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ABSTRACT
We investigate the coordination structures generated by deep Q-
network (DQN) in a distributed task execution. Cooperation and 
coordination are the crucial issues in multi-agent systems, and very 
sophisticated design or learning is required in order to achieve 
effective structures or regimes of coordination. In this paper, we 
show the results that agents establish the division of labor in a 
bottom-up manner by determining their implicit responsible area 
when input structure for DQN is constituted by their own obser-
vation and absolute location.

KEYWORDS
Multi-agent deep reinforcement learning; Coordination; Coopera-
tion; Divisional cooperation
ACM Reference Format:
Yuki Miyashita and Toshiharu Sugawara. 2019. Coordination Structures 
Generated by Deep Reinforcement Learning in Distributed Task Execu-
tions. In Proc. of the 18th International Conference on Autonomous Agents and 
Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, 
IFAAMAS, 3 pages.

1 INTRODUCTION
Cooperation and coordination for improving overall efficiency in 
multi-agent systems (MAS) is an important issue. However, the 
appropriate strategic regime of multiple agents for cooperation is 
influenced by a variety of factors such as task structures, frequency 
of task occurrence, and environmental characteristics, which makes 
it a challenging issue.

Deep reinforcement learning (DRL) has produced many suc-
cessful results in fields such as robotics [1, 3] and games [4, 6, 7]. 
Recently, some studies apply DRL to MAS so as to accomplish co-
operation and coordination in MAS [2, 5, 8]. However, it is still not 
clear how the observations of agents and data input to the DQN 
affects the generated coordination structures in multi-agent deep 
reinforcement learning (MA-DRN).

Our contribution is to examine what kinds of strategic coop-
erative behaviors emerge in multiple agents by changing the ob-
servable view of each agent as the inputs to the DQNs. We use 
the distributed task execution game,which is similar to the treasure
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hunting game. Although this game is simple, it is appropriate to
understand the characteristics of emerging coordination regimes.
In our model, agents have their own DQNs and, to examine how
input structure which contains agent observation and absolute lo-
cation affects the results of coordination, we change the agent’s
observable range size to compare the effect of observation.

Our experimental results show that regardless of the observable
size, agents were able to establish the division of labor in a bottom-
up manner, in the sense that they determined individual areas that
each agent would be responsible for.

Figure 1: Example of prob-
lem environment.

Figure 2: Agent’s observ-
able state when V = 4

2 PROBLEM FORMULATION
We consider a multi-agent problem called the distributed task exe-
cution game in which tasks continuously appear somewhere in an
environment at a certain rate and multiple agents move around to
select and execute the tasks concurrently. A problem environment
is, as shown in Fig. 1, a N × N lattice in which black squares are
agents and red circles are tasks they have to execute. The possi-
ble actions are one ofA = {up, right, down, left}. If an agent moves
onto a cell containing a task, it executes the task and receives a pos-
itive reward r . Then, the task disappears and a new task is placed
on another cell.

An agent can observe the limited local area (a limited range of
observation is specified by the observable range sizeV ) whose cen-
ter is itself and can know the absolute locations. Then, it composes
its observed local information and the abtract entiremap, as shown
in Fig. 2 (V = 4), and inputs to the own DQN. Since agents only
can observe inside of its range (the green square is the observ-
able range in Fig. 2 ), the unobservable regions are set to be blank.
When the environment transit to next state, agent can receive a
reward if it executs the task. Then, agents have to select and take
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Table 1: Experimental parameters.

Parameter Value

Size of environment N 20
No. of agents n 6

Reward r 1
Epoch length H 200
Sum of epochs F 60,000

Figure 3: Earned rewards per epoch (relative views,m = 25).

the action only on the basis of observed local states. Because we
consider MA-DRL, the agents individually learn the Q-values (or
their policies) in order to improve the performance, i.e., agents au-
tonomously identify appropriate coordinated/cooperative behav-
iors to obtain more rewards using their own DQNs. The architec-
ture of the neural network for DQN is composed of convolutional
network layers, max pooling layers, and fully connected network
(FCN) layers.

We introduce discrete time t ≥ 0, and initially, n agents and
m tasks are scattered in the environment. Agents carry on actions
until an epoch of the game end (if t ≥ H , an epoch of the game
end),and we iterate this game for F epochs, where F is also a posi-
tive integer. The objective of the agents is to maximize the number
of rewards they receive, so they learn which action will result in
higher rewards every time by using the ε-greedy strategy with de-
cay and experience replay.When agents update their own network
parameter, they calculate action value error at the mean squared
loss function, and we adapt RMSprop [9] as optimizer of loss func-
tion.

3 EXPERIMENTAL RESULTS
We experimentally compare the performances (i.e., the total re-
wards earned by all agents) and analyze the coordination behav-
ior by changing their observable range size V . The parameters for
these experiments are listed in Table 1. The results of the earned
rewards per epoch from 1 to 60,000 epochs (12, 000, 000 time steps)
are plotted in Fig. 3, where each plot is the average value of the
earned rewards every 100 epochs when V = 4, 8, 15, and 19. Note
that agents with V = 19 can observe the entire environment cor-
rectly. These results clearly indicate that the total earned rewards
increased along with epochs in all cases, but their performances
were almost identical regardless of the observable range sizes (agents
with V = 8 exhibited the best performance).

Figure 4: Locations of executed tasks (relative views).

To analyze the structure of coordinated behavior, we investigate
where each agent was working in the environment. We counted
the number of tasks that each agent executed in individual cells
between 55,000 and 60,000 epochs when V = 8 and visualized
these data using heat maps. This is shown in Fig. 4, where the
darker blue cells indicate that the corresponding agent executed
more tasks, and white and faint blue cells indicate that it seldom
or never executed tasks, respectively. We can see that the move-
ments of all agents were localized and tended to execute tasks in
specific regions; it seems that they form a division of labor by seg-
mentation in a bottom-up manner. We call these segmented re-
gions where mainly just one agent is moving around the responsi-
ble regions. When multiple agents try to do the same task, only one
agent can earn the reward and the attempt of the other agents go
to waste. Therefore, they generate their working regions to avoid
such conflicts. In the earlier epochs (around 10,000 epochs), agents
already started to execute only in specific regions, but the regions
are unclear and indistinct. Then, they gradually formed shapes and
the locations were stable. Note that we also confirmed that when
V = 4, 15, and 19, similar divisional cooperation appeared, and
specific regions are more specified when V is the larger.

4 CONCLUSION
Our experimental results indicated that agents were able to learn
different coordination strategies. In our game, redundant or useless
actions are caused by conflicts, meaning thatmultiple agents target
the same tasks, so agents attempted to identify strategies to reduce
such conflicts. Therefore, agents established divisional cooperation
on the basis of locational segmentation. In contract, when we con-
ducted experiments that agents only had their observation ( didn’t
get absolute location) , agent didn’t establish divisional coopera-
tion on the basis of locational segmentation. However the earned
total reward were higher than those in Fig. 3 because agent can
formed flexible coordination in which agents targeted tasks by pay
attention to location of other agents to avoid conflicts.

We would like to extend our environments, agents, and games
for our future work. For example, we will explore situations where
the environment has an obstacle, task generation is biased in a cer-
tain area, tasks have structures that should be done cooperatively
with a number of different agents, and agents have their special-
ties.
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