
Automatic Feature Engineering
by Deep Reinforcement Learning

Extended Abstract

Jianyu Zhang, Jianye Hao∗, Françoise Fogelman-Soulié, Zan Wang
College of Intelligence and Computing, Tianjin University

Tianjin, China
edzhang@tju.edu.cn,Jianye.hao@tju.edu.cn,francoise.soulie@outlook.com,wangzan@tju.edu.cn

ABSTRACT
We present a framework called Learning Automatic Feature Engi-
neering Machine (LAFEM), which formalizes the Feature Engineer-
ing (FE) problem as an optimization problem over a Heterogeneous
Transformation Graph (HTG). We propose a Deep Q-learning on
HTG to support efficient learning of fine-grained and generalized FE
policies that can transfer knowledge of engineering "good" features
from a collection of datasets to other unseen datasets.

KEYWORDS
Innovative agents and multiagent applications; Deep learning; Fea-
ture generation
ACM Reference Format:
Jianyu Zhang, Jianye Hao∗, Françoise Fogelman-Soulié, Zan Wang. 2019.
Automatic Feature Engineering by Deep Reinforcement Learning. In Proc.
of the 18th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
3 pages.

1 INTRODUCTION
Most of existing methods of automatic FE either generate a large
set of possible features by predefined transformation operators
followed by feature selection (Brute-force) [1, 4, 9] or apply sim-
ple Machine Learning / Reinforcement Learning (simple algorithm
and/or simple meta-features derived from FE process) to recom-
mend a potentially useful feature [2, 3, 3, 5]. The former makes
the process computationally expensive, which is even worse for
complex features, while the latter limits the performance boost.

A recently proposed FE approach [3] is based on RL. It treats all
features in the dataset as a union, and applies traditional Q-learning
[8] on FE examples to learn a strategy for automating FE under a
given budget. Reinforcement Learning (RL) is a suitable way for
solving the FE problem, but this work uses Q-learning with linear
approximation with only 12 simple manual features, which limits
the ability of automatic FE. Furthermore, it ignores the differences
between features and applies a transformation operator on all of
them at each step. Because of this nondiscrimination of different
features, it is computation expensive, especially for large datasets
and complex transformation operators.

To address the above limitations, in this work, we propose LAFEM
(Learning Automatic Feature EngineeringMachine), a novel approach

* Corresponding author.
Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

for automatic FE based on Deep Reinforcement Learning (DRL).
We define a Heterogeneous Transformation Graph (HTG), which is
a heterogeneous directed acyclic graph representing relationships
between different transformed versions of features and datasets, to
organize the FE process.

2 METHOD
In this section, we present a new framework called LAFEM. It
contains a Heterogeneous Transformation Graph (HTG) to represent
the FE process in feature level and an off-policy RL algorithm on
top of HTG to find a good FE policy. We consider a collection of
datasetsD = {D0,D1, ...,DN } and each dataset Di or (D for short)
can be represented as D = ⟨F ,y⟩ where F = { f0, f1, ..., fn } is a set
of features and y is the corresponding target variable we want to
predict. We apply a classification algorithm C (e.g. Random Forest)
on dataset D and use an evaluation measurem (e.g. log-loss, F1-
score) to measure the classification performance. We use PmC (F ,y)
or P(D) to denote the cross-validation performance of classification
algorithm C and evaluation measurem on dataset D.

Since the FE process is time-consuming, especially model eval-
uation, in practice, we usually need to set a budget (e.g. time) for
a particular FE problem. A budget Bemax here indicates the maxi-
mum count of model evaluation steps we can take for a dataset.

A transformation operator τ in FE is a function that is applied
on a set of features to generate a new feature f+ = τ ({ fi })where
the order of the operator is the number of features in { fi }. We
denote the set of derived features as F+. For instance, a product
transformation applied on two features (order 2) generates a new
feature f+ = product(fi , fj ). We useT to denote the set of operators.

2.1 Heterogeneous Transformation Graph
The Heterogeneous Transformation Graph (HTG) is a directed het-
erogeneous acyclic graph (Figure 1). Each node in HTG corresponds
to either a feature (feature node) or a dataset (dataset node). Each
feature node corresponds to either one original feature or one fea-
ture derived from original features. Each dataset node corresponds
to either the original dataset D0 or a dataset derived from it. The
edges are divided into three categories: (a) Feature transformation
edge, the edge between two feature nodes fi and fj , i > j ≥ 0 ,
indicates that fi is a feature derived from fj . If there are more than
one feature nodes { fj } connecting to fi , then fi is a feature derived
from all of them, i.e. fi = τ ({ fj }). (b) Dataset transformation edge,
the edge between two dataset nodes Di , D j , i > j ≥ 0 indicates
that Di is a dataset obtained from D j by feature generation, feature
selection or model evaluation. (c) The edge from feature node fi

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2312



to dataset node Dk or in the inverse direction, indicates that fi is
added to Dk or dropped from Dk . Since we only allow one feature
to be added / eliminated at one time, for any dataset node Dk , there
is at most one feature node connected to one dataset node.

Figure 1: Example of HTG.

2.2 MDP Formulation
Consider the FE process with HTG on one dataset D as a Markov
decision process (MDP) problem. At each time step t , a state st ∈ S
consists of theHTGGt and themodel evaluation budgetBe available.
at ∈ A = AG

⋃
AS

⋃
AE is an action from one of the following

three groups of actions:
AG is a set of actions for feature generation, which apply a

transformation τ ∈ T on one or more features { f } to derive one
new feature and add it to dataset Dt . ∀a ∈ AG ,a = ⟨{ f },τ ⟩, where
{ f } is one or more features nodes in HTG. τ is a transformation
operator from T .
AS is a set of actions for feature selection by RL, which either

drop one feature f from dataset Dt = ⟨Ft ,y⟩ or add back one
feature f that exists in HTG but not in current dataset Dt .
AE contains one model evaluation action, which applies clas-

sification algorithm C and measures m on dataset Dt to get the
performance of Dt as PmC (Dt ). Because we can only get the per-
formance after the model evaluation action, we call the state after
action in AE the model evaluated state.

The reward rt of this FE problem in HTG at time step t is:

rt = max
i ∈[0,t+1]

(PmC (Di )) − max
j ∈[0,t ]

(PmC (D j )) (1)

2.3 LAFEM Algorithm
So far, we have introduced the organization of FE process and
the MDP formulation of FE problem. The most critical part is the
algorithm to find the optimal strategy of FE. We introduce LAFEM
framework, an algorithm that can apply an off-policy DRL algorithm
A (such as DQN, Double DQN [6], Dueling DQN [7]) on HTG to
perform automatic FE.

To increase the generalization ability of the strategy learned
from the LAFEM framework, we train the agent on many datasets
to learn a good strategy. To prevent the algorithm from always
applying feature generation or feature selection on the dataset and
never evaluating the performance, we set a constraint Bamax on the
maximum number of steps between two model evaluation states.

To train a generalization agent on many datasets, each time we
apply ϵ-greedy strategy on one dataset D sampled from D and
store transactions into replay buffer then use mini-batch gradient
descent to update A. We perform this process until convergence.
The details of the algorithm are shown in Algorithm 1.

The reward function in Eq. (1) is the original reward for automatic
FE problem in HTG. From Eq. (1), rewards only exist when we apply

Algorithm 1 LAFEM

input: a set of datasets D = {D}, replay buffer R, Budget Bemax ,
and Bamax , an off-policy DRL algorithm A

1: while not done do
2: Bootstrap sample a dataset D from D
3: Initialize budgets: Be ← Bemax ,Ba ← Bamax
4: while Be > 0 do
5: if Ba > 0 then
6: Get an action at by ϵ-greedy and execute at
7: else
8: Choose action at ∈ AE and execuate at
9: end if
10: Store the transition in R and set Ba ← Ba − 1
11: if at ∈ AE then
12: Set Be ← Be − 1,Ba ← Bamax
13: end if
14: end while
15: while not done do
16: Sample a mini-batch from replay buffer R
17: Perform one optimization step on A
18: end while
19: end while

model evaluation so any feature generation or feature selection step
would never have any immediately reward. As a result, the reward
would be really sparse and delayed, so-called delayed reward. To
solve this problem, we design reward shaping by modifying the
value of PmC (Dt ) where Dt is not an evaluation state as:

PmC (Dt ) =
(PmC (Dt+α ) − P

m
C (Dt−β ))

α + β + 1
(2)

where α and β are the number of steps to next model evaluated
state and last model evaluated state, respectively. Hence, feature
generation and feature selection action a ∈ AG

⋃
AS can gain im-

mediate reward at each step. In most datasets, the framework out-
performs state-of-the-art automatic FE approaches in both model
performance and time efficiency for both simple and complex trans-
formation operators.

3 CONCLUSION
In this paper, we present a novel framework called LAFEM to per-
form automatic feature engineering (FE) which combines feature
generation, feature selection andmodel evaluation. It includes a heter-
geneous transformation graph (HTG) that organized the processing
of FE and a Deep Reinforcement Learning algorithm that can per-
form automatic FE on the HTG.

ACKNOWLEDGEMENT
The work is supported by the National Natural Science Founda-
tion of China (Grant Nos.: 61702362, U1836214), Special Program
of Artificial Intelligence, Tianjin Research Program of Application
Foundation and Advanced Technology (No.: 16JCQNJC00100), and
Special Program of Artificial Intelligence of Tianjin Municipal Sci-
ence and Technology Commission (No.: 569 17ZXRGGX00150)

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2313



REFERENCES
[1] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis: To-

wards automating data science endeavors. InData Science and Advanced Analytics
(DSAA), 2015. 36678 2015. IEEE International Conference on. IEEE, 1–10.

[2] Gilad Katz, Eui Chul Richard Shin, and Dawn Song. 2016. Explorekit: Automatic
feature generation and selection. In Proceedings of the IEEE 16th International
Conference on Data Mining ICDM 2016. IEEE, 979–984.

[3] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. 2017. Feature Engi-
neering for Predictive Modeling using Reinforcement Learning. arXiv preprint
arXiv:1709.07150 (2017).

[4] Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai,
and Oznur Alkan. 2017. One button machine for automating feature engineering
in relational databases. arXiv preprint arXiv:1706.00327 (2017).

[5] Fatemeh Nargesian, Horst Samulowitz, Udayan Khurana, Elias B Khalil, and
Deepak Turaga. 2017. Learning feature engineering for classification. In Pro-
ceedings of the 26th International Joint Conference on Artificial Intelligence, IJCAI,
Vol. 17. 2529–2535.

[6] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning.. In AAAI, Vol. 2. Phoenix, AZ, 5.

[7] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. 2015. Dueling network architectures for deep reinforcement
learning. arXiv preprint arXiv:1511.06581 (2015).

[8] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[9] Jianyu Zhang, Françoise Fogelman-Soulié, and Christine Largeron. 2018. Towards
Automatic Complex Feature Engineering. In International Conference on Web
Information Systems Engineering. Springer, 312–322.

Extended Abstract AAMAS 2019, May 13-17, 2019, Montréal, Canada

2314


	Abstract
	1 Introduction
	2 Method
	2.1 Heterogeneous Transformation Graph
	2.2 MDP Formulation
	2.3 LAFEM Algorithm

	3 Conclusion
	References



