
Is Agent So�ware More Complex than Other So�ware?
Extended Abstract

Alon Zanbar
The MAVERICK Group
Bar Ilan University
Ramat Gan, Israel

atzanbar@gmail.com

Gal A. Kaminka
The MAVERICK Group
Bar Ilan University
Ramat Gan, Israel
galk@cs.biu.ac.il

ABSTRACT

We empirically investigate agent software repositories using com-
monly used software metrics, which are used in software engineer-
ing literature to quantify meaningful characteristics of software
based on its source code.We contrast themeasurements with those
of software in other categories. Analyzing hundreds of software
projects, we �nd that agent software may be di�erent from other
types of software, in terms of software complexity measures.

KEYWORDS

Agent-Oriented Software Engineering; Software Metrics; AI and
Software Engineering

ACM Reference Format:

Alon Zanbar and Gal A. Kaminka. 2019. Is Agent Software More Complex
than Other Software?. In Proc. of the 18th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS 2019), Montreal, Canada,

May 13–17, 2019, IFAAMAS, 3 pages.

1 INTRODUCTION

For many years, signi�cant research e�orts have been spent on in-
vestigatingmethodologies, tools, models and technologies for engi-
neering autonomous agents software. Research into agent architec-
tures and their structure, programming languages specialized for
building agents, formal models and their implementation, develop-
ment methodologies, middleware software, have been discussed in
the literature, encompassing multiple communities of researchers,
with at least partial overlaps in interests and approaches.

The most important underlying assumption of these research
e�orts is that such specialization is needed, because autonomous
agent software poses engineering requirements that may not be
easily met by more general (and more familiar) software engineer-
ing and programming paradigms. Specialized tools, models, pro-
gramming languages, code architectures and abstractions make
sense, if the software engineering problem is specialized.

This paper provides the �rst empirical evidence for the distinc-

tiveness of autonomous agent software, compared to other software
categories.We utilize basic source codemetrics, such asCyclomatic

Complexity, Cohesion, Coupling, and others. These metrics are com-
monly used by researchers and practitioners to assess code quality,
estimate work e�ort, and to quantify other meaningful character-
istics of software. We use them to understand how agent and robot
software is di�erent from general software.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and Mul-
tiagent Systems (www.ifaamas.org). All rights reserved.

We quantitatively contrast close to 140 autonomous agent and
robot projects (from RoboCup, The Agent Negotiations Competi-
tions, Chess, and various robotics projects), with close to 400 other
software projects from github, of various types. Each was quanti-
�ed using over 250 metrics. We then conducted both manual anal-
ysis and automated machine-learning analysis of the di�erences
between agent software, robot software, and other software.

We �nd that agent software is clearly and signi�cantly di�er-
ent from other types of software of comparable size. This result
appears both when using manual statistical analysis, as well as
machine learning methods. Speci�cally, autonomous agents soft-
ware is signi�cantly more complex (in the sense of control �ow
complexity) than other software categories. We discuss potential
implications of these results.

2 BACKGROUND

There is vast literature reporting on research that directly or in-
directly impacts software engineering and development of au-
tonomous agents: AOSE agent-oriented software engineering is a
thriving area of research, with at least one dedicated annual confer-
ence/workshop and a specialized journal1 [1–5, 7–11, 13–24]. For
themost part, the arguments for the study of AOSE as distinct from
general software engineering are well argued philosophically, and
qualitatively pointing out inherent conceptual di�erences between
the software engineering of agents, and other software domains.
To the best of our knowledge, no empirical evidence—certainly not
at the scale detailed below—has been o�ered to support these im-
portant conceptual arguments.

The lack of quantitative investigations of agent and robot soft-
ware engineering is not for lack of quantitative and empirical
methods in software engineering in general. Many investigations—
starting in the early seventies and continuing today—propose
quantitativemetrics of software constructs, and relate themeasure-
ments to software quality, development e�ort, software type, and
other attributes of interest. Comprehensive reviews of these are
presented in [6, 12] for example.

3 SOFTWARE PROJECT DATA COLLECTION

AND CURATION

We are looking to compare general software categories to software
implementing autonomous agents operating in virtual and physi-
cal environments (i.e., robots). We begin with an overview of the
data collection and curation process, in preparation for the manual
and automated analysis described in the following sections.

1International Journal of Agent-Oriented Software Engineering

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2303



We use several sources of software projects, each containing
multiple projects:

RoboCup. RoboCup is the among the largest annual global ro-
botics competition events in the world, and one of the longest
running—taking place since 1997 (1996 pre-competition).

ANAC.. The annual International Automated Negotiating
Agents Competition (ANAC) is used by the automated negotiation
research community to benchmark and evaluate its work and to
challenge itself.

GitHub. GitHub, the largest repository of open source projects
in the world. The categories we select are distinct as much as pos-
sible from AI code and from one another.

From the sources above, we collected software projects that
meet maturity and size criteria, and are easily identi�ed as belong
to speci�c software categories. Those project where analyzed us-
ing open source static code analysois tools to produce large list of
software metrics. the following list demonstrate some of them :

Summary & code Metrics: Total Lines of Code (total_loc) , Total
Number of Modules (total_modules) , Total Number of Methods
(total_nom) , A�erent Connections per Class (ACC) , Average Cy-
clomatic Complexity per Method (ACCM) , Average Method Lines
of Code (AMLOC) , Average Number of Parameters (ANPM) , Cou-
pling Between Objects (CBO) , Coupling Factor (COF) , Depth of
Inheritance Tree (DIT)

4 MANUAL ANALYSIS

We conducted two separate analysis e�orts which had common
general goal. a statistical analysis and machine-learning analysis.
The focus in both is to reveal di�erences, if they occur, between the
di�erent software categories, as expressed in the measurements of
di�erent metrics.

In the statistical analysis we used a heuristic procedure to as-
sist in �nding promising features. The idea is to iterate over the
software domains. For each domain r , we separate it out from the
others, and then use a two-tailed t-test to contrast the distribution
of the metric values in the domain and in all others. We use the p
value generated by the above procedure to form clusters of three
or more software domain that share similar p value in the same
metrics. Those groups were used as indicator for possible clusters.
by ordering the increasingly by p we could see the four group with
lowest common p value are those containing the results of testing
ACCM values of "Agent" types against other software categories.

Visualization of box-plots distributions of speci�c metrics of
each software domain, revealed some di�erences between the soft-
ware categories. We discovered that the most noticeable results are
of some complexity metrics as ACCM and MLOC. The distribution
of those metrics for "Agent" software shows higher values than in
all other domains.

5 MACHINE LEARNING ANALYSIS

A second approach for our investigation uses machine learning
techniques, to complement the manual analysis. We attempted to
use several di�erent machine learning classi�ers to distinguish
agent and non-agent software domains, with the goal of analyzing

successful classi�cation schemes, to reveal the metrics, or metric
combinations, which prove meaningful in the classi�cation

Classi�cation procedure. We choose one vs many classi�cation
strategy, similarly to the manual analysis above. Iterating over all
software classes, we trained a binary classi�er to di�erentiate be-
tween samples of one software domain (for example, Audio) to all
other software classes. This creates an inherent imbalance in the
number of examples presented, which we alleviated by using ran-
dom over-sampling of the minority class.

For classi�cation, we used the following classi�cation algo-
rithms: Support Vector Machines, Logistics Regression, and Gradient-
Boosted Decision Trees. The implementations are open-source. The
performance of classi�ers was carried out using two scoring func-
tions, familiar to machine learning practitioners: F1 and AUC (area
under the ROC curve).

The results implies that the top performing classi�ers (1) are
those that are able to distinguish agent software from other types
of software, and (2) utilize the mean ACCM and AMLOC metrics
in their classi�cation decisions. These results concur with the con-
clusions of the manual analysis described earlier.

Table 1 re�ects the performance of each XGBoost classi�ers
trained to separate between the di�erent software classes. The ta-
ble demonstrate the superior results of separating "Agent" reposi-
tories compared to other software domains. A complementary list
of features that are most signi�cant for the XGBoost model for clas-
sifying "Agent" repositories against other domains is presented in
Table 2:

Agent/General Class (Domain) AUC F1

0 Agent Robocup-2D 0.97 0.85
1 Agent ANAC 0.98 0.67
2 Agent Chess 0.84 0.44
3 Robot Robcup-Other-Leagues 0.89 0.40
4 General Graphics 0.65 0.31
5 General Security 0.76 0.27
6 General Mobile 0.80 0.22
7 General Games 0.49 0.00
8 General Audio 0.56 0.00
9 General Robot-Simulation 0.66 0.00
10 General Education 0.66 0.00

Table 1: Gradient Boosted Decision Trees top scoring soft-

ware classes. Mean ACCM is a recurring important feature.

Class (Domain) Important Features

Robocup-2D [amloc_mean, mmloc_mean, noc_mean, rfc_mean]
ANAC [accm_mean, noa_mean, npa_mean, npm_mean]
Chess [accm_mean, cbo_mean, dit_mean, lcom4_mean]

Table 2: XGBoost important features for classifying Agent

repositories

Acknowledgments. This research was supported in part by ISF
Grant #2306/18. As always, thanks to K. Ushi.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2304



REFERENCES
[1] Olivier Boissier, Rafael H. Bordini, Jomi F. HÃĳbner, and Alessandro

Ricci. 2014. Unravelling Multi-agent-Oriented Programming. In Agent-
Oriented Software Engineering. Springer, Berlin, Heidelberg, 259–272.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13

[2] Mehdi Dastani. 2014. A Survey of Multi-agent Program-
ming Languages and Frameworks. In Agent-Oriented Soft-
ware Engineering. Springer, Berlin, Heidelberg, 213–233.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_11

[3] Christian Detweiler, Koen Hindriks, and Catholijn Jonker. 2010. Principles for
Value-Sensitive Agent-Oriented Software Engineering. In Agent-Oriented Soft-
ware Engineering XI (Lecture Notes in Computer Science). Springer, Berlin, Hei-
delberg.

[4] Avshalom Elmalech, David Sarne, and Noa Agmon. 2014. Can Agent Devel-
opment A�ect Developer’s Strategy?. In Proceedings of the AAAI Conference on
Arti�cial Intelligence.

[5] Amir Elmishali, Roni Stern, and Meir Kalech. 2016. Data-Augmented Software
Diagnosis. In Innovative Applications of AI (IAAI).

[6] Norman Fenton and James Bieman. 2014-10-01. Software Metrics: A Rigor-
ous and Practical Approach, Third Edition. CRC Press. Google-Books-ID:
lx_OBQAAQBAJ.

[7] Klaus Fischer, Christian Hahn, and Cristian Madrigal Mora. 2007. Agent-
oriented software engineering: a model-driven approach. Interna-
tional Journal of Agent-Oriented Software Engineering 1, 3/4 (2007), 334.
http://www.inderscience.com/link.php?id=16265

[8] Koen V. Hindriks and JÃĳgen Dix. 2014. GOAL: A Multi-agent Pro-
gramming Language Applied to an Exploration Game. In Agent-
Oriented Software Engineering. Springer, Berlin, Heidelberg, 235–258.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_12

[9] Marc-Philippe Huget. 2014. Agent Communication. In Agent-
Oriented Software Engineering. Springer, Berlin, Heidelberg, 101–133.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_6

[10] Nicholas R. Jennings. 2000-03-01. On agent-based software en-
gineering. Arti�cial Intelligence 117, 2 (2000-03-01), 277–296.
http://www.sciencedirect.com/science/article/pii/S0004370299001071

[11] Nicholas R. Jennings. 2001. An agent-based approach for building
complex software systems. Commun. ACM 44, 4 (April 2001), 35–41.
http://portal.acm.org/citation.cfm?doid=367211.367250

[12] Capers Jones. 2008. Applied Software Measurement: Global Analysis of Productiv-
ity and Quality (3rd ed.). McGraw-Hill, New York.

[13] Joanna Juziuk, Danny Weyns, and Tom Holvoet. 2014. Design Pat-
terns for Multi-agent Systems: A Systematic Literature Review. In
Agent-Oriented Software Engineering. Springer, Berlin, Heidelberg, 79–99.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_5

[14] Renato Levy and Goutam Satapathy. 2014. Design and Im-
plementation of Very Large Agent-Based Systems. In Agent-
Oriented Software Engineering. Springer, Berlin, Heidelberg, 289–307.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_15

[15] Ashok U. Mallya and Munindar P. Singh. 2006. Incorporating Commitment Pro-
tocols into Tropos. In Agent-Oriented Software Engineering VI, JÃűrg P. MÃĳller
and Franco Zambonelli (Eds.). Vol. 3950. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 69–80. http://link.springer.com/10.1007/11752660_6

[16] Jörg P. Müller and Klaus Fischer. 2014. Application Impact of
Multi-agent Systems and Technologies: A Survey. In Agent-
Oriented Software Engineering. Springer, Berlin, Heidelberg, 27–53.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_3

[17] Lin Padgham, John Thangarajah, and Michael Winiko�.
2014. Prometheus Research Directions. In Agent-Oriented
Software Engineering. Springer, Berlin, Heidelberg, 155–171.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8

[18] Lin Padgham and Michael Winiko�. 2004. Developing Intelligent Agent
Systems: A Practical Guide. John Wiley & Sons, Ltd, Chichester, UK.
http://doi.wiley.com/10.1002/0470861223

[19] Eric Platon, Nicolas Sabouret, and Shinichi Honiden. 2008. An ar-
chitecture for exception management in multiagent systems. Interna-
tional Journal of Agent-Oriented Software Engineering 2, 3 (2008), 267.
http://www.inderscience.com/link.php?id=19420

[20] Yoav Shoham. 1991. Agent-oriented programming. Arti�cial Intelligence 60
(1991), 51–92.

[21] Arnon Sturm and Onn Shehory. 2014. Agent-Oriented Soft-
ware Engineering: Revisiting the State of the Art. In Agent-
Oriented Software Engineering. Springer, Berlin, Heidelberg, 13–26.
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2

[22] P. R. Telang and M. P. Singh. 2012. Specifying and Verifying Cross-
Organizational Business Models: An Agent-Oriented Approach. IEEE Transac-
tions on Services Computing 5, 3 (2012), 305–318.

[23] Michael Winiko�. 2009. Future Directions for Agent-Based Software Engineer-
ing. International Journal of Agent-Oriented Software Engineering 3, 4 (May 2009),
402–410. http://dx.doi.org/10.1504/IJAOSE.2009.025319

[24] Ari Yakir and Gal A. Kaminka. 2007. An Integrated Development Environment
and Architecture for Soar-Based Agents. In Innovative Applications of Arti�cial
Intelligence (IAAI-07).

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2305

https://link.springer.com/chapter/10.1007/978-3-642-54432-3_13
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_11
http://www.inderscience.com/link.php?id=16265
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_12
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_6
http://www.sciencedirect.com/science/article/pii/S0004370299001071
http://portal.acm.org/citation.cfm?doid=367211.367250
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_5
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_15
http://link.springer.com/10.1007/11752660_6
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_3
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_8
http://doi.wiley.com/10.1002/0470861223
http://www.inderscience.com/link.php?id=19420
https://link.springer.com/chapter/10.1007/978-3-642-54432-3_2
http://dx.doi.org/10.1504/IJAOSE.2009.025319

	Abstract
	1 Introduction
	2 Background
	3 Software Project Data Collection and Curation
	4 Manual Analysis
	5 Machine Learning Analysis
	References



