorithm for problems containing landmarks, called SarsaLandmark, and showed that this adaptation can further improve the convergence of the algorithm [11].

Various studies adapt RS idea using different approaches, such as potential based RS (PBRS) [19] and plan based RS [9]. The methods were tailored for different settings [7] including multi-agent RL [2, 3], and theoretical analyses were carried out [8, 16]. Automatic learning of the potential function also gained attention, where macro-action oriented abstractions were used [10, 17].

Most of the RS effort, however, assume MDP model. Even the studies for the POMDP case assume belief state formalism [4], which is essentially a continuous MDP. To our best knowledge, this is the first attempt to incorporate RS for problems with hidden state interpretation of POMDP.

2 LANDMARK BASED REWARD SHAPING

Regular RS approach provides a shaping reward for every transition based on the potentials of the states in it. However, if there is perceptual aliasing, finding a unique potential value is impossible for an ambiguous observation which represents multiple states with possibly different potentials. To overcome this challenge, a state estimate can be kept and used to find a suitable policy [15]. However, the problem of assigning a potential to an estimated state persists if that estimated state is still aliased.

On the other hand, it is often the case that some estimated states are unique in the problem so that the agent can rely on them. The agent can be informed about its progress in the given task by using those “specific” estimated states.

Definition 2.1. A state estimate is a landmark, if it uniquely represents a state in a partially observable environment.

Following the Definition 2.1, a landmark is free of any form as long as it can completely distinguish a true problem state. Due to this one-to-one mapping, it is now straightforward to assign a potential to a landmark and use it for RS.
We argue that, a shaping reward can only be reasonable when a transition between two landmarks occurs. Since the potentials of the landmark are consistent, RS, based on these potentials, would also be consistent, providing a reliable information to the agent about its actions. A transition between landmarks may take more than one step, forming an abstract transition within an abstract model of landmarks.

The core idea is to use the landmarks in a problem with hidden states to form an abstract model and apply RS whenever the agent completes an abstract transition between two landmarks. Assuming that the agent knows the landmarks in advance, the remaining question is how to find the potentials of these landmarks. In order to learn the potentials, we follow Grzes’s work [10] which makes an abstraction over the set of states and applies value iteration on the abstract states. However, unlike in [10], we only form the abstract model with the landmarks of the problem since it would not be reasonable to make further abstraction over an already aliased abstraction of observations.

Figure 1 summarizes the main RL loop combined with the proposed RS approach, named Landmark Based Reward Shaping (LBRS). Basically, whenever the agent completes an abstract transition between two landmarks, say \(l \) and \(l' \), it uses their values to calculate a shaping reward. Then, it updates the abstract model composed of landmarks with this new abstract transition and applies value iteration. Finally, the shaping reward is coupled with the regular reward mechanism to be provided to the underlying RL algorithm.

3 EXPERIMENT

As an empirical evaluation, we experimented LBRS on 6 rooms domain [18], by coupling it with SarsaLandmark [11]. In 6 rooms domain (Figure 2), the landmarks reside in bottleneck regions, except the goal state, which is in the bottom right part of a room. The agent starts from any cell at the top-left room, aiming to reach the goal state with four navigational actions while getting −0.01 punishment for a regular movement and +1 reward for ending up in the goal state. The problem is partially observable since the agent’s observations are formulated by its distance to the walls in four directions. The distances are enumerated into four categories (one step from the wall, two steps from the wall, closer to the wall in this direction than the other, further from the wall in this direction than the other).

Figure 3 shows SarsaLandmark with LBRS not only learns faster, but helps the agent find a better policy. Since each room provides a similar set of observations, finding a good policy is difficult without keeping a memory. However, it is clear from Figure 3 that LBRS improved the algorithm by leading the agent to the goal state much earlier. Since LBRS provides the agent with reliable feedback from the environment about its progress, the agent reaches the goal state much sooner throughout the learning process.

4 CONCLUSION

This paper proposes that RS can be adapted to problems with hidden states by making use of landmarks. It is shown that LBRS further improves the performance of a landmark based algorithm designed for problems with hidden state, by leading the agent to the goal state much faster. As an immediate future work, we plan to extend our experimentation to more complex domains with sophisticated landmarks.
REFERENCES

