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ABSTRACT

Smart grids are contributing to the demand-side management by in-
tegrating electronic equipment, distributed energy generation and
storage, and advanced meters and controllers. With the increasing
adoption of distributed energy generation and storage systems, res-
idential energy management is drawing more and more attention,
which is regarded as being critical to demand-supply balancing
and peak load reduction. In this paper, we focus on a microgrid in
which a large-scale modern homes interact together to optimize
their electricity cost. We present an Entropy-Based Collective Multi-
agent Deep Reinforcement Learning (EB-C-MADRL) framework to
address it. Experiments demonstrate that EB-C-MADRL can reduce
both the long-term group power consumption cost and daily peak
demand effectively compared with existing approaches.
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1 INTRODUCTION

Meeting the growing energy demand due to the presence of more
volatile types of loads raises a major challenge for the power grid [8,
12]. To satisfy demand that varies sharply, companies usually have
to install additional generation capacity to meet the peak demand
and charge end-users higher costs. At the same time, the increasing
renewable generation is naturally intermittent, which makes the
power grid hard to maintain the demand-supply balance. The peak
load and supply-demand imbalance have received more and more
attention by energy generation and dsitribution companies [15].
The home energy demand-side management (DSM) [9] has been
proposed to handle the above problems, such as dynamic program-
ming [14], game theory [5] and reinforcement learning (RL) [6].
However, these works only consider incomplete subsets of the home
power systems and require rigid schedules for end users’ appliances
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usage. Recently, smart homes combined with the distributed energy
generation (DG) and distributed energy storage (DS) show the great
possibility for the revolution of the power grid [3, 7]. It provides us
with opportunities of unfreezing the rigid schedule for users. RL
based DSM techniques for the smart home was first investigated in
[1] and then extended in [11] with electric vehicles (EV).

However, these smart home DSM works focus on optimizing the
energy activities for a single household without considering the
group aggregate effect which would result in overloads on the trans-
former [2]. To this end, we research on the user-friendly DSM tech-
niques for a smart home community. We propose an entropy-based
collective multiagent reinforcement learning (MARL) framework
to address the large-scale energy cost optimization problem.

2 MICROGRID ELECTRICITY MARKET

At the beginning of each time slot ¢, the home EMS needs to decide
two actions based on its own state: P; ; for power trading amount
and C, ; for the EV charging rate. Our microgrid market mechanism
has two trading processes: the internal trading process and the
external trading process. Households trade inside the group first
to satisfy the demand of each other. If the internal trading cannot
fully meet the group, then the external smart grid will deal with the
unsatisfied demand. To encourage users to actively participate in
such a microgrid, we set the internal power price p;n, ; the average
of external power selling price pos,; and external power buying
price pyp, ; for customers. Extra aggregate demand or supply would
be processed by external trading after internal trading. The final
cleaning electricity price for the trading power P ; is:
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where ps,; and py, ; are the power selling price and buying price
at time t. ¢5,; and ¥, , are the total power selling and buying
amount. Through the incentive mechanism, we turn the smart
home community a multiagent system, where each agent’s reward is
determined by trading prices affected by the total group. Promoting
the group coordination can be solved by MARL approaches.

3 EB-C-MARL FRAMEWORK
3.1 Collective Group Behavior

The massive market dynamic property raises huge challenges. One
primary problem is that each agent’s policy is changing as training
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progresses, and the environment becomes non-stationary from the
perspective of any individual agent [4]. Even if we could obtain
actions from other agents, in the large-scale multiagent systems,
the joint action space of the agents grows exponentially with the
number of agents and makes the value function learning extremely
hard [13]. However, in market settings where agents are influenced
from their collective action effect, we could represent such collective
influence by the market dynamics abstraction to avoid above issues.

Collective DQN. Each agent is coordinating with the mircogird
market instead of directly interacting with any individual. Thus, we
abstract market macro-actions to replace other agents’ joint action
to simplify the multiagent Q-function significantly.

Qi(S, al, az, ey aN = Qi(s’ ai, amarket)’

market

@
where the abstraction of market dynamics a includes the
seller group collective action ag, the buyer group collective action
ap and group EV charging distribution C,. One additional privacy
benefit is that each household only need to access to its own states
without knowing any other. Then we obtain Equation 3:
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The abstractions of current market dynamics cannot be exactly ob-
tained as all households make decisions at the same time. Instead we
propose using yesterday’s group collective actions to approximate
current market dynamics by human life’s daily periodicity:
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where a;, a’b and é; are group action statistics at one day ago.
Collective A2C. Similarly, collective actions enhance A2C.
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3.2 Reward Shaping with Individual Entropy

For reducing the daily peak load, we use individual entropy to
diversify household EV charging to different time slots. The unco-
ordinated RL learning will result in high peak load as EV would
charge in the low electricity price period coincidentally. Inspired
by [10], we utilize a more accurate individual entropy in the reward
function to diversify the EV charging behavior. Intuitively, if one
household chooses a low-frequency action, a higher bonus would
be assigned to the household as it contributes more to the system’s
action entropy H;. The h; for user i is calculated as follows:

—logpa;-
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where pg, is the frequency of action a; performed at . hi gives the
incentive to choose a different action from current high-frequency
actions. Therefore, it helps reduce the peak load by mitigating the
phenomenon that households charge EV concurrently. hi is accu-
rate credit assignment of the system’s entropy which represents
the distribution degree of EV charging behavior:
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4 EXPERIMENTS AND ANALYSIS
4.1 Validating the Collective Group Behavior

We first validate the collective group behavior abstraction and com-
pare the proposed control algorithms with a rule method and DQN.
The rule-based control algorithm is called Naive-greedy policy de-
scribed in [1], which charges the EV when arriving home and sell
the energy when there is a power surplus. Then we augment both
DON and A2C with market dynamics approximations to validate
the collective group behavior abstraction. Table 1 shows the results
and collective A2C has the least electricity operating cost.

Table 1: Group Power Operating Results

Algorithm Operating Cost () Peak Load (kwh)
Naive Greedy -263195.44 453302.63
DON -111133.42 421048.18
A2C -92173.61 478321.76
Collective DQN -93087.09 429021.03
Collective A2C -88878.34 465816.24

4.2 Validating the Individual Entropy

Despite achieving the least cost, collective A2C still has high peak
loads by the uncoordinated EV charging. To mitigate the new peaks,
we enhance collective DQN and collective A2C with individual
entropy to encourage agents to diversify EV charging. Table 2 gives
the results of related methods and EB-C-MADRL. Compared with
DOQN, entropy-based collective A2C (EB-C-A2C) achieves 24.69%
cost reduction and 5.15% peak load reduction.

Table 2: Group Power Operating Results

Algorithm Operating Cost ($)  Peak Load (kwh)
Naive Greedy -263195.44 453302.63
DON -111133.42 421048.18
Collective A2C -88878.34 465816.24
EB-C-A2C -83689.13 399381.48

5 CONCLUSION

In this paper, we focus on a large-scale smart home EMS optimiza-
tion problem. We propose EB-C-MADRL to learn home EMS control
policies in a community microgird market. Simulation experiments
exhibit superior performance of our method in terms of the elec-
tricity operating cost saving and the daily peak load reduction.
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