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ABSTRACT Different from classical RL methods, where an expectation of

value function is learned ([12, 17, 19]), distributional RL methods
In distributional reinforcement learning (RL), the estimated dis- ([4, 8]) maintain a full distribution of future return. In the limit,
tribution of the value functions model both the parametric and distributional RL captures the intrinsic uncertainty of an MDP
intrinsic uncertainties. We propose a novel, efficient exploration ([4, 6, 7, 15]). Intrinsic uncertainty arises from the stochasticity of the
method for Deep RL that has two components. The first is a decay- environment, which is parameter and sample independent. However,
ing schedule to suppress the intrinsic uncertainty. The second is during learning the estimated distribution is affected by both para-
an exploration bonus calculated from the upper quantiles of the metric and intrinsic uncertainties. It is not trivial how to separate
learned distribution. In Atari 2600 games, our method achieves 483 these two. We propose an efficient approach of exploration that tries
% average gain in cumulative rewards over QR-DQN. to isolate parametric uncertainty from the estimated distribution

produced by Distributional RL.
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As it was mentioned distributional RL focuses on learning the full
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approaches to represent a distribution in RL setting ([2, 4, 6]). In this
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1 INTRODUCTION where 6; is an estimation of the quantile corresponding to th.e
quantile level (a.k.a. quantile index) 7; = T‘%H’ with 7; =
Exploration is a long standing problem in Reinforcement Learn- for0 <i < N,ypy =1 +yby (St+1, arg maxgq’ Zfil Oi(st+1. a’)),
ing (RL), where optimism in the face of uncertainty is one of the pE (%) = |t = Ifx < 0}|Li(x), Ly is the Huber loss. 6; can be
fundamental principles ([11, 16]). Here the uncertainty refers to parametrized by a neural network as in QR-DQN or by a single pa-
parametric uncertainty, which arises from the variance in the esti- rameter as in multi-armed bandits. Therefore, the state-action value
mates parameters due to finite samples. Both count-based methods Q(s, a) is simply the mean of {0; }fi e ﬁ Zfi 1 0i(s, a). Similarly,
([1, 3, 9, 14, 18]) and Bayesian methods ([5, 9, 13]) follow this opti- the variance is % Zﬁil(é - 0;)2.

mism principle. In this paper, we propose to use distributional RL
methods to achieve this optimism.

3 ALGORITHM

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and A naive approach to exploration would be to use the variance of the

Multiagent Systems (www.ifaamas.org). All rights reserved. estimated distribution as a bonus. We provide an illustrative counter
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example. Consider a multi-armed bandit environment with 10 arms
where each arm’s reward follows normal distribution N (ug, o).
In each run, means {y }; are drawn from standard normal. Stan-
dard deviation of the best arm is set to 1.0, other arms’ standard
deviations are set to 5. In the setting of multi-armed bandits, this
approach leads to picking the arm a such that

®

a = arg m/?Xﬂk + coy
where ;. and oi are the estimated mean and variance of the k-
th arm, computed from the corresponding quantile distribution
estimation.

In this example naive exploration bonus fails. Specifically, the
average reward is nearly zero after 3,000 steps averaged over 2,000
runs. The reason is that the estimated QR distribution is a mixture of
parametric and intrinsic uncertainties. Recall, as learning progresses
the parametric uncertainty vanishes and the intrinsic uncertainty
stays. Therefore, this naive exploration bonus will tend to be biased
towards the arm with high intrinsic variance but with low mean,
which is not optimal.

The major obstacle in using the variance, i.e. 0']% in (1) fr explo-
ration, is the intractable interplay between parametric and intrinsic
uncertainties in the estimated distribution. To suppress the intrin-
sic uncertainty, we propose a decaying schedule in the form of a
multiplier to ai:

@)

From the classical QR theory ([10]), it is known that the parametric
uncertainty of the quantile estimator decays at the following rate:

1
o = o2 3)

where c is a constant factor. This approach achieves average reward
around 1 after 3,000 steps averaged over 2,000 runs.

a = arg max . + c; O
k

We can improve the algorithm even further by making the fol-
lowing observation: QR has no restrictions on the family of dis-
tributions it can represent. In fact, the learned distribution can be
asymmetric. The important question is how likely asymmetry can
arise in applications. To test this hypothesis we measured the the
difference between the mean and the median of the {6; }fi ; during
training of QR-DQN in the game of Pong from Atari 2600 every
4,000 frames during 5M frames. The result is that the distribution
is almost always asymmetric and asymmetry does not vanish as
policy improves.

In order to account for asymmetry we propose to use the Left
Truncated Variance (LTV) instead of the usual variance, i.e. o2. Left
Truncated Variance is defined as:

2 &
of =5 ; (6-6:)° (4)
i:7+1

Left truncation means that the left tail is truncated and we only
consider the right tail. If the distribution is symmetric, then LTV is
equal to the variance. However, in the case of asymmetric distri-
bution they might not be equal and LTV would be biased towards
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the upper tail. In the multi-armed bandit testbed with asymmetric
reward distributions LTV significantly outperforms the variance
and has the same performance in the case of the symmetric reward
distributions.

By combining the Decaying Schedule (3) and LTV (4) we propose
a new exploration algorithm, Decaying Left Truncated Variance
(DLTV):
©)

DLTV generalizes in a straightforward fashion to Deep RL. Algo-
rithm 1 outlines DLTV for Deep RL.

a= argm}?X/Jk +CrO4k

Algorithm 1 DLTV for Deep RL

Input: w,w™, (x,a,r,x’),y € [0,1) > network weights, sampled
transition, discount factor
1 Q(,a) = % X 0j(x",a’sw7)

2 a* = argmaxy (Q(x,a’) + ct4/0?)

3 TO0j=r+ybi(x,a;w)
s L(w) = 3; 5 Zjlpz, (T0) = 0i(x, a; w))]
5: w’ = arg min,, L(w)

Output: w’ > Updated weights of 6()

4 ATARI 2600 EXPERIMENTS

We evaluated DLTV on the set of 49 Atari games initially proposed
by [12]. Algorithms were evaluated on 40 million frames, 3 runs
per game. Our approach achieved 483 % average gain in cumulative
rewards over QR-DQN. Notably the performance gain is obtained
in hard games such as Venture, PrivateEye, Montezuma Revenge
and Seaquest.

The architecture of the network follows [7]. For our experiments
we chose the Huber loss with k = 1 ! as in the work by [7] due
to its smoothness compared to L1 loss of QR-DQN-0. We followed
closely [7] in setting the hyper parameters, except for the learning
rate of the Adam optimizer which we set to @ = 0.0001.

The most significant distinction of our DLTV is the way the
exploration is performed. As opposed to QR-DON there is no epsilon
greedy exploration schedule in DLTV. The exploration is performed
via the o2 term only (line 2 of Algorithm 1).

An important hyper parameter which is introduced by DLTV
is the schedule, i.e. the sequence of multipliers for Uf, {ct}s. In
our experiments we used the following schedule ¢; = 50 lo%t.
We studied the effect of the decaying schedule in the Atari 2600
game Venture. Constant schedule with ¢; = 1, 5 wasn’t significantly
different from the random agent. Whereas, DLTV achieves near
human performance.

1QR-DQN with k = 1 is denoted as QR-DQN-1
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