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ABSTRACT
A looming question that must be solved before robotic plant pheno-
typing capabilities can have significant impact to crop improvement
programs is scalability. High Throughput Phenotyping (HTP) uses
robotic technologies to analyze crops in order to determine species
with favorable traits, however, the current practices rely on ex-
haustive coverage and data collection from the entire crop field
being monitored under the breeding experiment. This works well
in relatively small agricultural fields but can not be scaled to the
larger ones, thus limiting the progress of genetics research. In this
work, we propose an active learning algorithm to enable an au-
tonomous system to collect the most informative samples in order
to accurately learn the distribution of phenotypes in the field with
the help of a Gaussian Process model. We demonstrate the superior
performance of our proposed algorithm compared to the current
practices on sorghum phenotype data collection.
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1 INTRODUCTION
In conventional adaptive sampling [6–10, 12] tasks, the robot se-
quentially selects a limited number of locations to collect high utility
data and plans a path to reach them by optimizing a cost function
like path length. The prediction of locations with high utility data
relies on the utility collected from the visited locations so far during
sampling. In HTP, phenotypes like plant height, stalk width, etc.
are measured with the help of computer vision techniques [1, 3, 4]
on images captured by on-board cameras. Note that images and
hence phenotype measurements can be gathered even when the
robot is in motion. This is different from conventional adaptive
sampling where there is only a single source of data acquisition. In
contrast, in this work, we consider two types of measurements:
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• Static measurements: The robot stops at a sampling location
to get accurate measurements (conventional sampling).

• Mobile measurements: As the robot is moving, it collects
data from images captured from locations along its path.

Naturally, the static measurements are more accurate than the
mobile ones, however, gathering them requires more time and
resources than the latter. As a result, there is a trade-off between
the quality of data and the required resources. In this work, we
present an active learning framework where the agent first selects
a set of locations with high utility data (static samples) and then
plans a path to maximize joint information gain from both static
and mobile samples gathered along the way.

Mueller et al. [11] presented a robotic platform for HTP. However,
its efficiency can be significantly increased by collecting high utility
data in a short time. Also, the amount of data needed to analyze crop
genetics can be reduced by learning the distribution of phenotypes
so as to estimate unobserved data as shown in this work.

(a) Environment

(b) Robotic platform

Figure 1: (a) The robot (red cell) determines the p most informative samples
(here p = 4) in the field which are shown in green and finds the most infor-
mative path (green arrows). (b) Robotic platform used for collecting data.

2 GAUSSIAN PROCESS MODEL
Let V = {v1, . . . ,vn } be the set of all sampling data points where
vi = {location, vegetation index, leaf angle density} ∈ Rd and y =
{stalk height} represents an observable feature vector. There exists
a latent function f : Rd → R that maps the input v ∈ Rd to the
objective value f (v). After sampling a set D ⊂ V and observing the
output Y = {y(v) | v ∈ D}, the robot uses GP regression to learn
the underlying mapping f assuming the joint distribution of the
observed readings is Gaussian. A GP is a distribution over functions
fully defined by a mean functionm and a covariance function k
taken to be Matern Kernel with parameter ν = 1.5 in this work.

The robot may have collected multiple mobile measurements
for the same data point v , we combine them all into an equivalent
mean measurement ŷm (v). A robot may also have acquired a static
measurement ys (v) for a data point v for which it has gathered mo-
bile measurement(s) before. We fuse them together as the product
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of the two probability density functions:
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where σ 2
s and σ 2

m denote the static and mobile measurement vari-
ances respectively. Note that σ 2

m > σ 2
s . The inter-sample covariance

is modelled as:

k̃(vi ,vj ) = kMatern(vi ,vj ) + σ
2(vi )δi j (1)

where δi j is the Kronecker delta. The posterior target distribution of
a set of samplesA ⊂ V conditioned on the sampled setD can bewrit-
ten as f (A) | A,D,Y ∼ N(µA |D , ΣA |D ) where µA |D = ΣADΣ

−1
DDY

and ΣA |D = ΣAA − ΣADΣ
−1
DDΣDA. ΣAB is pairwise covariance ma-

trix. Also, the entropy of a set A conditioned on a sampled set D is
H (A|D) = 1

2 log
(
(2πe) |A | det

(
ΣA |D

))
.

3 INFORMATIVE PLANNING
The robot selects a set A∗ of p points (see Figure 1) with the maxi-
mum entropy conditioned on the already sampled set D. Formally,

A∗ = argmax
A∈P(V \D), |A |=p

H (A|D) (2)

where P(S) is the power set of S . Since, this is an NP-Hard problem
[2], we use the greedy strategy proposed by Krause et al. [5] where
the ith sample ai is selected as the one which results in the max-
imum information gain a∗i = argmaxai ∈V \(A∗

i−1,D) H
(
ai |A

∗
i−1,D

)
where A∗

i−1 = {a∗1, . . . ,a
∗
i−1}. Let, ΩA,x be the set of all possible

paths originating from a location x ∈ R2 and passing through the
plot of all samples a ∈ A. Also, let Pm be the set of mobile samples
along the path P . The most informative path P∗ is determined as:

P∗ = argmax
P ∈ΩA∗,x0, c(P )<B

H
(
A∗, Pm |D

)
where c(P) is the path length and B is the budget set as the shortest
path length plus some slack ξ , i.e., B = minP ∈ΩA∗,x0

c(P) + ξ . The
slack term ξ controls the freedom given to the robot to explore
distant areas. The robot can’t take a 180° turn because of narrow
space between two rows. This constraint reduces the search space
to a small graph G whose nodes are the junction points in the
grid. We propose a heuristic to speed up the search for P∗ in G
by determining the bounding box formed by the robot’s current
location and the remaining static sampling locations. Clearly, the
agent has to travel at least the distance from its current position to
the nearest edge and then to the opposite edge along each of the
two axes. The heuristic is the sum of the minimum distances along
the two axes.

4 EXPERIMENTS
We compared our proposed Maximum Entropy algorithm 1 (Max-
Ent) as described in Section 3 against four baseline methods:

• Naive static: The robot sequentially visits each column and
slows down or stops in each plot to gather accurate data.

• Naive mobile: This strategy is same as Naive static except
that the agent collects date while in motion.

1Our code is available at https://github.com/sumitsk/algp.git

(a) Test MAE v/s distance (b) Number of samples v/s distance

Figure 2: The plot shows the (a) MAE of agent’s prediction on the test set and
(b) number of samples collected against distance travelled. For picture clarity,
only 50% confidence interval is shown. Here, σs = 0.5, σm = 2.5 and ξ = 0.

• Shortest: The agent determines selects the path with the
shortest length from the set of all the feasible paths.

• Equi-sample: The agent selects the path with the same num-
ber of samples as the one selected by MaxEnt algorithm.

We used the mean stalk height in each plot as a metric for quality of
produce from that plot and performed experiments on a sorghum
dataset collected by our robotic platform (see Figure 1b) from a
15 × 25 grid field in South Carolina, USA. We reserved a set of
randomly chosen 40 locations as a test set and compared the Mean
Absolute Error (MAE) between their true phenotype values and the
ones predicted by the model.

The graphic plot of agent’s prediction against distance travelled
is shown in Figure 2a. Each grid cell in the environment corresponds
to 1 unit distance. All 3 informative strategies are able to quickly
predict the phenotype distribution by actively visiting places with
high utility. Our proposed MaxEnt consistently achieves the lowest
prediction error on the test set indicating its ability to accurately
estimate the target distribution. Shortest and Equi-sample strategies
are also able to learn the target distribution and closely match the
performance ofMaxEnt. On the other hand, the two naive strategies
(current practices) perform poorly and are unable to match the
performance of the informative strategies.

We also compared the predictive performance ofMaxEnt against
different values of noise ratio (k = σm

σs ) and slack ξ as shown in
Table 1 and Table 2 respectively.

MaxEnt prediction {mean(std)} with different k
k = 1 k = 2 k = 5 k = 10

MAE 4.08(0.70) 4.10(0.77) 4.09(0.78) 4.40(0.68)
Table 1: MAE on the test set for σs = 0.5 and σm = kσs averaged over 20
simulations. In each simulation, the robot travels 250 distance units.

MaxEnt prediction {mean(std)} with different slack ξ
ξ = 0 ξ = 5 ξ = 10 ξ = 15

MAE 4.22(0.58) 4.00(0.51) 4.08(0.54) 4.19(0.40)
Table 2:MAE on the test set for σs = 0.5 and σm = 2.5 for different ξ averaged
over 20 simulations. In each simulation, the robot travels 250 distance units.

We observe that there is not much significant difference in the
predictive accuracy of the learned model till k = 5. Also, increasing
ξ improves the model’s performance however only upto a limit.

5 CONCLUSION
We presented an active learning framework that alternates between
sampling plots with high utility and learning a GP model of the tar-
get distribution for HTP. Through simulation experiments, we have
demonstrated the superior performance of our proposed approach
compared to the current practices.
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