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ABSTRACT

The paper presents a new method for approximating Strong Stack-
elberg Equilibrium in general-sum sequential games with imperfect
information and perfect recall. The proposed approach is generic,
i.e. does not rely on any specific properties of a particular game
model. The method is based on iterative interleaving of the two
following phases: (1) guided Monte Carlo Tree Search sampling
of the Follower’s strategy space and (2) building the Leader’s be-
havior strategy tree for which the sampled Follower’s strategy
is an optimal response. The above solution scheme is evaluated
on interception games played on graphs with respect to expected
Leader’s utility and time requirements. A comparison with two
state-of-the-art exact methods for this genre of games shows that
in vast majority of test cases our simulation-based approach leads
to optimal Leader’s strategies, while excelling both exact methods
in terms of time scalability and much lower memory usage.
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1 INTRODUCTION

Majority of contemporary Stackelberg Game (SG) research is fo-
cused on developing effective methods for specific game defini-
tions, e.g. [2, 5, 10, 16, 20] and there are just a few works related to
finding SE in the case of general SG models. Possible approaches
include: column and constraint generation [8, 20], marginal and
compact strategies [13, 16], game abstraction [1, 20] or memetic al-
gorithm [12], however, none of them can be easily applied to a
broad class of sequential multi-act general-sum games with imper-
fect information. An efficient exact approach to generic sequential
general-sum SGs was proposed in [3] (referred to as BC2015) where
the authors considered a sequence-form game representation. An-
other powerful general approach [7] (referred to as Cermak2016)
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Figure 1: An outline of the O2UCT method.

starts off with finding Correlated Equilibrium using MILP and then
restricts it iteratively until the SE strategy profile is obtained. These
two state-of-the-art generic methods are reference approaches for
an approximate method proposed in this paper.

Contribution. The paper introduces a method for approximating
SE in a broad and general genre of sequential general-sum imperfect-
information games, inspired by a double-oracle approach [4, 9].
Despite being rooted in the double-oracle framework, the method
presents an entirely different operational principle as it relies on
Upper Confidence bound applied to Trees (UCT) [14] - a variant
of Monte Carlo Tree Search (MCTS) [6] sampling of the Follower’s
strategy alternated with an adjustment of the Leader’s behavior
strategy represented in the form of a tree.

2 DOUBLE-ORACLE SAMPLING METHOD
(O2UCT) FOR SE APPROXIMATION

The proposed approach, called O2UCT (double-oracle UCT sam-
pling), aims at approximating Leader’s equilibrium strategy in se-
quential general-sum games with perfect recall and imperfect in-
formation. An overview of the method is depicted in Figure 1. A
distinctive feature of O2UCT is the lack of exhaustive search of
the Follower’s strategy space, which is replaced by iterative guided
space sampling. In principle, any sampling method capable of trans-
ferring knowledge about the sampled space to subsequent iterations
can be used. In this paper the UCT method, which already proven
successful in a wide variety of domains [15, 17-19], is applied.

In short, each UCT iteration (playout) is composed of 4 main
phases: selection, expansion, simulation, and backpropagation [6, 14].
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Algorithm 1: Node adjustment with momentum

Data: prob € [0, 1]M - a vector of probabilities, mom € RM -
a momentum vector, w € R — a normalization factor,
as € RM — an assessments vector.
1 mom < mom + as;
2w« w+ Li(as);
3 prob < max{prob + mom/w,0}// independent max at
each position
4 prob « normalizeOrEqualprob// Normalize vector
values so their sum :=1 or assign equal prob.
at each position if current sum is 0
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Figure 2: A difference in Leader’s payoffs between the SSE
strategy and the O2UCT strategy w.r.t. the number of nodes.
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Figure 3: Computation times comparison.

In our method, selection, expansion and simulation correspond
to Step 1 of O2UCT iteration (guided sampling in Figure 1), and
backpropagation is implemented in Step 3 (collection of payoffs).
Step 2 refers to obtaining the Leader’s strategy, for which the just-
sampled Follower’s strategy is the optimal response. The ex-
pected Leader’s payoff is calculated using a method presented in
Section 2.1.

2.1 A method of finding the Leader’s strategy

The algorithm for finding Leader’s strategy is inspired by a double-
oracle approach [4, 9] and consists in alternating the following two
phases: (1) an improvement of the Leader’s strategy against a fixed
Follower and (2) finding the optimal Follower’s response against
the current Leader’s strategy based on the Follower’s oracle. For
a sampled Follower’s strategy (Step 1 in Fig. 1) a corresponding
Leader’s strategy (Step 2 in Fig. 1) must satisfy two conditions:

(*) the optimal Follower’s response to that strategy is the same
as the sampled Follower’s strategy;

(**) among all Leader’s strategies that satisfy (*) it is the one
that optimizes the Leader’s payoff.

Any Leader’s strategy satisfying (*) will be called a feasible strategy.

Let’s denote the sampled Follower’s strategy by &}, (r stands for
requested Follower’s strategy). The method of finding a strategy
that approximates (*)-(**) consists of the following steps:
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(1) Initialize Leader’s strategy.
(2) Seek the Follower’s strategy yielding better Follower’s payoff
against the current Leader’s strategy. If exists, call it 5?.

3) If 51{3 was found, then perform strategy feasibility pass (see
below) and go to (2), otherwise continue.

(4) Perform the Leader’s strategy adjustment that increases the
Leader’s payoff (positive pass - see below) and go to (2).

(5) Return the best Leader’s strategy among all feasible strategies
found (in step (3)).

Leader’s payoff improvement (4) is repeated until either iteration-
to-iteration Leader’s payoff increase is smaller than a pre-defined
threshold or the limit for the total number of iterations is reached.

All adjustments to the Leader’s strategy are performed in each
node of a continuously evolving tree-based representation, accord-
ing to Algorithm 1, starting from the bottom of the tree, in one
of the two following procedures: feasibility pass and positive pass.
The first one is executed when there exists 51{1 that yields higher
Follower’s payoff than 6}, and changes Leader’s move probabilities

to increase the value of 6, — 51{3. The latter one is run to improve
the Leader’s payoff in the case of feasible (Leader’s) strategy.

3 EXPERIMENTAL EVALUATION

Efficiency and scalability of O2UCT was compared with BC2015 and
Cermak2016 methods, on two game sets: Warehouse Games [11] and
Search Games [3], on Intel Xeon Silver 4116 @ 2.10GHz with 256GB
RAM and time limit of 200 hours. The first game family was tested
with the number of rounds T = 3,4, 5,6, 7,8, the second one for
T = 4,5,6. For Cermak2016 a variant called AI-MILP was used [7].
For each game instance between 5 and 15 O2UCT tests were run.
The baseline methods were run once as they have deterministic
nature. Performance of O2UCT is analyzed in two dimensions: an
expected Leader’s payoff (Figure 2) and computation time (Figure 3).
The outcomes are grouped by the number of nodes of an extensive-
form game representation. While exact measurements of memory
usage were not performed (because of using a garbage collector)
we noted that O2UCT was able to compute results for 10° game
nodes using 8GB of memory while solver based methods started
running out of (256GB) memory for games with 107 nodes.

4 CONCLUSIONS

O2UCT provides high-quality solutions — optimal in vast majority
of test cases, while scaling visibly better than exact state-of-the-art
MILP-based methods. The method is capable of solving longer /
more complex game instances due to lower memory requirements,
which stem from two factors: application of a double oracle ap-
proach (which does not require storing in memory all possible strat-
egy profiles), and dynamic UCT-based expansion of the Leader’s
strategy tree. Furthermore, the UCT-based sampling is an anytime
procedure which can be stopped in any moment, though still re-
turning a high quality solution (the best one found so far). Finally,
O2UCT is a generic method applicable to any sequential games.
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