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ABSTRACT

Studying complexity of various bribery problems has been one
of the main research focus in computational social choice. In all
the models of bribery studied so far, the briber has to pay every
voter some amount of money depending on what the briber wants
the voter to report and the briber has some budget at her disposal.
Although these models successfully capture many real world appli-
cations, in many other scenarios, the voters may be unwilling to
deviate toomuch from their true preferences. In this paper, we study
the computational complexity of the problem of finding a preference
profile which is as close to the true preference profile as possible
and still achieves the briber’s goal subject to budget constraints. We
call this problem Local Distance Restricted $Bribery. We con-
sider three important measures of distances, namely, swap distance,
footrule distance, and maximum displacement distance, and resolve
the complexity of the local distance restricted bribery problem for
many common voting rules.
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Introduction

Any election scenario is susceptible to control attacks of various
kinds – internal or external agents may try to influence the election
system in someone’s favor. One such attack which has been studied
extensively in computational social choice is bribery. In everymodel
of bribery studied so far (see [29]), we have the preferences of a
set of voters, an external agent called briber with some budget,
a bribing model which dictates how much one has to bribe any
voter to persuade her to cast a vote of briber’s choice, and the
computational problem is to check whether it is possible to bribe
the voters subject to the budget constraint so that some alternative
of briber’s choice becomes the winner. This models not only serve
as a true theoretical abstraction of various real world scenarios but
also generalizes many other important control attacks, for example,
coalitional manipulation [1, 8]. In this paper, we study a refinement
of the above bribery model motivated by the following important
observation made by Obraztsova and Elkind [36, 37]
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“...if voting is public (or if there is a risk of information

leakage), and a voter’s preference is at least somewhat

known to her friends and colleagues, she may be worried

that voting non-truthfully can harm her reputation yet

hope that she will not be caught if her vote is sufficiently

similar to her true ranking. Alternatively, a voter who

is uncomfortable about manipulating an election for

ethical reasons may find a lie more palatable if it does

not require her to re-order more than a few candidates.”

Indeed, in the context of bribery, there can be situations where
a voter may be bribed to report some preference which “resem-
bles” her true preference but a voter is simply unwilling to report
any preference which is far from her true preference. We remark
that existing models of bribery do not capture the above constraint
since, intuitively speaking, the budget feasibility constraint in these
models restricts the total money spent (which is a global constraint)
whereas the situations above demand (local) constraints per voter.
For example, let us think of a voter v with preference a ≻ b ≻ c .
Suppose the voter v can be persuaded to make at most two swaps
and the cost of persuading her does not depend on the number of
swaps she performs in her preference. This could be the situation
when she is happy to change her preference as briber advises (sim-
ply because she trusts the briber that her change will finally ensure
a better social outcome) but does not wish to deviate from her own
preference too much to avoid social embarrassment. One can see
that the classical model of bribery (Swap bribery for example) fails
to capture the intricacies of this situation (for example, making the
cost per swap to be 0 fails because the voter v is not willing to cast
c ≻ b ≻ a). In this paper, we fill this research gap by proposing a
bribery model which directly addresses these scenarios.

More specifically, we study the computational complexity of
the following problem which we call Local Distance Restricted
$Bribery. Given preferences P = (≻i )i ∈[n] of a set of agents, non-
negative integers (δi )i ∈[n] denoting the distance change allowed
for corresponding agents, non-negative integers (pi )i ∈[n] denoting
the prices of every preference, a non-negative integer budget B,
and an alternative c , compute if the preferences can be changed
subject to the “price, distance, and budget constraints” so that c is a
winner in the resulting election for some voting rule. We also study
an interesting special case of the Local Distance Restricted
$Bribery problem where δi = δ for some non-negative integer
δ and pi = 0 for every i and B = 0; we call the latter problem
Local Distance Restricted Bribery. In this paper, we study
the following commonly used distance functions on the set of all
possible preferences (permutations on the set of alternatives): (i)
swap distance [32], (ii) footrule distance [40], and (iii) maximum
displacement distance [36, 37]. The swap distance (aka Kendall Tau
distance, bubble sort distance, etc.) between two preferences is the
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Voting rule Distance Metric
Swap Footrule Maximum displacement

Plurality ⋆PVeto

k-approval
⋆P for δ = 1

NP-complete for δ = 2
⋆P for δ ⩽ 3

NP-complete for δ = 4
P , ⋆P for δi = 1,∀i

⋆NP-complete for δi = 2,∀i
Borda NP-complete for δ = 1 NP-complete for δ = 2 NP-complete for δ = 1

Maximin NP-complete for δ = 1 NP-complete for δ = 2 NP-complete for δ = 1
Copelandα ,α ∈ [0, 1] NP-complete for δ = 1 NP-complete for δ = 2 NP-complete for δ = 1

Simplified Bucklin
⋆P for δ = 1

NP-complete for δ = 2
⋆P for δ ⩽ 3

NP-complete for δ = 4
P , ⋆P for δi = 1,∀i

⋆NP-complete for δi = 2,∀i
Bucklin NP-complete for δ = 1 NP-complete for δ = 2 NP-complete for δ = 1

Table 1: The results marked ⋆ hold for the Local Distance Restricted $Bribery problem; others hold for the Local Dis-

tance Restricted Bribery problem.

number of pairs of alternatives which are ranked in different order
in these two preferences. Whereas the footrule distance (maximum
displacement distance respectively) between two preferences is the
sum (maximum respectively) of the absolute value of the differences
of the positions of every alternative in two preferences.

Contribution. We study the computational complexity of the
Local Distance Restricted $Bribery and Local Distance Re-
stricted Bribery problems for the plurality, veto, k-approval, a
class of scoring rules which includes the Borda voting rule, max-
imin, Copelandα for any α ∈ [0, 1], Bucklin, and simplified Bucklin
voting rules for the swap, footrule, and maximum displacement
distance. We summarize our results in Table 1.

Related Work. Faliszewski et al. [25] propose the first bribery
problem where the briber’s goal is to change a minimum number of
preferences to make some candidates win the election. Then they
extend their basic model to more sophisticated models of Shift
bribery and $Bribery [26, 27]. Elkind et al. [22] extend this model
further and study the Swap bribery problem where there is a cost
associated with every swap of alternatives. Dey et al. [16] show that
the bribery problem remains intractable for many common voting
rules for an interesting special case which they call Frugal bribery.
The bribery problem has also been studied in various other prefer-
ence models, for example, truncated ballots [2], soft constraints [38],
approval ballots [39], campaigning in societies [24], CP-nets [19],
combinatorial domains [34], iterative elections [35], committee se-
lection [6], probabilistic lobbying [3], etc. Erdelyi et al. [23] study
the bribery problem under voting rule uncertainty. Faliszewski et
al. [28] study bribery for the simplified Bucklin and the Fallback
voting rules. Xia [41], and Kaczmarczyk and Faliszewski [30] study
the destructive variant of bribery. Dorn and Schlotter [20] and
Bredereck et al. [5] explore parameterized complexity of various
bribery problems. Chen et al. [7] provide novel mechanisms to
protect elections from bribery. Knop et al. [33] provide a uniform
framework for various control problems. Although most of the
bribery problems are intractable, few of them, Shift bribery for
example, have polynomial time approximation algorithms [21, 31].
Manipulation, a specialization of bribery, is another fundamental
attack on election [9]. In the manipulation problem, a set of voters
(called manipulators) wants to cast their preferences in such a way
that (when tallied with the preferences of other preferences) makes

some alternative win the election. Obraztsova and Elkind [36, 37]
initiate the study of optimal manipulation in that context.

There is also a related line of work in computational social choice
on broader control problems [4, 10, 12–15, 17, 18].

Preliminaries

Wewill consider the following distance functions in this paper. Swap
distance: dswap(≻1,≻2) = |{{a,b} ⊂ A : a ≻1 b,b ≻2 a}|, Footrule
distance: dfootrule(≻1,≻2) =

∑
a∈A |pos(a,≻1) − pos(a,≻2)|, Maxi-

mum displacement distance: dmax dis(≻1,≻2) = maxa∈A |pos(a,≻1
) − pos(a,≻2)|.
Definition 0.1 (Local Distance Restricted Bribery). Given a setA
of alternatives, a profile ≻= (≻i )i ∈[n] ∈ L(A)n of n preferences, a
positive integer δ , and an alternative c ∈ A, compute if there exists
a profile ≻′= (≻′

i )i ∈[n] ∈ L(A)n such that
(i) d(≻i ,≻′

i ) ⩽ δ for every i ∈ [n]
(ii) r (≻′) = {c}

We denote any arbitrary instance of Local Distance Restricted
Bribery by (A,P, c,δ ).

Definition 0.2 (Local Distance Restricted $Bribery). Given a set
A of alternatives, a profile ≻= (≻i )i ∈[n] ∈ L(A)n of n preferences,
positive integers (δi )i ∈[n] denoting distances allowed for every
preference, non-negative integers (pi )i ∈[n] denoting the prices of
every preference, a non-negative integer B denoting the budget
of the Briber, and an alternative c ∈ A, compute if there exists a
subset J ⊆ [n] and a profile ≻′= (≻′

i )i ∈J ∈ L(A) | J | such that
(i)

∑
i ∈J pi ⩽ B

(ii) d(≻i ,≻′
i ) ⩽ δi for every i ∈ J

(iii) r
(
(≻′

i )i ∈J , (≻i )i ∈[n]\J

)
= {c}

We denote any arbitrary instance of Local Distance Restricted
$Bribery by (A,P, c, (δi )i ∈[n], (pi )i ∈[n]).
We remark that the optimal bribery problem, as described in

Definition 0.1, demands the alternative c to win uniquely. It is
equally motivating to demand that c is a co-winner. As far as the
optimal bribery problem is concerned, we can easily verify that
all our results, both algorithmic and hardness, extend easily to the
co-winner case. However, we note that it need not always be the
case in general (see Section 1.1 in [42] for example). The proofs can
be found in the full version [11].
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