
Learning Self-Game-Play Agents for Combinatorial
Optimization Problems

Extended Abstract

Ruiyang Xu
Northeastern University
Boston, Massachusetts
ruiyang@ccs.neu.edu

Karl Lieberherr
Northeastern University
Boston, Massachusetts
lieber@ccs.neu.edu

ABSTRACT
Recent progress in reinforcement learning (RL) using self-game-
play has shown remarkable performance on several board games
as well as video games (e.g., Atari games and Dota2). DeepMind re-
searchers have already implemented model-free RL to play Go and
Chess at a superhuman level using neural Monte-Carlo-Tree-Search
(neural MCTS). Therefore, it is plausible to consider that RL, start-
ing from zero knowledge, can be applied to other problems which
can be converted into games. We try to leverage the computational
power of neural MCTS to solve a class of combinatorial optimiza-
tion problems. Following the idea of Hintikka’s Game-Theoretical
Semantics, we propose the Zermelo Gamification (ZG) to transform
specific combinatorial optimization problems into Zermelo games
whose winning strategies correspond to the solutions of the original
optimization problem. The ZG also provides a specially designed
neural MCTS. We use a combinatorial planning problem for which
the ground-truth policy is efficiently computable to demonstrate
that ZG is promising.

KEYWORDS
Reinforcement Learning; Neural MCTS; Self-game-play; Combina-
torial Optimization; Model-free

ACM Reference Format:
Ruiyang Xu and Karl Lieberherr. 2019. Learning Self-Game-Play Agents
for Combinatorial Optimization Problems. In Proc. of the 18th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2019),
Montreal, Canada, May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION
We transform a certain form of combinatorial optimization prob-
lems (e.g. the HSR problem, described in section 3) into games so
that a game-play agent can be leveraged to play the game and
solve the original problem on a specific instance. In Fig. 1 one can
see how two competitive agents, called P and OP, gradually, but
with setbacks (as in AlphaZero [9] and [8]), improve and jointly
arrive at the winning strategy. Model-Free learning converges and
solves a non-trivial problem although the underlying game is fun-
damentally different from Go and Chess. Related works on ML and
combinatorial problems can be found in [1], [4], [5], [6] and [10].

We make three main contributions: (1.) We introduce the Zer-
melo Gamification which consists of two contributions (1.a) a way

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

to generalize combinatorial problems to more comprehensive com-
binatorial problems in the form of Zermelo games following the
approach in Hintikka’s Game-Theoretical Semantics [3]; (1.b) we
implemented a variant of the neural MCTS algorithm ([2] and
[7]) specifically designed for those Zermelo games; 2. Evaluation:
we evaluate our algorithm on a problem (i.e., HSR) for which a
Bernoulli’s triangle shows the winning strategy efficiently. Our re-
sult shows that, for problems under a certain size, neural MCTS does
find the optimal strategy, hence solving the original optimization
problem in a tabula-rasa (model-free) style. 3. Indications: We show
how the winning strategy for both players of the Zermelo game
provides indications that a given problem instance does (not) have
a solution. Those indications are made possible through the gener-
alization mentioned in contribution 1 and they are more useful then
the simple answer: there is no solution. A complete description of
this study can be found in [11].

2 ZERMELO GAMIFICATION
The combinatorial optimization problems studied in this paper can
be described with the following logic statement MQ2: ∃n{G(n) ∧
(∀n′ > n ¬G(n′))}, G(n) := ∀x ∃y : {F (x ,y;n)} or G(n) := ∃y ∀x :
{F (x ,y;n)}. In this statement, n is a natural number and x ,y can be
any instances depending on the concrete problem. F is a predicate
on x ,y,n. Hence the logic statement above essentially means that
there is a maximum number n such that for all x , some y can
be found so that the predicate F (x ,y;n) is true. Formulating those
problems as interpreted logic statements are crucial to transforming
them into Zermelo games. A Zermelo game is defined to be a two-
player, finite, and perfect information game with only one winner
and loser, and during the game, players move alternately (i.e., no
simultaneous move). Leveraging the logic statement above, the
Zermelo game is built on the Game-Theoretical Semantic approach
(by Hintikka [3]) with two phases and two players (the Proponent
(P), who claims that the statement is true, and the Opponent (OP),
who argues that the statement is false. The original problem can be
solved if and only if the P is able to propose some optimal number
n so that a perfect OP cannot refute it).

2.1 Proposal Phase
In the initial phase of the Zermelo game player P will propose a
number n. Then the player OP will decide whether to accept this n,
or reject it. OP will make his decision based on the logic statement:
A ∧ B, A := G(n), B := ∀n′ > n ¬G(n′). Specifically, the OP tries to
refute the P by attacking either on the statementA or B. The OP will
accept n proposed by the P if she confirms A = False . The OP will

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2276



reject n if she is unable to confirm A = False . In this case, the OP
treats n as non-optimal, and proposes a new n′ > n which makes
B = False . The rejection can be regarded as a role-flip between the
two players.

2.2 Refutation Phase
This is the phase where the two players actually search for evidence
and construct strategies to attack each other or defend themselves.
Generally speaking, regardless of the role-flip, the P claims G(n)
holds for some n, the OP will refute this claim by giving some
instances of x (for existential quantifier) so that ¬G(n) holds. If the
P successfully figures out the exceptionaly (for universal quantifier)
which makes F (x ,y;n) hold, the OP loses the game, otherwise, the
P loses.

3 HSR PROBLEM AND HSR GAME
The HSR problem serves as a proof-of-concept in our research:
consider throwing jars from a specific rung of a ladder, the jars
could either break or not. One has k identical jars and q test chances
to throw those jars, can she find the maximum height of the lad-
der so that any highest safe rung can be located with the given
resources k,q? We observed the recursive structure in this problem
and formulated the HSR problem as a logic statement as described
in section 2, where:

Gk,q (n) = ∃m ≤ n ∀a ∈ {“break”, “not break”} : {F (m,a;n)}

F (m,a;n) =


True, if n = 0
False, if n > 0 ∧ (k = 0 ∨ q = 0)
Gk−1,q−1(m − 1), if a = “break”
Gk,q−1(n −m), if a = “not break”

In the logic statement, Gk,q (n) means one can use k jars and q
tests to locate any highest safe rung in a ladder with n rungs. The
problem is defined recursively,m is the optimal testing point (if
there is one) so that no matter the jar breaks or not, the rest of the
resources can still be used to locate the highest safe rung.

With Gk,q (n), we define the HSR game where the P and OP
move alternately. In the proposal phase, the P will propose a num-
ber n and the OP will decide whether to accept it or reject it, as
described in section 2. During the refutation phase, the P will pick
a testing point m, then the OP will reply “break” or “not break”.
Specifically, in each round, the P claims ∃m ≤ n : {Gk−1,q−1(m −

1) ∧Gk,q−1(n −m)} holds. Then the OP refutes the claim by either
refuting Gk−1,q−1(m − 1) or Gk,q−1(n −m). In this way, both the
testing policy and the highest safe rung are learned implicitly.

4 EXPERIMENT
Two independent neural networks are applied to learn the proposal
game and refutation game respectively. During each iteration of
the learning process: 1. 100 episodes of self-play will be executed
through a neural MCTS using the current neural network. Data
generated during self-play will be stored. 2. the neural networks
will be trained with the data in the replay buffer. And 3. the newly
trained neural network and the previous old neural network are
put into a competition. We collect the correctness data for both of
the neural networks during each iteration. Fig. 1 show the process

Figure 1: Correctness ratio measured on k = 7,q = 7. Where
New_OP means the newly trained neural network plays as
an OP; Old_P means the previously trained neural network
plays as a P. Similar for New_P and Old_OP.

Figure 2: Refutation phase on k = 7,q = 7 but n is set to 129
so there is no solution.

where the two players continuously compete with each other until
finally converging to a solution where the P’s policy can always
keep her winning position. The OP is in a dilemmawhen P is perfect,
i.e., P chooses only the optimal n andm. On the other hand, for a
problem without any solution, the opposite will happen (see Fig. 2).

5 CONCLUSION
We introduce MQ2 and the MQ2 Zermelo Gamification. We formu-
late the optimization problem using predicate logic (where the types
of the variables are not "too" complex) and then we use the corre-
sponding Zermelo game which we give to the adapted neural MCTS
algorithm. For our proof-of-concept specialization of MQ2, HSR
Zermelo Gamification, we notice that the adapted neural MCTS
algorithm converges on small instances that can be handled by our
hardware and finds the winning strategy. Our evaluation counts
all correct/incorrect moves of the players, based on ground-truth
We hope our research sheds some light on the potential for neural
MCTS to solve interesting gamified problems.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2277



REFERENCES
[1] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.

2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

[2] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,
Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree
Search Methods. IEEE Trans. Comput. Intellig. and AI in Games 4, 1 (2012), 1–43.

[3] Jaakko Hintikka. 1982. Game-theoretical semantics: insights and prospects. Notre
Dame J. Formal Logic 23, 2 (04 1982), 219–241.

[4] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. 2017. Learn-
ing combinatorial optimization algorithms over graphs. In Advances in Neural
Information Processing Systems. 6348–6358.

[5] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David
Kas, Karl Hajjar, Torbjorn S Dahl, Amine Kerkeni, and Karim Beguir. 2018. Ranked
Reward: Enabling Self-Play Reinforcement Learning for Combinatorial Optimiza-
tion. arXiv preprint arXiv:1807.01672 (2018).

[6] Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo de Moura,
and David L Dill. 2018. Learning a SAT Solver from Single-Bit Supervision. arXiv
preprint arXiv:1802.03685 (2018).

[7] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-
brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,
Thore Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep
neural networks and tree search. Nature 529 (Jan. 2016), 484.

[8] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters Chess, Shogi,
and Go through self-play. Science 362, 6419 (2018), 1140–1144.

[9] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche,
Thore Graepel, and Demis Hassabis. 2017. Mastering the game of Go without
human knowledge. Nature 550 (Oct. 2017), 354.

[10] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks. In
Advances in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 2692–2700.

[11] Ruiyang Xu and Karl Lieberherr. 2019. Learning Self-Game-Play Agents for
Combinatorial Optimization Problems. arXiv preprint arXiv:1903.03674 (2019).

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2278


	Abstract
	1 Introduction
	2 Zermelo Gamification
	2.1 Proposal Phase
	2.2 Refutation Phase

	3 HSR Problem and HSR Game
	4 Experiment
	5 Conclusion
	References



