Extended Abstract

AAMAS 2019, May 13-17, 2019, Montréal, Canada

X*: Anytime Multiagent Path Planning With Bounded Search

Extended Abstract

Kyle Vedder
College of Information and Computer Sciences
Ambherst, Massachusetts
kvedder@umass.edu

ABSTRACT

Multi-agent planning in dynamic domains is a challenging problem:
the size of the configuration space increases exponentially in the
number of agents, and plans need to be re-evaluated periodically to
account for moving obstacles. However, we have two key insights
that hold in several domains: 1) conflicts between multi-agent plans
often have geometrically local resolutions within a small repair
window, even if such local resolutions are not globally optimal;
and 2) the partial search tree for such local resolutions can then be
iteratively improved over successively larger windows to eventually
compute the global optimal plan. Building upon these two insights,
we introduce 1) a class of anytime multiagent planning solvers, 2)
a naive solver in this class, and 3) an efficient solver in this class
which reuses prior search information when improving a solution.

KEYWORDS

multiagent planning; anytime planning; bounded search; search
reuse; anytime multiagent planning

ACM Reference Format:

Kyle Vedder and Joydeep Biswas. 2019. X*: Anytime Multiagent Path Plan-
ning With Bounded Search. In Proc. of the 18th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal,
Canada, May 13-17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION AND RELATED WORK

Quickly constructing collision-free paths from a start to a goal is
a problem faced by almost all robotic systems in dynamic envi-
ronments. Adding more agents makes this problem exponentially
harder [3], causing this problem, known as the Multiagent Plan-
ning Problem (MPP), to be pressing for many multiagent systems.
Various planners exist to solve the MPP[1, 2, 4, 5, 7, 9]; however,
in this work we are interested in planners which produce optimal
solutions, in particular M* and CBS.

M* [8] is a state-of-the-art MPP solver that computes an optimal
policy for each agent in individual space, constructs a path in joint
space from the individual policies, and then uses the individual
policies to inform local repairs to the joint space path when inter-
actions are detected. In sparse domains, the dimensionality of these
repairs are low, allowing M* to quickly solve the MPP.

This work is supported in part by AFRL and DARPA under agreement #FA8750-16-2-
0042, and NSF grant IIS-1724101.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2247

Joydeep Biswas
College of Information and Computer Sciences
Ambherst, Massachusetts
joydeepb@cs.umass.edu

Initial Configuration

= =
- LX)

Figure 1: The three stages of X*’s grow and replan algorithm
which allow it to save computation between searches. The
red dot is the start, the green dot is the goal, the blue area
is the search tree, the smaller box is the old window, the
larger box is the new window, the purple path is the search
solution, and the orange lines are non-colliding joint space
paths. Initial Configuration to Stage 1 removes the restric-
tion of the smaller window in the search from the old start
to old smaller goal, Stage 1 to Stage 2 moves the start from
the old start to the new start, and Stage 2 to Stage 3 moves
the goal from the old goal to the new goal.

Stage 1 Stage 2 Stage 3

N

w2

7

w2 w2

Another state-of-the-art planner, Conflict Based Search (CBS) [6]
approaches the MPP differently. CBS builds a conflict graph, mod-
eling different worlds with constraints, and replans with these
constraints in each agent’s individual space. This approach allows
for planning space to grow exponentially in the number of conflicts
rather than the number of agents. In sparse domains, the number
of these conflicts is low, allowing CBS to quickly solve the MPP.

2 CONTRIBUTIONS

In this work we present 1) SWP, a class of anytime MPP solvers, 2)
Naive Window A* (NWA¥), a naive SWP solver, and 3) Expanding
A* (X*), an efficient SWP solver.

2.1 Simple Windowed Planner

SWP is a class of anytime MPP solvers that leverage search bound-
ing for fast, anytime plan generation. Shown in Algorithm 1, SWP
solvers operate by first planning for each agent independently, and
then identifying interacting groups of agents from these individual
plans. Next, for each interacting group, SWP solvers project the
individual plans into the joint planning space of the group, and con-
struct a joint space window, an artificial geometric bound, around
the point of interaction. SWP solvers then proceed to repair the
collision in this window. While the time budget is not exhausted,
SWP solvers then iteratively grow the windows and replan inside
them, thereby improving the quality of the existing plan.

2.2 Naive Window A*

Naive Window A" (NWA”) is a naive SWP solver. It defines a window
to be a set of contiguous states in joint agent space. It possesses a
set of interacting agents and a start b and goal e in the joint space

Extended Abstract

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Algorithm 1 Simple Windowed Planner

Algorithm 2 X* Algorithms

procedure SWP
IT « independently planned paths for all agents
S « interacting set(s) of agents in IT
W « {w | w is the smallest fit window for s € S}
Vw € W, plan jointly in w, update IT
while more time available do

1:
2
3
4:
5
6
7 Vw € W, grow w and replan jointly, update IT

of these agents agents. In addition, for an arbitrary window wi, it
has a successor, wy, where wi C wa. For our experimentation, a
window is characterized by a center state, and a radius; it contains
all states with an Ly, norm less than or equal to the radius. The
successor of a window is implemented by incrementing its radius.
An initial window size is selected for all new windows, and these
windows are produced on SWP’s line 4. To form a valid solution,
NWA* runs A* inside the window in the joint space of the involved
agents, and updates a section of the individually planned solution
with the replanned segment in the window. To grow the window in
SWP’s line 7, NWA* replaces each window with its successor and
replans from scratch, again updating a section of the individually
planned solution with the replanned segment in the window.

2.3 Expanding A*

Like NWA?*, Expanding A* (X*) is an SWP solver. It uses the same
window definition and initial planning strategy as NWA®; however,
for SWP’s line 7 it is able to efficiently reuse information from the
prior search in the next search, speeding up successive solution
generation. To reuse information while growing and replanning in
a window, X" employs a three stage solution, shown in Figure 1.

These three stages operate much like standard A*; they use an
open list, O, to hold the search frontier, and a closed list, C, to
hold already expanded states, with states s € O expanded in the
order of minimum f-value, f(s), with this minimum state accessed
by top(O). They also have a state neighbor function, N(s), which
returns the set of collision-free neighbors of s. In addition, it also
uses the unique concept of an “out-of-window” list, X, which stores
states removed from O and intended to be expanded, but are outside
of the current window boundary. These states are stored in X for
use in the next search. Finally, Stage 3 reasons about the path
between the successive window starts by and by along the path, 7,
and accesses the cost of this path via ||7||.

Figure 1 shows the three stages of X*’s grow and replan algorithm
(SWP’s line 7). STAGE1 transforms a search tree from by to e in
wj into a search tree from b to e in wy. STAGE2 transforms the
search tree from b1 to e in wy into a search tree from b, to eq in
wy. STAGE3 transforms the search tree from a from b to e; in wy
into a search tree from by to ez in wy.

3 RESULTS AND CONCLUSION

To demonstrate X*’s performance, we compared it against Operator
Decomposition (OD) M*! and CBS?, using the metric of Normalized
Runtime, a 95% CI over 100 trials of algorithm runtime divided by

IM* Source Code URL: https://github.com/gswagner/mstar_public
2CBS Source Code URL: https://github.com/whoenig/libMultiRobotPlanning

2248

1: procedure A*SEARCHUNTIL(O, C, X, W, fmax)
2 while f(top(0)) < finax do

3 s« top(0) ; O «— O\ {s}

4 if 35" € C:s =" A f(s) > f(s’) then continue
5: if s ¢ w then X « X U {s} continue

6: C—CU{s}; 0« OUN(s)

1: procedure STAGEL

2: O—0UX;X«0

3: A*SEARCHUNTIL(O, C, X, wy, f(e1))

1: procedure STAGE2

2: for all s € O,C do f(s) « f(s) + ||x]|

3 forallse 1doC «— CU{s}; O« OUNC(s)
4 A*SEARCHUNTIL(O, C, X, w2, f(e1) + || 7||)

1: procedure STAGE3

2 for all s € O,C do h(s) « H(s, e2)

3 while O # 0 do

4 s « top(O)

5: if s = e; then return UNWINDPATH(C, e, b2)
6 O« O\ {s}

7: if s € C then continue

8 if s ¢ wthen X « X U {s} ; continue

9: C—CU{s}; 0« OUNC(s)

10: return NOPATH

the runtime of an individual space A”* search for each agent, in order
to normalize across implementation quality.

2
10 3 n [
4 —— CBS Solution 1.20
] — X*Opt. Solution
E { —— X" First Solution 1.15
E 1 M* Solution)
&~ \’_’
E 10! E - | 1104
=3 3
g]
g
ZO J 1.05 4
100 - 1.00 1

T T T T T T T T
2 4 6 8 2 4 6 8

Agent Count Agent Count

Figure 2: Normalized runtime of X* and state-of-the-art on
a 5000mm X 4000mm section of a randomized RoboCup SSL
field with stationary opponents; 95% confidence intervals
over 100 trials. Left is a full plot, right is an enlarged section
of the left plot between 1 and 1.2 of Normalized Runtime.

Figure 2 shows the performance of X* both as an optimal MPP
solver and an anytime MPP solver. X* is able to very quickly gener-
ate a first solution while generating optimal solutions competitive
with the state-of-the-art, and a median optimal runtime below the
confidence intervals of M* or CBS. This experimentation suggests
that X* is a viable as an optimal MPP solver that also provides any-
time properties in domains with sparse interactions, and positions
SWP solvers as an exciting new area of MPP research.

https://github.com/gswagner/mstar_public
https://github.com/whoenig/libMultiRobotPlanning

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

REFERENCES [6] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. 2015. Conflict-
[1] Liron Cohen, Matias Greco, Hang Ma, Carlos Hernandez, Ariel Felner, T. K. Satish ngeizearch for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),
Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. 2011. The Increasing
Cost Tree Search for Optimal Multi-agent Pathfinding. In Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence - Volume

Volume One (IJCAI'11). AAAI Press, 662—667.

[8] G. Wagner. 2015. Subdimensional Expansion: A Framework for Computationally
Tractable Multirobot Path Planning. Ph.D. Dissertation. The Robotics Institute
Carnegie Mellon University.

[9] Ko-Hsin Cindy Wang and Adi Botea. 2008. Fast and Memory-efficient Multi-
agent Pathfinding. In Proceedings of the Eighteenth International Conference on
International Conference on Automated Planning and Scheduling (ICAPS’08). AAAI
Press, 380-387.

Kumar, and Sven Koenig. 2018. Anytime Focal Search with Applications. In IJCAL

Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Golden- [7]

berg, Guni Sharon, Nathan R. Sturtevant, Glenn Wagner, and Pavel Surynek.

2017. Search-Based Optimal Solvers for the Multi-Agent Pathfinding Problem:

Summary and Challenges. In SOCS.

[3] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. 1984. On the Complexity of Motion
Planning for Multiple Independent Objects; PSPACE - Hardness of the “Ware-
houseman’s Problem”. In The International Journal of Robotics Research. 76-88.

[4] M Renee Jansen and Nathan R. Sturtevant. 2008. Direction Maps for Cooperative

Pathfinding. Proceedings of the 4th Artificial Intelligence and Interactive Digital

Entertainment Conference, AIIDE 2008.

Malcolm Ross Kinsella Ryan. 2008. Exploiting Subgraph Structure in Multi-Robot

Path Planning. J. Artif. Intell. Res. 31 (2008), 497-542.

[2

—

w
=

2249

	Abstract
	1 Introduction and Related Work
	2 Contributions
	2.1 Simple Windowed Planner
	2.2 Naïve Window A*
	2.3 Expanding A*

	3 Results and Conclusion
	References

