Adversarial Imitation Learning from State-only Demonstrations

Faraz Torabi
The University of Texas at Austin
Austin, Texas
faraztrb@cs.utexas.edu

Garrett Warnell
Army Research Laboratory
Austin, Texas
garrett.a.warnell.civ@mail.mil

Peter Stone
The University of Texas at Austin
Austin, Texas
pstone@cs.utexas.edu

ABSTRACT

Imitation from observation (IfO) is the problem of learning directly from state-only demonstrations without having access to the demonstrator’s actions. The lack of action information both distinguishes IfO from most of the literature in imitation learning, and also sets it apart as a method that may enable agents to learn from a large set of previously inapplicable resources such as internet videos. In this paper, we propose a new IfO approach based on generative adversarial networks called generative adversarial imitation from observation (GAIfO). We demonstrate that our approach performs comparably to classical imitation learning approaches (which have access to the demonstrator’s actions) and significantly outperforms existing imitation from observation methods in high-dimensional simulation environments.

KEYWORDS
Reinforcement Learning; Imitation Learning; Control

ACM Reference Format:

1 INTRODUCTION

One well-known way in which artificially-intelligent agents are able to learn to perform tasks is via imitation learning [1, 2, 9], where agents attempt to learn a task by observing another, more expert agent perform that task. Importantly, most of the imitation learning literature has thus far concentrated only on situations in which the imitator not only has the ability to observe the demonstrating agent’s states (e.g., observable quantities such as spatial location), but also the ability to observe the demonstrator’s actions (e.g., internal control signals such as motor commands). While this extra information can make the imitation learning problem easier, requiring it is also limiting. In particular, requiring action observations makes a large number of valuable learning resources — e.g., vast quantities of online videos of people performing different tasks [14] — useless. For the demonstrations present in such resources, the actions of the expert are unknown. This limitation has recently motivated work in the area of imitation from observation (IfO) [8], in which agents seek to perform imitation learning using state-only demonstrations.

2 ALGORITHM

We consider agents within the framework of Markov decision processes (MDPs). In this framework, \(S \) and \(A \) are the state and action spaces, respectively. An agent at a particular state \(s \in S \), chooses an action \(a \in A \), based on a policy \(\pi : S \times A \rightarrow [0, 1] \) and transitions to state \(s' \) with probability of \(P(s'|s, a) \) that is predefined by the environment transition dynamics. In our setting, the agent has access to state-only expert demonstration \(T_E = s \) and the goal is to learn a policy \(\pi \) that results in a similar behavior.

Now we describe our algorithm, generative adversarial imitation from observation (GAIfO). In order to imitate the expert, the algorithm solves the following optimization problem:

\[
\min_{\pi \in \Pi} \max_{D \in (0, 1)^{S \times S}} \mathbb{E}_\pi [\log(D(s, s'))] + \mathbb{E}_{\pi_E} [\log(1 - D(s, s'))] \tag{1}
\]

In this paper, we propose a general framework for the control aspect of IfO in which we characterize the cost as a function of state transitions only. Under this framework, the IfO problem becomes one of trying to recover the state-transition cost function of the expert. Inspired by the work of Ho and Ermon ([2016]), we introduce a novel, model-free algorithm for IfO, called generative adversarial imitation from observation (GAIfO) and then experimentally evaluate GAIfO in high-dimensional simulation environments in two different settings: (1) demonstrations and states of the imitator are manually-defined features, and (2) demonstrations and states of the imitator come exclusively from raw visual observation. We show that the proposed method compares favorably to other recently-developed methods for IfO and also that it performs comparably to state-of-the-art conventional imitation learning methods that do have access to the the demonstrator’s actions.
where $D : S \times S \rightarrow (0, 1)$ is a discriminative classifier. We can see that the loss function in (1) is similar to the generative adversarial loss [5]. We can connect this to general GANs if we interpret the expert’s demonstrations as the real data, and the data coming from the imitator as the generated data. The discriminator seeks to distinguish the source of the data, and the imitator policy seeks to fool the discriminator to make it look like the state transitions it generates are coming from the expert. The entire process can be interpreted as bringing the distribution of the imitator’s state transitions closer to that of the expert. We call this process Generative Adversarial Imitation from Observation (GAIfO).

We now specify our practical implementation of the GAIfO algorithm (as shown in Figure 1). We represent the discriminator, D, using a multi-layer perceptron with parameters θ that takes as input a state transition and outputs a value between 0 and 1. We represent the policy, π, using a multi-layer perceptron with parameters ϕ that takes as input a state and outputs an action. We begin by randomly initializing each of these networks, after which the imitator selects an action according to π_ϕ and executes that action. This action leads to a new state, and we feed both this state transition and the entire set of expert state transitions to the discriminator. The discriminator is updated using the Adam optimization algorithm [7], with cross-entropy loss that seeks to push the output for expert state transitions closer to 1 and the imitator’s state transitions closer to 0. After the discriminator update, we perform trust region policy optimization (TRPO) [10] to improve the policy using a reward function that encourages state transitions that yield large outputs from the discriminator (i.e., those that appear to be from the demonstrator). This process continues until convergence.

3 EXPERIMENTAL SETUP AND RESULTS

We evaluate our algorithm in domains from OpenAI Gym [3] based on the Pybullet simulator [4]. In each of the domains, we used trust region policy optimization (TRPO) [10] to train the expert agents, and we recorded the demonstrations using the resulting policy.

The results shown in Figure 2 are the average over ten independent trials. We compare our algorithm against three baselines (1) Behavioral Cloning from Observation (BCO) [12], (2) Time Contrastive Networks (TCN) [11], and (3) Generative Adversarial Imitation Learning (GAIL) [6].

Algorithm 1 GAIfO

1. Initialize parametric policy π_ϕ with random ϕ
2. Initialize parametric discriminator D_θ with random θ
3. Obtain state-only expert demonstration trajectories $\tau_E = ((s, s'))$
4. while Policy Improves do
5. Execute π_ϕ and store the resulting state transitions $\tau = ((s, s'))$
6. Update D_θ using loss
 \[-\left(\mathbb{E}_\tau [\log(D_\theta(s, s'))] + \mathbb{E}_{\tau_E} [\log(1 - D_\theta(s, s'))]\right)\]
7. Update π_ϕ by performing TRPO updates with reward function
 \[-\left(\mathbb{E}_{\tau_E} [\log(1 - D_\theta(s, s'))]\right)\]
8. end while

Figure 2 compares the final performance of the imitation policies learned by different algorithms. We can clearly see that, for the domains considered here, GAIfO (a) performs very well compared to other IFO techniques, and (b) is surprisingly comparable to GAIL even though GAIfO lacks access to explicit action information.

4 CONCLUSION

In this paper, we presented an imitation from observation algorithm (GAIfO) that uses a GANs like architecture to bring the state-transition distribution of the imitator to that of the expert. This algorithm is able to find policies without the need for action information, and is able to find imitation policies that perform very close to those found by techniques that do have access to this information.

ACKNOWLEDGMENTS

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by NSF (IIS-1637736, IIS-1651089, IIS-1724157), ONR (N00014-18-2243), FLI (RFP-000), ARL, DARPA, Intel, Raytheon, and Lockheed Martin. Peter Stone serves on the Board of Directors of Cogitai, Inc. The terms of this arrangement have been reviewed and approved by the University of Texas at Austin in accordance with its policy on objectivity in research.
REFERENCES

