
A Compression-Inspired Framework for Macro Discovery
Extended Abstract

Francisco M. Garcia
University of Massachusetts
Amherst, Massachusetts, USA

fmgarcia@cs.umass.edu

Bruno C. da Silva
Federal University of
Rio Grande do Sul

Porto Alegre, Rio Grande, Brazil
bsilva@inf.ufrgs.br

Philip S. Thomas
University of Massachusetts

Amherst, Massachusetts, Brazil
pthomas@cs.umass.edu

ABSTRACT
We consider the problem of how a reinforcement learning agent,
tasked with solving a set of related Markov decision processes,
can use knowledge acquired early on in its lifetime to improve
its ability to more rapidly solve novel tasks. We propose a three-
step framework that generates a diverse set of macros that lead to
high rewards when solving a set of related tasks. Our experiments
show that augmenting the original action-set of the agent with the
identified macros allows it to more rapidly learn optimal policies
in novel MDPs.

KEYWORDS
Reinforcement Learning; Hierarchical RL; Exploration
ACM Reference Format:
Francisco M. Garcia, Bruno C. da Silva, and Philip S. Thomas. 2019. A
Compression-Inspired Framework for Macro Discovery. In Proc. of the 18th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
One of the key aspects of human learning is our ability to con-
struct building blocks upon which we can learn new skills. Humans
generally bootstrap higher-level skills acquired early on in their
lives to solve new problems. For example, a child learning to run
does not need to re-learn the “balance” skill to stand in two feet
as part of learning a “run” skill. Instead, the child uses previously
acquired skills to more efficiently explore the consequences of his
actions when facing novel tasks. In the Reinforcement Learning
(RL) literature, higher-level actions are sometimes called options or
macros [6, 8]. They introduce a bias in the behavior of the agent
which is key during exploration to more efficiently learn how to
solve novel problems. Formally, a macro of length l is a sequence of
actionsm = (a1, · · · ,al), wherem(i) denotes the ith action in macro
m. If carefully constructed, macros have been shown to improve
learning speed by allowing an agent to quickly reach distant areas
of the state space during training [4].

We assume that if two tasks (MDPs) are related (i.e., belong to a
same class) then the behavior learned as a solution to the former
task can be used to identify macros that will help in learning how to
solve the latter.We define a problem class C to be the set of all related
tasks, c , that an agentmay face, where c = (S,A, Pc ,Rc ,γ ,d

c
0). That

is, each task, c , in the same problem class corresponds to a Markov

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Diagram depicting proposed framework.

decision process defined by the same state space S, action space A
and discount factorγ , but with a task-specific transition function Pc ,
reward function Rc , and initial state distribution dc0 . The question
this paper focuses on is: “How can an agent identify and leverage
useful macros for a given class or distribution of problems?”.

2 PROBLEM STATEMENT
We consider the setting where an agent is required to solve a set
of tasks c ∈ C, where C is a given problem class, and assume that
when solving a particular task, it can interact with it for I episodes.
After the agent has trained on a subset Ctrain ⊂ C of tasks, we are
interested in identifying a set of macros to be used for improving
learning in the set of remaining tasks Ctest ⊂ C.

We define the performance of a set of macros M in a partic-
ular task c to be ρ(M, c) = E

[1
I
∑I
i=1

∑T
t=0 γ

tRit
��AM , c

]
, where

Rit is the reward at time step t during the ith episode. This quan-
tity expresses the expected average return an agent gets over I
episodes on a task c using an extended action set AM = A ∪M

(an action set composed of primitives and macros). In other words,
the performance of a set of macros is defined by how much the
performance of an agent is improved during training by augment-
ing the agent’s original action set with a given set of macros M.
Our goal is to find one (of possibly many) optimal set of macros
M∗ for C′ such thatM∗ ∈ argmaxM

(1
|Ctest |

∑
c ∈Ctest ρ(M, c)

)
.

Unfortunately, the domain of this objective function is discrete,
making it non-differentiable and difficult to optimize. We posit
that compression techniques provide a means to identify macros
representing recurring behaviors in optimal policies for problems
in the class, which therefore are good candidates for composing
M∗. Full details and derivations of this framework can be found at
https://arxiv.org/abs/1711.09048.

3 A HEURISTIC FOR APPROXIMATING M∗

The proposed framework is summarized in the diagram in Figure
1. The agent first trains on a set of tasks Ctrain ⊂ C′, thereby
acquiring an optimal policy π∗

c for each task. It then samples n
trajectories from each policy π∗

c for task c . Once these samples
have been obtained, our framework generates a set of macros
M ′ as an approximation to M∗ via the following 3-step process:

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1973

https://arxiv.org/abs/1711.09048

Macro Generation: A trajectory τ of length l is the sequence
of states, actions and rewards experienced by an agent following
a given policy: τ = {s0,a0, r0, . . . , sl−1,al−1, rl−1}. We define an
action-trajectory τa = {a0,a1, . . . ,al−1} as the sequence of ac-
tions in τ . Our agent is first trained on a set of training tasks and
generates a set of action-trajectories by sampling them from the
learned optimal policies. To generate macros, we consider each
action-trajectory akin to a message we wish to compress and the
set of primitive actions, A, analogous to the symbols in the ini-
tial alphabet used for compression. In this work we use the LZW
compression algorithm [10]. Algorithm 1 shows our adaptation to
encode action-trajectories as macros.
Algorithm 1 LZW - macro codebook generation
1: Initialize alphabet Σ = A

2: macrom = ()

3: for each action-trajectory τa do
4: for each action a in τa do
5: m =m + a
6: if m < Σ then
7: Σ = Σ ∪ {m }

8: m = ()

9: return Σ

Macro Evaluation: At this stage we have generated a possibly
large set of candidate macros, M, but we do not know how useful
they are in helping the agent to quickly solve new tasks. To do this,
we measure the utility of a macrom w.r.t C by means of a U-function
defined as U π

C
(m) = E

[
Qπ
C (S,m)

]
, where the expectation is over

tasks in C and states S sampled from the on-policy distribution [7].
In other words, the utility of a macrom is the expected Q-value of
m over all states in the problem class. A benefit of this approach is
that given the Q-values of primitives, the Q-value of a macro can
be computed efficiently, in closed-form, as:

Qπ
c (s,m) =

lm−1∑
k=0

(
γ k

[∑
s (1)∈S

· · ·
∑

s (lm)∈S

Πlm−1
i=0 Pc (s i ,m(i), s i+1)

Pc (s (k),m(k), s (k+1))

]
×
[
Q (sk ,m(k)) −

∑
sk+1∈S

Pc (s (k),m(k), s
(k+1))

× γ
∑
a′∈A

π (a′, s (k+1))Q (s (k+1), a′)
])

+
∑
s (1)∈S

· · ·
∑

s (lm)∈S

Πlm−1
i=0 Pc (s (i),m(i), s

(i+1))

× γ
∑
a′∈A

π (a′, s (lm))Q (s (lm), a′).

Macro Selection: The utility allows us to asses which macros may
lead to higher rewards. However, we must also consider that if
too many macros are added to AM , the agent’s action-set may
get too large, thereby hindering learning. To address this issue,
we select macros that not only have a high utility, but that are
diverse from each other. Let St be a random variable denoting the
state where m is executed and St+lm the state where m finishes
execution. Furthermore, let S ′ = d(St+lm , St) be a random variable
denoting the change in state from executing a macrom, where d is a
function measuring the change in state, and let pm be a probability
distribution over S ′ form. For two macrosm1 andm2, we define the
distance between them to be the KL divergence between pm1 and
pm2 : DKL(pm1 | |pm2) = −

∑
S ′ pm1 (S

′) log
(pm2 (S

′)

pm1 (S
′)

)
. The setM ′ is

(a) Average performance in maze
navigation when transition

graph is kept fixed throughout
all training and testing tasks.

(b) Average performance in maze
navigation when transition
graphs vary between training

and testing.

Figure 2: Average performance comparison on 20 novel test
tasks. Start and goal locations were selected randomly.

incrementally built by only including those macros (obtained from
Algorithm 1) that have a minimum distance δ to all other macros
already included in the set. By selecting macros in descending order
according to their U-value, the utility defines a preference criterion
by which macros are selected. Pseudocode for framework is given
in Algorithm 2.

Algorithm 2 Macro discovery process
1: 1. Macro Generation
2: Learn optimal policy π ∗

c for all c ∈ Ctrain .
3: Collect action-trajectories τa from each π ∗

c in task c .
4: Generate macros M from all τa by Algorithm 1
5: 2. Macro Evaluation
6: Sort allm ∈ M by U π ∗

c
C

(m) in descending order.
7: 3. Macro Selection
8: AM′ = A

9: form ∈ M do
10: if minDKL (pm | |pm′) > δ, ∀m′ ∈ AM′ then
11: AM′ = AM′ ∪ {m′ }

4 EXPERIMENTAL RESULTS
We compared the performance of primitives (P), primitive+macros
(M), eigenoptions (E) [3] and the option-critic architecture (O) [1].
We evaluated our method in a maze navigation problem class where
the environment dynamics are known andthe true Q-values (for
primitives) can be estimated accurately in tabular form. This allows
us to accurately compute the U-value for any candidate macro.
Figure 2 compares the learning performance of an agent using each
technique with tabular Q-learning as the learning algorithm. We
also extended these test to two problems with large state spaces,
where the transition functions and U-values had to be estimated
by sampling: Animat [9] and Lunar Lander [2]. We tested our
identifiedmacros on 10 novel testing tasks and used DQNMnih et al.
[5] as a learning algorithm. The return of the policy learned after
1000 training episodes for the two problem classes is as follows. In
Animat, P: −909.77± 199.53, M: −752.89 ± 188.59, E: −1, 432.46±
64.72, O: 1, 955.47 ± 41.22. In Lunar Lander, P: −314.03 ± 44.09,
M: −246.89 ± 28.99, E: −266.43 ± 5.22, O: −265.51 ± 7.42

ACKNOWLEDGMENTS
This work was partially supported by FAPERGS under grant no.
17/2551-000.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1974

REFERENCES
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Archi-

tecture. In AAAI.
[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. (2016). http:
//arxiv.org/abs/1606.01540 cite arxiv:1606.01540.

[3] Michael Bowling Marlos C. Machado, Marc G. Bellemare. 2017. A Laplacian
Framework for Option Discovery in Reinforcement Learning. CoRR (2017).

[4] A. McGovern and R. Sutton. 1998. Macro Actions in Reinforcement Learning: An
Empirical Analysis. Technical Report. University of Massachusetts - Amherst,
Massachusetts, USA.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(Feb. 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[6] Jette Randl. 1998. Learning Macro-Actions in Reinforcement Learning. In NIPS.
[7] Richard S. Sutton and Andrew G. Barto. 2018. Introduction to Reinforcement

Learning (2nd ed.). MIT Press, Cambridge, MA, USA.
[8] Richard S. Sutton, Doina Precup, and Satinder P. Singh. 1999. Between MDPs and

Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artificial Intelligence 112, 1-2 (1999), 181–211.

[9] Philip S. Thomas and Andrew G. Barto. 2011. Conjugate Markov Decision
Processes. In Proceedings of the 28th International Conference on International
Conference on Machine Learning (ICML’11). Omnipress, USA, 137–144. http:
//dl.acm.org/citation.cfm?id=3104482.3104500

[10] T. A. Welch. 1984. A Technique for High-Performance Data Compression. Com-
puter 17, 6 (June 1984), 8–19. https://doi.org/10.1109/MC.1984.1659158

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

1975

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://dx.doi.org/10.1038/nature14236
http://dl.acm.org/citation.cfm?id=3104482.3104500
http://dl.acm.org/citation.cfm?id=3104482.3104500
https://doi.org/10.1109/MC.1984.1659158

	Abstract
	1 Introduction
	2 Problem Statement
	3 A Heuristic for Approximating M*
	4 Experimental Results
	Acknowledgments
	References

