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Machine learning is an essential part of developing solutions for
many industrial applications. Developers of such applications need
to rapidly build, test, deploy and validate machine learning models.
While the validation of models is a key capability that will enable
industries to more widely adopt machine learning capabilities for
business decision making, this process suffers from the lack of in-
terpretability. Validation usually begins with understanding how
a machine learning model is developed - the pipeline from source
data, through data processing and featurization, to model building
and parameter tuning. The ability to understand the machine learn-
ing model also represents a key piece of domain knowledge: a data
scientist who understands how to make successful models will be
in high demand across that domain because they understand how
to combine raw data with machine learning tools and produce valu-
able outcomes. Unfortunately, this level of understanding remains
somewhat of a "dark art" in that the knowledge and judgment used
to find good domain-specific machine learning pipelines is usually
found in the heads of the data scientists with domain knowledge
and developed over time through experience. Therefore, while it
is possible to see the final machine learning pipeline and code im-
plementing it, the steps that the data scientist went through, and
the compromises and decisions they made, are not captured. Once
the model is delivered, most insights and assumptions related to
development of the solution are lost, making long term sustaining
of the model development operation difficult. There is also no gen-
eral way of tracking accumulated experiences in building a given
model often useful in building similar solutions.

To facilitate rapid development and deployment of data science
solutions, automated machine learning (AutoML) has gained more
interest recently due to the availability of public dataset repositories
and open source machine learning code bases. AutoML systems
such as Auto-WEKA [10], Auto-SKLEARN [2] and TPOT[6] attempt
to optimize the entire machine learning pipeline. These pipelines
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consist of independent steps such as featurization to encode data
in numeric form and feature selection to pick the best subset of
features. Given sufficient computation resources, these system can
achieve good accuracy in building machine learning pipelines, but
they do not provide clear explanations to justify the choice of
models that can be verified by data scientist, and consequently the
problem of interpretability remains unsolved.

To address this challenge, we describe the Maana Meta-
learning service which provides interpretable automated machine
learning. The goal of this project is two-folded. Firstly, we hope
that the efficiency of developing data science solutions can be im-
proved by leveraging an automated search and profiling algorithm
such that a baseline solution can be automatically generated for the
data scientists to fine-tune. Secondly, we hope that such automated
search process is transparent to human users, and through learning
process the service can return interpretable insights on the choice
of models and hyper-parameters and encode them as knowledge.
Contrasted with most AutoML systems that provide end-to-end
solutions, the Maana Meta-learning service is an interactive assis-
tant to data scientists that performs user-guided, machine-assisted
automated machine learning. By having data scientists specify a
pre-determined search space, and Meta-learning service then goes
through several stages to perform model selection, pipeline pro-
filing and hyper-parameter tuning. During this process, it returns
intermediate results and user can inject feedback to steer the search
process. Finally, it generates an optimal pipeline along with struc-
tured knowledge encoding the decision making process, leading to
an interpretable automated machine learning process.

Maana Meta-Learning service features two components: (1) a
knowledge representation that captures domain knowledge of
data scientists and (2) an AutoML algorithm that generates ma-
chine learning pipeline, evaluates their efficacy by sampling hyper-
parameters, and encodes all the information about the choices
made and subsequent performance / parameters into the knowl-
edge representation. The knowledge representation is defined using
GraphQL1. Developed by Facebook as an alternative to the popular
REST interface [3], GraphQL provides only a single API endpoint
for data access, backed by a structured, hierarchical type system.
Consequently, it allows us to define a knowledge taxonomy to cap-
ture concepts of machine learning pipelines, seamlessly populate
facts to the predefined knowledge graph and reason with them. The
AutoML algorithm, in charge of generating and choosing which
pipelines to pursue, is based on PEORL framework [11], an inte-
gration of symbolic planning [1] and hierarchical reinforcement

1https://graphql.org/
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(a) The Meta-learning Service Architecture. (b) Choices made in each of the three stages for an example run.

Figure 1: Meta-learning Service Overview

Dataset Pipeline CV accuracy
Reuters 50/50 none/hashing vectorizer/linear SVC 0.848

IMDB none/hashing vectorizer/SGD classifier 0.879
Adult random trees/one hot & min_max scaling/SGD 0.8523

Spam detection None/min_max scaling/logistic regression 0.927
Parkinsons detection None/std_scaler/random forest 0.887

Abalone Nystroem/std_scaler/random forest 0.552
Car Nystroem/one hot/gradient boosting 0.938

Table 1: Baseline Pipelines Learned on Datasets

learning [9]. Symbolic plans generated from a pre-defined symbolic
formulation of a dynamic domain is used to guide reinforcement
learning, and recently this approach is generalized to improve inter-
pretability of deep reinforcement learning. In the setting of AutoML,
generating machine learning pipelines is treated as a symbolic plan-
ning problem on an action description in action language BC[4]
that contains actions such as preprocessing, featurizing, cross val-
idation, training and prediction. The architecture of the system is
shown in Figure 1a.

The pipeline is sent to execution where each symbolic action
by mapping to primitive actions in a Markov Decision Process [7]
(MDP) space, which are ML pipeline components instantiated with
random hyper-parameters, in order to learn the quality of the ac-
tions in the pipeline. The learning process is value iteration on
R-learning [5, 8], where cross-validation accuracy of the pipeline is
used as rewards. After the quality of the current pipeline is mea-
sured, an improved ML pipeline is generated thereafter using the
learned values, and the interaction with learning continues, until
no better pipeline can be found. This step is called model profiling.
After that, a more systematic parameter sweeping is performed, i.e.,
model searching. This allows us to describe the pipeline steps in an
intuitive representation and explore the program space more sys-
tematically and efficiently with the help of reinforcement learning.

One can see the progress as the algorithm moves through the
different search stages on the Spam detection dataset, settling on
the logistic regression classifier in Figure 1b.

In Maana Knowledge Platform, CSV files can be uploaded and
each column becomes a field and their types are automatically
identified. The user can trigger Meta-learning service by submitting
a query through GraphQL endpoint. The GraphQL input is used
to generate part of the initial state for planning, and the Meta-
learning service is triggered for pipeline search. Throughout the
pipeline search process, the results are constantly written to the
Maana Knowledge platform according to the knowledge schema.
The service is implemented in Python with Graphene library to
enable GraphQL server and endpoints. It is deployed using a Docker
image along with other components of Maana Knowledge platform.

Additionally, another feature we use to improve performance is
the parallelization of building models. Because the model profiling
and model search episodes can be done in parallel, we use asyn-
chronous approach, where multiple workers are launched and each
perform their own parameter sampling and cross validation on the
dataset, and the result is returned to the dispatcher to perform value
iteration.

The results in Table 1 show that the Meta-learning service gener-
ates competitive baseline result for the data scientist to further work
on with standard datasets from the UCI Machine Learning Repos-
itory2. A strongly-typed representation of results via GraphQL,
combined with the BC action language configure pipelines and
rules and an effective search using PEORL, produce a transparent
AutoML platform.

2https://archive.ics.uci.edu/ml/index.php
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