
A Reinforcement Learning Framework for Container Selection
and Ship Load Sequencing in Ports

Extended Abstract

Richa Verma, Sarmimala Saikia,
Harshad Khadilkar, Puneet Agarwal,

Gautam Shroff
TCS Research, Delhi 201309, India

richa.verma4@tcs.com

Ashwin Srinivasan
Birla Institute of Technology and Science

Goa 403726, India
ashwin@goa.bits-pilani.ac.in

ABSTRACT
We describe a reinforcement learning (RL) framework for selecting
and sequencing containers to load onto ships in ports. The goal is
to minimize an approximation of the number of crane movements
require to load a given ship, known as the shuffle count. It can be
viewed as a version of the assignment problem in which the se-
quence of assignment is of importance and the task rewards are
order dependent. The proposed methodology is developed specif-
ically to be usable on ship and yard layouts of arbitrary scale, by
dividing the full problem into fixed future horizon segments and
through a redefinition of the action space into a binary choice frame-
work. Using data from real-world yard and ship layouts, we show
that our approach solves the single crane version of the loading
problem for entire ships with better objective values than those
computed using standard metaheuristics.

KEYWORDS
Reinforcement learning; Single agent planning & scheduling
ACM Reference Format:
Richa Verma, Sarmimala Saikia,, Harshad Khadilkar, Puneet Agarwal,, Gau-
tam Shroff, and Ashwin Srinivasan. 2019. A Reinforcement Learning Frame-
work for Container Selection and Ship Load Sequencing in Ports. In Proc. of
the 18th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
Busy ports can handle more than 30 million containers per year,
or over 80 thousand containers per day [4]. Container loading
and unloading operations in the storage yard are among the most
complex in the industry [1], and reducing the time it takes to load a
ship can have a significant effect on the yard efficiency. Containers
are stored in the form of vertical pillars in the yard, with each pillar
possibly a dozen containers high. Whenever a container in a lower
position in a stack needs to be accessed, the containers above it
have to be moved away first, increasing non-productive moves
referred to as shuffles. The algorithm described in this paper aims to
minimise the total number of shuffles required to load an outbound
ship, given a known layout of containers in the yard. This is a
combinatorial optimisation problem, which is difficult to solve using
traditional approaches. The key contributions are: (1) formulation

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

T
ie

rs

Ship

Yard

Mapping task

X

Y
Z

B
ay

s

Rows

Figure 1: Graphical illustration of the problem. Each slot is
associated with a bay, row, and tier.

of the container loading task as an RL problem, (2) keeping the
size of the state-action space independent of the problem instance
for scalability, (3) reward shaping for fast convergence, and (4)
demonstration of the generalisation and transfer learning ability of
the trained policy network on real-world problem instances.

2 PROBLEM DESCRIPTION
An illustration of the problem is shown in Figure 1. The goal is to
minimize the total number of rearrangements (shuffles) required
for loading the whole ship. While the problem structure and linear
objective function are similar to the classical assignment problem
[2], the number of agents (containers) and tasks (slots) is not equal,
and the cost is dependent on the loading order. We describe a simple
version of the loading problem where there is a single loading crane
and a fixed set of required container characteristics for each slot on
the ship. Let ψ be the set of all slots on a ship, with |ψ | = N . The
slots have to be filled in a predefined order {ψ1, . . . ,ψN } by exactly
one container per slot. The requirements for each slot are known,
and we assume that there areMψ ≤ N unique combinations (which
we call mask IDs) among the slots in ψ . The set of all containers
in the yard is denoted by κ0 with |κ0 | = K ≥ N . Based on physical
characteristics and the cargo carried, each container Cj ∈ κ0 (j ∈
[0,K]) is also mapped to a mask ID in {1, . . . ,Mψ , . . . ,Mκ }.

We define the operator µ, which returns the mask ID of a slot or
a container as a scalar integer value. A container Cj is eligible for
a slot ψi if and only if 1 ≤ µ(Cj) = µ(ψi) ≤ Mψ . The position of a
container Cj in the yard is given by P(Cj) = {x j ,yj , zj }, with the
axes marked in Figure 1. Instead of physical dimensions, the values
of x , y, and z are the indices of containers along the relevant axes.
A set of containers with the same x and y coordinates but different
z coordinates are known as a pillar. The load planning problem
starts with the initial yard state κ0, where the position P(Cj) of each

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2250

container is given. The initial state of the ship is empty, and the
first slot to be filled isψ1. We denote the combined ship and yard
initial state by loading step s0. One or more containers may need
to be moved away by the loading equipment in order to access the
chosen container for slotψℓ , depending on its position in the pillar.
These unproductive operations are known as shuffles. The number
of shuffles on choosing Cj at loading step sℓ is denoted by Q(Cj , ℓ).

When loading step sℓ is completed, we assume that all containers
C∗j that were moved away are returned to their original pillar, with
updated z coordinates z∗j ← z∗j − 1. This reflects the departure of
the loaded container from the yard. The new yard layout with one
fewer container is designated κℓ+1 and the algorithm proceeds to
loading step sℓ+1, terminating at step sN . The objective of load
planning is to minimise the total shuffle count, J =

∑N−1
ℓ=0 Q(Cj , ℓ).

3 METHODOLOGY
We model the problem as a Markov Decision Process (S,A,R,P,γ)
[3] whereS andA are the sets of states and actions, respectively, P
represents the transition function, R denotes the reward function
and γ is the discount factor. A standard reinforcement learning
setup consists of an agent interacting with its environment through
a series of actions. At every time-step t , the agent receives the
current state st of a fully-observed environment, takes an action
at based on a policy π : s → a, and receives a scalar reward
rt = R(st ,at). The goal of learning is to maximize the expected
cumulative discounted reward, E

[∑∞
i=t γ

t rt
]
. We represent the

policy π by amultilayer perceptron (MLP) network with parameters
θP . We use policy gradients to train the RL agent.

We first divide the problem of computing the entire load plan into
single loading steps sℓ . Each loading step is composed of multiple
time steps st in which suggested containers are rejected, until a
container is selected for loading into slot ψℓ . The state space is
restricted to look ahead to a fixed number of slots on the ship, and to
a fixed number of containers in the yard. This standardises the size
of the state space for all ship and yard layouts, facilitating scalability.
The actual mask IDs of slots and containers are represented in the
state as relative numbers, based on how imminently a givenmask ID
needs to be loaded. This makes the RL formulation agnostic towards
actual mask IDs, facilitating generalisability. Finally, the reward
does not depend on absolute shuffle counts, but on improvement
over previous episodes. This property allows the RL to work in
instances with different ‘optimal’ shuffle counts.

The environment uses a scouting procedure to identify pillars in
the yard that hold at least one eligible container for the current slot,
and present them to the RL agent one at a time. The environment
chooses one of the eligible containers in this set as the current
suggestion to the RL agent. The agent computes a binary decision
based on the current suggestion and the remaining pillars: whether
to pick the presented container for loading in the current slot, or
to move to the next option (A = {pick, move}). The decision is
based on the spatio-temporal context provided to the container,
as encoded in the state. For each container loading decision (slot
ψi , yard state κi−1, loading step si−1), we only include the current
slot and a fixed horizon length h of upcoming slots in a look-up
table which is used to encode a portion of the state. The mask IDs
associated with this slot sequence are mapped to relative mask IDs

for each container selection decision. Through the look-up table,
the current slot’s mask ID is mapped to a value of 0, indicating
imminent loading (µ(ψi) → 0). The mask ID of the next slot gets
a value of 1 (µ(ψi+1) → 1) and so on, up to h upcoming slots. The
pillars chosen by the environment are also encoded using relative
mask IDs and presented to the RL agent as part of the state.

We use a variable threshold τ as the target shuffle count to be
achieved by the RL agent at the end of an episode. Prior to training,
τ is set to an arbitrarily large value. A terminal (final) reward +Rfin
is provided if the total shuffle count J ≤ τ . If the latest J is better
than the previous best observed value, a further reward of +Rfin is
given. If J > τ , a reward of −Rfin is given. The value of τ is updated
to be equal the average shuffle count after every E episodes during
training, if this is less than its previous value. Thus the reward
adapts to the desired value for a specific problem. We train the
policy network in an episodic setting. The RL agent is trained on
multiple instances, allowing it to generalize its knowledge. In each
training iteration, we play E episodes for each ship to explore the
probabilistic space of possible actions using the current policy.

4 EXPERIMENTS AND RESULTS
We compare the performance of the proposed RL methodology
with two metaheuristic approaches, based on simulated annealing
and genetic algorithms. Three independent datasets are used for
training, testing, and comparison. These are obtained from real-
world operational data for three ships and their respective yard
layouts. The number of slots vary from 130 to 1391, the mask IDs
from 25 to 97, and the number of containers in the yard from 25,000
to 7,00,000 across the three instances. The results are compiled in
Table 1. Apart from simulated annealing (SA) and genetic algo-
rithms (GA), we also use a greedy heuristic (always pick topmost
matching container) as a baseline. Among RL approaches, RL-S1 is
trained only on Ship 1 data, while RL-S2 is trained only on Ship 2
data. RL-MUL is trained on Ship 1 followed by Ship 2. None of the
algorithms are trained on Ship 3. In the test data, we note that the
RL approaches outperform the baselines on all three sets. RL-MUL
performs best in 2 of the 3 cases, demonstrating generalisation.
Finally, all three RL approaches perform well on the unseen Ship 3
data, which demonstrates transfer learning.

REFERENCES
[1] Héctor J Carlo, Iris FA Vis, and Kees Jan Roodbergen. 2014. Storage yard opera-

tions in container terminals: Literature overview, trends, and research directions.

Algo. Ship 1 Ship 2 Ship 3
Test Run Test Run Test Run

Greedy 273 (0.17) 282 (0.25) 43 (0.02)
SA 243, 261.0 (177) 269, 287.7 (296) 31, 39.4 (2.1)
GA 283 (398) 278 (557) 30 (6.2)
RL-S1 235, 252.5 (515) 269, 274.4 (377) 30, 35.1 (6.7)
RL-S2 238, 252.0 (515) 266, 273.6 (377) 29, 35.3 (6.7)
RL-MUL 236, 251.5 (515) 264, 271.3 (377) 28, 35.0 (6.7)

Table 1: Shuffle counts of algorithms. Numbers in parenthe-
ses are computation times in seconds. The first value is the
best value, while the second value (if any) is the average.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2251

European Journal of Operational Research 235, 2 (2014), 412–430.
[2] J Munkres. 1957. Algorithms for the Assignment and Transportation Problems.

J. Soc. Indust. Appl. Math. 5, 1 (March 1957), 32–38.
[3] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement

Learning (1st ed.). MIT Press, Cambridge, MA, USA.
[4] World Shipping Council. 2018. Ports: About the Industry. (Accessed: March

2018). http://www.worldshipping.org/about-the-industry/global-trade/ports.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2252

	Abstract
	1 Introduction
	2 Problem Description
	3 Methodology
	4 Experiments and Results
	References

