
Optimal Sequential Planning for Communicative Actions:
A Bayesian Approach

Extended Abstract

Piotr Gmytrasiewicz
University of Illinois at Chicago

Chicago, IL
piotr@uic.edu

Sarit Adhikari
University of Illinois at Chicago

Chicago, IL
sadhik6@uic.edu

ABSTRACT
We build on the Interactive POMDP (IPOMDP) framework, which
extends POMDPs to multi-agent settings, and include communi-
cation which can take place between the agents. While IPOMDPs
endow the agents with models of their environments and models
of other agents, we supplement IPOMDPs with communicative
acts available to the agents to formulate Communicative IPOMDPs
(CIPOMDPs). We treat communication as a type of action; hence de-
cisions regarding communicative acts should be based on decision-
theoretic planning using Bellman optimality principle, just as they
are for all other actions. As in any form of planning, the results
of actions need to be precisely specified. We use Bayes update to
derive how agents update their beliefs in CIPOMDPs; updates are
due to their actions, observations, messages they send to other
agents, and messages they receive from others. Without communi-
cation CIPOMDPs reduce to IPOMDPs. Without other agents they
all become classical POMDPs.
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1 INTRODUCTION
This paper reports on the Bayesian approach to specifying the
consequences of communicative acts interwoven among physical
actions and observations during an interaction with other agents
and the physical world. Communicative actions are unlike physical
acts since the function of communication is to change the agents’
beliefs [9, 14, 17], not to change the physical environment. On the
one hand communication is action [2] executed by a speaker, but
on the other hand it is perception for the hearer.

Our contribution is to propose a principled approach to interac-
tion and communication based on Bayesian decision theory and
decision-theoretic planning. First, we build on interactive POMDPs
[8] which allow agents to represent their state of knowledge about
the physical states and about possible models of other agents. The
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ability of agents to model other agents has been called the the-
ory of mind. Its usefulness while interacting with others has long
been established in psychology, linguistics, economics and AI [6–
8, 10, 13, 15, 16, 18]. We limit our attention to intentional models of
other agents, which also are IPOMDPs, and in which agents’ beliefs
represent what they know about the state of the world and about
other agents, including their preferences and beliefs about other
agents’ beliefs, others’ beliefs about others and so on. Such beliefs
are called interactive beliefs [1, 4, 8]. We augment IPOMDPs by
allowing agents to send and receive messages, and call the result-
ing framework communicative IPOMDPs (CIPOMDPs). In finitely
nested CIPOMDPs the models agents have of each other terminate
at a finite level, called strategy level l , with "flat" POMDP models,
like in IPOMDPs. There is no a priori bound on the value of the
strategy level; agents are free to choose one as needed.

2 COMMUNICATIVE IPOMDPS
Communicative IPOMDPs (CIPOMDPs) build on IPOMDPs but in-
clude additional action of sending a message,ms , and an additional
observation - a message that could be received,mr . Either message
can be nil.

CIPOMDPi = ⟨ISi,l ,A,M,Ωi ,Ti ,Oi ,Ri ⟩ (1)

where M is a set of messages the agents can send to and receive
from each other (so that bothms andmr above are inM). All of the
other elements are as defined previously for IPOMDPs except that
the reward function has an additional argument; Ri : S×A×M → R
so it can also depend on the messages i sends (messages can be
costly.) The set of messages constitute the language of communi-
cation the agents share. We leave the exact specification ofM for
future work but we make an assumption that each message in M
can be interpreted as a marginal probability distribution spanned on
the agents’ interactive state spaces ISi (and ISj ). This allows agent
i to send a message containing information about any variable(s) in
i’s belief space, and similarly for j . Messages with value nil (silence)
contain no variables. The fact that the agents’ beliefs and messages
exchanged are probability distributions facilitates incorporation
of information received into the agent’s beliefs, subject to it’s ve-
racity. Note that while M is over the same state space as agent’s
beliefs we do not demand that it be in any way tied to the actual
beliefs - agents are free to lie or be truthful in any way they find
advantageous. To our knowledge our work is first not make the
cooperative assumption.

Since interactive states encompass states of the world and other
agents’ nested models the message space defined above can contain
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information about the world, information about other agents’ an-
ticipated actions, beliefs of other agents about the world and what
they think others may do, and so on.

2.1 Belief Update
At any particular time step agents i and j perform physical ac-
tions and observe and also send and receive messages. Call the
message i sent at time t − 1 mt−1

i,s , and one i received at time t

mt
i,r , and analogously for j. We assume all messages are in M

and that message transmission is perfect. The belief update in
CIPOMDPs has to update the probability of interactive state given
the previous belief, action and observation, and given the message
sent (at the previous time step) and received (at the current time):
P(ist |bt−1i ,a

t−1
i ,m

t−1
i,s ,o

t
i ,m

t
i,r ):

Proposition 1:

bti (is
t ) = P(ist |bt−1i ,a

t−1
i ,m

t−1
i,s ,o

t
i ,m

t
i,r ) = (2)

= α
∑
is t−1

bt−1i (ist−1)
∑
at−1j

Pr (mt−1
j,s ,a

t−1
j |θ t−1j )×

×Oi (s
t ,at−1,oti )Ti (s

t−1,at−1, st )

×
∑
otj

τθ tj
(bt−1j ,a

t−1
j ,m

t−1
j,s ,o

t
j ,m

t
j,r ,b

t
j )O j (s

t ,at−1,otj )

Update in Proposition 1 is analogous to belief update in IPOMDPs
when it comes to actions and observations. With respect to commu-
nication Proposition 1 combines three important elements. First,
the updated belief depends on the agent’s prior beliefbt−1i (ist−1), as
should be expected. Second, the term P(mt−1

j,s ,a
t−1
j |θ t−1j ) quantifies

the relation between the message i received from j and the model,
θ j , of agent j that generated the message.1 This term is the measure
of j ′s sincerity, i.e., whether the message j sent reflects j’s beliefs
which are part of the model θ j . We assume that agents are sincere
to the extend that it pays off for them; we define this further below.
Third, Proposition 1 includes the dependence of agent j’s belief and
the state of the world included in the interactive state is =< s,θ j >,
both at time t and t − 1; if j’s observation function contained in
θ j is accurate i would expect that j’s beliefs accurately reflect the
state of the world s .

2.2 Decision-Theoretic Planning for
Communication and Interaction

Given that belief update in CIPOMDPs2 is analogous to belief up-
date in IPOMDPs, we similarly proceed to define the Bellman equa-
tion which includes communicative actions and hard and soft crite-
ria quantifying speaker’s sincerity.

The belief update, defined in Proposition 1, over the whole
space ISi due to communication is again represented as a func-
tion SE so that the new belief is: bti = SE(bt−1i ,a

t−1
i ,m

t−1
i,s ,o

t
i ,m

t
i,r ).

τθi (b
t−1
i ,a

t−1
i ,m

t−1
i,s ,o

t
i ,m

t
i,r ,b

t
i ) is defined as equal 1 when bti is

equal to SE(bt−1i ,a
t−1
i ,m

t−1
i,s ,o

t
i ,m

t
i,r ) and zero otherwise, and anal-

ogously for j (which is a factor in Proposition 1 above).
1Note thatmt−1

j,s =m
t
i,r because message transmission is assumed to be perfect.

2Recall that either message may be nil – silence can be informative and takes part in
the belief update.

The utility of interactive belief of agent i , contained in i’s type
θi , is:

Ui (θi ) = max(mi,s ,ai )

{ ∑
is ∈I S

bis (s)ERi (is,mi,s ,ai )+ (3)

+γ
∑

(mi,r ,oi )

P(mi,r ,oi |bi ,ai ) ×

×Ui (⟨SEθi (bi ,ai ,mi,s ,oi ,mi,r ), θ̂i ⟩)
}

ERi (is,mi,s ,ai ) above is the immediate reward to i for sending
mi,s and executing action ai given the interactive state is and is
equal to ΣajRi (is,ai ,aj ,mi,s )P(aj |θ j ), (i’s reward can depend on
the cost of sendingmi,s as we mentioned before.)

Equation above defines the utility of an interactive belief in θi
and is the Bellman equation for interactive (physical and commu-
nicative) behavior. The agent’s ability to compute optimal utility
maximizing interactive behavior is the basis for rational interaction.
The Bellman equation above describes the back-up operation during
value-driven decision-theoretic search through an agent’s inter-
active beliefs reachable by both agents’ executing communicative
and physical actions during interaction. It is a decision-theoretic
version of multi-agent epistemic planning [3, 5, 11, 12].

An optimal message–action pair, (m∗
i,s ,a

∗
i ), agent i should exe-

cute (assuming infinite time horizon criterion with discounting) is
an element of the set,OPT (θ j ), obtained by maximizing Eq. (3). This
allows agents to predict which messages and actions are rational
for other agents. As for IPOMDPs, there is a hard maximization cri-
terion according to which i could model j as a strict optimizer and
predict that j would only perform interactive actions in OPT (θ j ).
Soft maximization defines the the probability of j sendingmj,s and
performing aj as:

Pr (mj,s ,aj |θ j ) =
exp[λUj (mj,s ,aj )]∑

(mj,s ,aj ) exp[λUj ((mj,s ,aj )]
(4)

Equation (4) treats agents as rational and, when it comes to com-
munication, is central to Rational Speech Acts model [9]. Equation
above quantifies an agent’s sincerity by tying the message it de-
cides to send to it’s beliefs (contained in θ j ) by modeling it as a
self-interested rational speaker.

3 CONCLUSION AND FUTUREWORK
We presented an approach to decision-theoretic planning for com-
munication and interaction by building on IPOMDPs. We added
the capability for agents to exchange messages, derived Bayesian
update of agents’ beliefs due to message exchange, physical actions
and observations. Further, we formulated Bellman optimality for
interactive behavior. Our future work will include specification of
the agent communication language and principled investigation
of deceptive communicative behavior. We believe that agents can
protect themselves from being lied to by out-thinking the other
agent in terms of depth of the nested theories of mind and in terms
of the time horizon.
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