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ABSTRACT
In multiagent blind tournaments, many agents compete at an in-
dividual game, unaware of the performance of the other agents.
When all agents have completed their games, the agent with the
best performance—for example, the highest score, or greatest dis-
tance, or fastest time—wins the tournament. In stochastic games,
an obvious and time honoured strategy is to maximize expected
performance. In tournaments with many agents, however, the top
scores may be far above the expected score. As a result, maximizing
expected score is not the same as maximizing the chance of winning
the tournament. Rather, a “riskier” strategy, which increases the
chance of obtaining a top score while possibly sacrificing some
expected score, may offer a better chance of winning. In this paper,
we study how an agent should optimally adapt its strategy based on
the size of the tournament in which it is competing. Our solution
involves first approximating the agent’s pool of opponents as a
collection of known or estimated strategies. Second, score distribu-
tions are computed for those strategies, and the distributions are
convolved to obtain a distribution for the maximum score of the
agent’s opponents. Finally, a strategy that maximizes the chance of
exceeding the opponents’ scores is computed. As a demonstration,
we study optimal tournament-size adaptation in online Yahtzee
tournaments involving as few as one and as many as ten thousand
opponents. We find that strategies change dramatically over that
range of tournament sizes, and that in large tournaments, an agent
adopting the optimally risky strategy can nearly double its chance
of winning.
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1 INTRODUCTION
In many games, agents compete directly against each other and
make many tactical and strategic decisions based on their knowl-
edge and observations of their opponents [9, 10, 13]. In other games,
however, the agents perform individually, and winning is based on
which agent performs the best. Examples include some types of
auctions [8], certain game shows, applying for a job or an exclusive
fellowship or a grant, and the original motivation for the present
work, massively multiagent online tournaments. When many indi-
viduals are competing, the bar for success—say, the winning game
score in a tournament—is naturally higher. Thus, although each
agent is playing individually, an intelligent agent must adapt its
strategy based on, at the very least, the size of tournament in which
it is competing.

Our original, specific motivation for the present study was the
online Yahtzee with Buddies game. For those not familiar with
Yahtzee, we describe it in detail below. Briefly, however, it is a
turn-based dice game in which agents get points for different com-
binations of dice. In the traditional, physical version of the game,
agents take turns rolling and scoring those roles. They can see
each others’ roles and scores, and may make strategic decisions
based on that information. The Yahtzee with Buddies app has a
similar one-on-one mode of play, but it also offers tournament play.
In tournament play, each agent plays a game alone, and when all
agents have completed their games, the agent with the highest
score wins. The app offers tournaments with as few as two other
agents and daily tournaments with an unlimited number of agents
(typically around ten thousand). In playing such tournaments, it
rapidly becomes obvious that the winning strategy for a small tour-
nament differs from the winning strategy in a large tournament.
Large tournaments demand risky play, because the score needed
to win a large tournament can be exceedingly high. Thus, we be-
came interested in the general phenomenon of risk-taking in blind
tournaments, and how optimal play must adapt to the size of the
tournament.

Of course, there has been extensive study of risk, risk-reward
trade-offs, and related concepts in fields such as game theory, deci-
sion theory, economics, and theory of investment [3, 7]. However,
we are not aware of prior work specifically on the question of op-
timal risk as a function of the number of competing agents, and
certainly not in the context of our intended application, tournament
Yahtzee. Prior work on Yahtzee has mostly focused on the problem
of computing strategies that maximize expected score [6, 14, 15]
with one work addressing the issue of finding strategies that maxi-
mize the probability of exceeding a specific set scores [4]. To our
knowledge, only Pawlewicz [11] has seriously study a multi-agent
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version of the game, with a focus on beating either one or a collec-
tion of opponents. They explored heuristic strategies for winning
in multiplayer games. In contrast, we focus on computing optimal
strategies for winning blind Yahtzee tournaments, and study how
the strategy changes as a function of the number of competitors.

In this paper, we propose a general approach to defining optimal
agent behaviour in multiagent blind tournaments. To achieve maxi-
mum generality, we sought to minimize the assumptions made by
our approach. In its simplest form, we require only: (1) that the
rules of the game are known; (2) that playing the game results in a
discrete-valued score; (3) that the single-agent version of the game
can be solved optimally for any terminal objective function that
depends on score; and (4) that the number of opposing agents in
the tournament is known. Our solution concept also allows the
agent to have models of the opposing agents’ strategies (as in for
example [1, 2, 5]).

2 ALGORITHM
Details of our problem formulation and solution algorithm will
appear elsewhere. Briefly, we assume that the single agent ver-
sion of a game of over interest can be formulated as a Markov
decision process [12], and that at the end of the game the agent
receives a discrete (say, integer) score. In a multiagent blind tourna-
ment, one agent plays its own instance of the game, while N other
agents do the same. If there is a single agent with a score higher
than that of all other agents, then that agent wins the tournament.
Our agent may know the policies (i.e. strategies), π1 . . . πN , fol-
lowed by the other agents. Or, our agent may make some default
assumption, such as that the other agents each follow a policy that
maximizes their own expected score, πMES . In the latter case, our
agent must first compute that strategy (using standard dynamic
programming techniques), and then set π1 = . . . = πN = πMES .
For each distinct opponent strategy, our agent then uses forward
dynamic programming to compute the score distribution for each
opponent agent, Pr (si = s |πi ), where si is a random variable de-
scribing the final score of opponent agent i , and s ranges over the
possible scores. Based on those score distributions, our agent then
computes the distribution of the maximum opponent agent score
Pr (maxi=1...N si = s |π1 . . . πN ). Finally, our agent uses dynamic
programming one more time to compute a policy that maximizes
the chance of exceeding the maximum opponent agent score—i.e.
the chance of winning the tournament.

3 RESULTS ON YAHTZEE
Yahtzee is a well-known, widely-played dice game, whose rules
can be found online (http://www.yahtzee.org.uk/rules.html). In
our study of the game, we consider the modification that extra
Yahtzees are worth 50 points, not 100, as in the official rules, for
consistency with the Yahtzee with Buddies app. Using the app, we
manually played tournaments of sizes 15 players, 25 players, 50
players, 5000 to 6000 players, and 10,000 to 12,000 players (the last
two being daily tournaments that did not have a fixed size). In
these tournaments, we confirmed that winning scores increased
dramatically as a function of tournament size, respectively being
on average 348.7 ± 41, 352.7 ± 33, 387.9 ± 32, 558.4 ± 23, and 563.4
± 23. To win the largest tournaments requires multiple Yahtzees,

Figure 1: Score distributions for a single player that maxi-
mizes expected score (MES), and for the maximum of differ-
ent numbers of such payers.

perhaps five or more, which requires a quite different style of play
than maximizing expected score.

We then used our algorithm to compute optimal strategies for an
agent to win tournaments against 1, 10, 100, 1000 or 10000 opponent
agents, each of which is maximizing its own expected score. This
entailed, of course, first computing that score-maximizing policy.
Details of how we did this will appear elsewhere. We followed a
standard backward dynamic programming approach [12], using
a state space similar to that used in previous analyses of Yahtzee
[4, 6, 14, 15], but including the exact game score (which is not
necessary when one is maximizing expected score). We solved the
dynamic program using bespoke parallel code, running up to 50
processes in parallel, in approximately one week on a Compute
Canada cluster at the Centre for Advanced Computing at Queens
University. A forward dynamic program on the same state space
was then used to compute the distribution of final scores for an
agent following that policy (black curve in Figure 1). From that
we computed the distributions for the maximum score of 10, 100,
1000 or 10000 such players (other curves in Figure 1)—the “score
to beat" for our intended tournament-optimal player. These score
distributions are interestingly complex, with many distinct modes
corresponding to whether or how many Yahtzees are scored, along
with certain other high-scoring boxes, such as large straight. Finally,
we computed optimal agent strategies for winning tournaments
against these different numbers of opponent MES agents. Details of
that policy will appear elsewhere. We found that the tournament-
optimal strategy, as opposed to playing the MES strategy, could
increase the chance of winning the tournament by 2.67% (against 1
MES player), 9.44% (against 10), 30.5% (against 100), 49.9% (against
1000) and 69.7% (against 10000). The tournament-optimal strategy
does this by adopting increasingly riskier strategies—essentially
trying to score as many Yahtzees as possible—with expected score
decreasing respectively as 241.6 ± 43, 234.3 ± 52, 222.1 ± 56, 209.1
± 60, 198.3 ± 61.

4 CONCLUSION
Optimal play in multiagent blind tournaments can be solved by a
series of dynamic programs. At least in the case of Yahtzee, optimal
play in tournaments of increasing size—in the sense of maximizing
the chance of winning the tournament—is associated with riskier
play. Decreased expected score, but with higher variance, gives a
better chance of obtaining a high, tournament-winning score.
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