
Obvious Strategyproofness, Bounded Rationality and
Approximation

Extended Abstract

Diodato Ferraioli

Università degli Studi di Salerno, Italy

dferraioli@unisa.it

Carmine Ventre

University of Essex, UK

c.ventre@essex.ac.uk

ABSTRACT
Obvious strategyproofness (OSP) has recently emerged as the solu-

tion concept of interest to study incentive compatibility in presence

of agents with a specific form of bounded rationality, i.e., those

who have no contingent reasoning skill whatsoever. We here want

to study the relationship between the approximation guarantee of

incentive-compatible mechanisms and the degree of rationality of

the agents, intuitively measured in terms of the number of contin-

gencies that they can handle in their reasoning. We weaken the

definition of OSP to accommodate for cleverer agents and study

the trade-off between approximation and agents’ rationality for the

paradigmatic machine scheduling problem. We prove that, at least

for the classical machine scheduling problem, “good” approxima-

tions are possible if and only if the agents’ rationality allows for a

significant number of contingencies to be considered, thus showing

that OSP is not too restrictive a notion of bounded rationality from

the point of view of approximation.

ACM Reference Format:
Diodato Ferraioli and Carmine Ventre. 2019. Obvious Strategyproofness,

Bounded Rationality and Approximation. In Proc. of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
Mechanism design is an established research field, by now rooted

in a number of academic disciplines including theoretical computer

science and AI. Its main objective is that of computing in presence

of selfish agents who might misguide the designer’s algorithm if

it is profitable for them to do so. The concept of strategyproofness
(SP-ness) (a.k.a., truthfulness) ensures that the algorithm and the

agents’ incentives are compatible and computation is indeed viable.

SP is based on the assumption of full rationality: agents are able

to consider all possible strategies and their combinations to rea-

son about their incentives. Nevertheless, this assumption is seldom

true in reality and it is often the case that people strategize against

mechanisms that are known to be truthful [3]. One then needs a

different notion to compute in the presence of agents with bounded

rationality. The problem here is twofold: how can we formalize

strategyproofness for agents with (some kind of) bounded rational-

ity? If so, can we quantify this bounded rationality and relate that

to the performances of the mechanisms?

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

The first question has been recently addressed by Li [9], who

defines the concept of obvious strategyproofness (OSP-ness); this
notion has attracted quite a lot of interest in the community [2, 4, 6–

8, 10, 12, 14]. Here, the mechanism is seen as an extensive-form

game; when a decision upon the strategy to play has to be made, it

is assumed that the reasoning of each agent i is as simple as the fol-

lowing: the worst possible outcome that she can get when behaving

well (this typically corresponds to playing the game according to

the so-called agent’s true type) must be at least as good as the best
outcome when misbehaving (that is, following a different strategy).

Best/Worst are quantified over all the possible strategies that the
players playing in the game after i can adopt. Li [9] proves that

this is the right solution concept for a model of bounded rationality

wherein agents have no contingent reasoning skills; rather than

thinking about the possible if-then-else’s, an agent is guaranteed

that honesty is the best strategy no matter all the contingencies.

Given the OSP formalization of bounded rationality, we focus,

in this work, on the second question. On the one hand, OSP is too

restrictive in that people might be able, within their computational

limitations, to consider few cases of if-then-else’s. On the other

hand, OSP mechanisms appear to be quite limited, with respect

to SP ones, in terms of their approximation guarantee [6, 7]. The

question then becomes:

Can we quantify the trade-off between the “degree” of
bounded rationality of the agents and the approximation
guarantee of the mechanisms incentivizing them?

Our Contribution. The concept of lookahead is discussed in the liter-

ature in the context of (strategies to play) games, and agents with

limited computational capabilities. De Groot [5] found that all chess

players (of whatever standard) used essentially the same thought

process – one based upon a lookahead heuristic. Shannon [13] for-

mally proposed the lookahead method and considered it a practical

way for machines to tackle complex problems, whilst, in his classi-

cal book on heuristic search, Pearl [11] described lookahead as the

technique being used by “almost all game-playing programs”.

We propose to consider lookahead as a way to quantify bounded

rationality, in relation to OSP. Whilst in OSP the players have no

lookahead at all, we here consider the case in which the agents have

lookahead k , k going from 0 (OSP) to n − 1 (SP). Intuitively, k mea-

sures the number of players upon which each player reasons about

in her decision making. So when agent i has to decide upon the

strategy to play, she will consider all the possible cases (strategies)

for these k agents (à la SP) and a no-contingent reasoning (à la OSP)

for the others. We regard our definition of OSP with k-lookahead
(k-OSP, for short) as a major conceptual contribution of our work.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1952



We then look at the trade-off between the value of k and the

approximation guarantee of k-OSP mechanisms. We focus of the

well-studied problem of machine scheduling, where n agents con-

trol related machines and the objective is to schedule a set ofm
(identical) jobs to the machines so to minimize the makespan (i.e.,

the latest machine’s completion time). In our main technical con-

tribution, we prove a lower bound on approximation guarantee of

τk (n) =
√
k2+4n−k

2
, thus providing a smooth transition function be-

tween the known approximation factors of

√
n for OSP mechanisms

[6] and 1 for SP mechanisms [1].

The main message of our work is that having more rational

agents only slightly improves the approximation guarantee of

incentive-compatible mechanisms, at least in the case of machine

scheduling. In fact, to have a constant approximation of the opti-

mum makespan one would need agents with a ω(1)-lookahead. We

can then conclude that, in the cases in which the agents are not that

rational, OSP is not that restrictive a solution concept to study the

approximation of mechanisms for agents with bounded rationality.

2 THE DEFINITION
We have a set N of n agents; each agent i has a domain Di of

possible types – encoding some feature of theirs (e.g., their speed).

The actual type of agent i in Di is her private knowledge. An

extensive-form mechanism M is a triple (f ,p,T), where f is an

algorithm that takes as input bid profiles and returns a feasible

solution, p = (p1, . . . ,pn ) is the payment function, one for each

agent, andT is an extensive-form game, that we call implementation
tree. Intuitively, T represents the steps that the mechanism will

take to determine its outcome. More formally, each internal node u
of T is labelled with a player S(u), called the divergent agent at u,
and the outgoing edges fromu are labelled with types in the domain

of S(u) that are compatible with the history leading to u; the edge
labels denote a partition of the compatible types. We denote by

Di (u) the types in the domain of i that are compatible with the

history leading to node u ∈ T . The tree models howM interacts

with the agents: at node u the agent S(u) is queried and asked to

choose an action, that corresponds to selecting one of u’s outgoing
edges. The chosen action signals that the type of S(u) is in the set

of types labeling the corresponding edge. The leaves of the tree

will then be linked to (a set of) bid profiles; the mechanism will

return (f ,p) accordingly; in other words, each leaf corresponds to

an outcome of the mechanism. (Observe that this means that the

domain of f and p is effectively given by the leaves of T .) We use b
to denote bid profiles, so that bi stands for the type that i signalled
to the mechanism. For simplicity, we use f (b) and p1(b), . . . ,pn (b)
to denote the outcome of (f ,p) for the leaf of T to which b belongs.
We assume that agents have quasi-linear utilities, that is, agent i of
type t who signals (i.e., plays the game T according to) b has utility

ui (b, b−i ) = pi (b) − t(f (b)), where, with a slight abuse of notation,

t(f (b)) is the cost that player i pays to implement the outcome f (b)
when her type is t , and b−i is the declaration vector of all agents

except i . (More generally, given a set A ⊂ N , we let bA = (bj )j ∈A.)
Figure 1 gives an example of an implementation tree where

three players have domain {L,H }. The root partitions the domain

of machine 1 into L and H . If v is the left child, then D1(v) = {L}
as type H is no longer compatible with the history of v .

1r

2v

3

l1

L
l2

H

L
3

l3

L
l4

H

H

L
2

3

l5

L
l6

H

L
3

l7

L
l8

H

H

H

Figure 1: An implementation tree with three players with
two-value domains {L,H }; each player separates the domain
types upon playing; at each leaf li the mechanism computes
f (b) and p(b), b being the bid vector at li .

We call a bid profile b compatible with u if b is compatible with

the history of u for all agents. We furthermore say that (t , b−i ) and
(b, b′

−i ) diverge at u if i = S(u) and t and b are labels of different

edges outgoingu (we sometimes will abuse notation and we also say

that t and b diverge atu). So, for example, (L,H ,H ) and (L,L,H ) are

compatible at node v on Figure 1 and diverge at that node, whilst

(L,L,H ) and (L,L,L) are compatible but do not diverge.

For every agent i and types t ,b ∈ Di , we let u
i
t,b denote a vertex

u in the implementation tree T , such that (t , b−i ) and (b, b′
−i ) are

compatible with u, but diverge at u for some b−i , b′−i ∈ D−i (u) =

×j,iD j (u). We finally denote i’s lookahead at uit,b as Lk (u
i
t,b ), that

is, a set of (at most) k agents that move in T after i .

Definition 2.1 (OSP with k-lookahead). An extensive-form mech-

anism M = (f ,T ,p) is OSP with k-lookahead (k-OSP, for short)
if for all i , t ,b ∈ Di , t being i’s type, uit,b ∈ T , bK ∈ DK (u

i
t,b )

and bT , b′T ∈ DT (u
i
t,b ), it holds that ui (t , bK , bT ) ≥ ui (b, bK , b′T ),

where K = Lk (u
i
t,b ),T = N \ (K ∪ {i}) and DA(u) = ×j ∈A⊂ND j (u).

Essentially, a mechanism is OSP with lookahed if each agent is

willing to behave truthfully at each node of the tree in which she

interacts with the mechanism, provided that she exactly knows

the types of agents in K , but has no information about agents in T ,
except that their types are compatible with the history.

We remark that withk = 0we get the definition of OSP –wherein

K is empty – and with k = n − 1 we have truthfulness.

3 THE CASE OF MACHINE SCHEDULING
We are given a set of m identical jobs and the n agents control

related machines. Agent i’s type is a job-independent processing
time ti per unit of job. The algorithm f must choose a possible

schedule f (b) = (f1(b), . . . , fn (b)) of jobs to the machines, where

fi (b) denotes the job load assigned to machine i when agents take

actions signalling b. The cost that agent i faces for the schedule
f (b) is ti (f (b)) = ti · fi (b). We focus on algorithms f ∗ minimizing

the makespan, i.e., f ∗(b) ∈ argminxmax
n
i=1 bi (x).We say that f is

α-approximate if it returns a solution whose cost is a factor α away

from the optimum.

Let τk (n) =
√
k2+4n−k

2
. That is, τk is a function of n such that

n = τk (n)(τk (n) + k). Observe that τ0(n) =
√
n and τn−1(n) = 1. We

can then prove the following theorem.

Theorem 3.1. For the machine scheduling problem, no k-OSP
mechanism can be better than τk (n)-approximate. This even holds for
homogeneous three-value domains, i.e., Di = {L,M,H } for every i .

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1953



REFERENCES
[1] Aaron Archer and Éva Tardos. 2001. Truthful Mechanisms for One-Parameter

Agents. In FOCS 2001. 482–491.
[2] Itai Ashlagi and Yannai A Gonczarowski. 2018. Stable matching mechanisms are

not obviously strategy-proof. Journal of Economic Theory 177 (2018), 405–425.

[3] Lawrence M. Ausubel. 2004. An efficient ascending-bid auction for multiple

objects. American Economic Review 94, 5 (2004), 1452–1475.

[4] Sophie Bade and Yannai A. Gonczarowski. 2017. Gibbard-Satterthwaite Success

Stories and Obvious Strategyproofness. In EC 2017. 565.
[5] Adriaan De Groot. 1978. Thought and Choice in Chess. Mouton.

[6] Diodato Ferraioli, Adrian Meier, Paolo Penna, and Carmine Ventre. 2018. On

the approximation guarantee of obviously strategyproof mechanisms. CoRR
abs/1805.04190 (2018).

[7] Diodato Ferraioli and Carmine Ventre. 2017. Obvious Strategyproofness Needs

Monitoring for Good Approximations. In AAAI 2017. 516–522.

[8] Diodato Ferraioli and Carmine Ventre. 2018. Probabilistic Verification for Obvi-

ously Strategyproof Mechanisms. In IJCAI 2018.
[9] Shengwu Li. 2017. Obviously strategy-proof mechanisms. American Economic

Review 107, 11 (2017), 3257–87.

[10] Andrew Mackenzie. 2017. A revelation principle for obviously strategy-proof

implementation. (2017).

[11] Judea Pearl. 1984. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley.

[12] Marek Pycia and Peter Troyan. 2016. Obvious dominance and random priority.

(2016).

[13] Claude Shannon. 1950. Programming a computer for playing chess. Philos. Mag.
41, 314 (1950), 256–275.

[14] Luyao Zhang and Dan Levin. 2017. Bounded rationality and robust mechanism

design: An axiomatic approach. American Economic Review 107, 5 (2017), 235–39.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1954


	Abstract
	1 Introduction
	2 The definition
	3 The case of machine scheduling
	References



