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ABSTRACT

In this paper, we propose a general two-objective Markov Decision
Process (MDP) modeling paradigm for automated negotiation with
incomplete information, in which preference elicitation alternates
with negotiation actions, with the objective to optimize negotiation
outcomes. The key ingredient in our MDP framework is a stochastic
utility model governed by a Gaussian law, formalizing the agent’s
belief (uncertainty) over the user’s preferences. Our belief model is
fairly general and can be updated in real time as new data becomes
available, which makes it a fundamental modeling tool.
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1 INTRODUCTION

Automated (agent-based) negotiation is a broadly applicable re-
search topic in Al with notable applications in high-frequency
trading [6], cloud computing [12], pervasive computing [11], smart
grids [15], supply chain management [7]. In such system architec-
tures, agents can successfully substitute humans in making deci-
sions, provided that the user’s goals are accurately known [10].

In many situations agents do not have access to all information
required for taking optimal decisions and need to elicit relevant
information by interacting with the user, striking a balance between
negotiation and preference elicitation. In particular, the agent needs
to decide what information is relevant for the next negotiation step
and how to integrate it into the decision process.

Therefore, designing agents that can efficiently learn and inte-
grate user’s preferences into decision making processes is a key
challenge in automated negotiation. While accurate knowledge of
the user’s preferences is highly desirable, eliciting the necessary
information might be rather costly, since frequent user interactions
may cause inconvenience. Therefore, developing efficient elicita-
tion strategies (minimizing elicitation costs) for inferring relevant
information is of critical importance in automated negotiation.
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2 A TWO-OBJECTIVE MDP APPROACH

Partially Observable Markov Decision Process models have been
proposed for both (automated) negotiation [9] and preference elici-
tation [2, 4]. Preference elicitation models were further adapted to
negotiation processes in which agents may elicit absolute utility
values by submitting queries to the user [1, 8]. We propose here a
two-objective MDP approach, in which the agent aims to optimize
the expected reward, obtained only when reaching an agreement.
To this end, two types of actions are available to the agent: queries
(submitted to the user) and offers (submitted to the opponent).

The lack of information on the user/opponent’s reasoning is
impeding a proper MDP formulation. For instance, neither the
probability of reaching a certain agreement nor the size of the
corresponding reward are known. To cope with this uncertainty,
the agent resorts to beliefs about the user’s and opponent’s goals.
As new actions are undertaken, the agent receives feedback and
updates its beliefs accordingly, as indicated in Fig. 1.
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Figure 1: Agent’s interactions and belief updates.

The agent’s beliefs are formalized as probability laws on rele-
vant spaces and further used to define the relevant MDP elements,
e.g. transition probabilities and rewards, as random variables. The
beliefs are updated sequentially, according to Bayesian rules, based
on the observed reactions, i.e. answers from the user, resp. counter-
offers from the opponent. Desirable features of belief models are:

o generality, to account for a wide range of possible scenarios;
e tractability, to allow easy integration of new information.

A typical way of deriving the quantitative elements defining the
MDP model of interest is by means of (stochastic) utility functions,
quantifying the user/opponent’s preference for each negotiation
agreement [2, 4], in which the stochasticity (randomness) is inter-
preted as the agent’s belief. MDP states include the current beliefs,
rewards are defined as random (under the current user belief) utili-
ties of future negotiation agreements, whereas the future opponent
moves are predicted based on its (belief-based) utility function. A de-
sirable feature of a stochastic utility function is data-measurability;
that is, the utility function must be completely determined by the
observable data. Indeed, introducing non-measurable randomness
in the utility model might have detrimental effect, resulting in
inconsistent results depending on (subjective) prior beliefs [16].
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3 GAUSSIAN BELIEF MODELS

Gaussian Processes are a rather popular choice in belief-modeling in
Machine Learning [3]. Their popularity stems from the fact that they
cover a wide range of (utility/preference) functions, outperforming
(in terms of generality) competing (e.g. linear) models, where extra
assumptions are typically required (e.g. existence of trade-offs in
multi-issue negotiation, for linear models). In addition, the Laplace
Approximation of the Bayesian posterior (resulting in relatively
simple update rules) makes GP belief models tractable.

For the sake of generality, we focus on ordinal utility functions,
i.e. measurable w.r.t. ordinal data (pairwise comparisons between
alternatives), in contrast to [4], where cardinal utility functions,
which require sampling absolute utility values, are used. Ordinal
utilities provide arguably more realistic models than cardinal ones,
since absolute values are rarely available in practice and - even then
- less consistent over time (than ordinal preferences) [5]. Therefore,
we assume that the user’s preferences define a partial order (i.e.
reflexive, anti-symmetric and transitive relation) on the negotiation
space (of all possible agreements), which is consistent over time.

To handle ordinal utility functions (thus, assuming that only
ordinal data is observable), we adopt the instance preference learning
framework [13, 14], where a belief is formalized by a Gaussian law
over the class of functions on negotiation space, parametrized by
a pair of mean, resp. covariation, functions. A random sample is
then a GP (to be understood as a stochastic preference function),
based on which preferences between pairs of (different) outcomes
are derived by direct comparison of the corresponding GP values.
GP’s are not measurable w.r.t. ordinal data (since the magnitude of
the utility value of some particular outcome can not be inferred by
comparing it to all other outcomes) and need to be converted into
ordinal utility functions, before being integrated into our model.

Beliefs are subject to Bayesian updating, given (a set of) ordinal
data. Exact formulae for sequential updating, i.e. for the new mean
and covariation functions, can be derived from the general update
procedure [14] and integrated into a belief-based preference learn-
ing scheme, compatible with the MDP model in Section 2. Initial
beliefs are chosen based on prior knowledge and assumptions on
how utility values are correlated. Monotonicity assumptions can
be also included (as ordinal data) in the initial belief(s).

¢

Figure 2: The belief MDP dynamics. The rectangles denote
actions (black text for the agent, blue for the user and red
for the opponent) and the rounded shapes represent MDP
states with respective (expected) immediate rewards.
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4 THE GP-BASED BELIEF MDP MODEL

To integrate the Gaussian belief model described in Section 3 in the
two-objective MDP model in Section 2, we consider generic MDP
(transitory) states in the form S = (w, y1, 1), where:

e o denotes the actual state of the negotiation and encodes all
relevant information about the negotiation history;

e 4 and 1 denote (Gaussian) beliefs about the user’s, resp. op-
ponent’s, preferences.

Terminal negotiation states (corresponding to negotiation agree-
ments) are generically denoted by 7. MDP states (z, y, n) are termi-
nal, hence they are the only states ‘paying off” a reward U(r) (if
reached by the MDP), where U denotes a stochastic ordinal utility
function under the (current) belief y; in particular, the n-component
becomes irrelevant in terminal states.

The dynamics of the belief MDP are graphically illustrated in Fig.
2. Assume that the agent is in the belief state (w, y, ). In line with
the interaction scheme in Fig. 1, should it pose a (comparative) query
to the user, it updates the user belief i based on the corresponding
answer (translated into ordinal data), resulting in a new user belief
. On the other hand, should the agent accept the offer currently
on the table (specified by ), the MDP moves in a terminal state
7 and a reward U(7) is obtained. Finally, should the agent submit
an offer to the opponent, it can either get accepted, resulting in a
terminal negotiation state 7’ with corresponding reward U(z’), or
be negotiated, resulting in a counter-offer from the opponent, which
is used in two-ways: to update the negotiation state (resulting in
a new state @) and to update the opponent belief (resulting in a
new belief 7j), based on the assumption that the counter-offer is
preferred by the opponent to the submitted offer.

5 CONCLUSIONS

We propose an MDP model for automated negotiation with incom-
plete information, based on stochastic ordinal utility functions, in
which the uncertainty is formalized by a Gaussian belief. Gaussian
belief models are both general and tractable, thus providing an
attractive alternative for preference modeling.

A key step in this formalism is converting preferences into util-
ity values, without introducing ‘extra’ randomness in the utility
model. This requires a ‘standardized’ method for deriving absolute
(utility) values from ordinal data. A general approach is to assign a
deterministic ‘weight’ to each pair of outcomes, which is added to
the utility value of the preferred one (if any).

In our model, the agent aims to maximize the expected utility
of the (future) negotiation agreement, with respect to all possible
sequences of actions and user/opponent’s reactions. A one-step
look-ahead strategy on agent actions and expected response pro-
vides a first-hand, heuristic solution that future work may further
refine, by designing efficient (maximum) search algorithms.
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