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ABSTRACT
The ability to adapt to and learn from different domains and environ-
ments is crucial for agents to generalize. In this paper we propose
a probabilistic framework for domain adaptation that blends both
generative and discriminative modeling in a principled way. Under
this framework, generative and discriminative models correspond
to specific choices of the prior over parameters. By maximizing
both the marginal and the conditional log-likelihoods, our models
can use both labeled instances from the source domain as well as
unlabeled instances from both source and target domains. We show
that the popular reconstruction loss of autoencoder corresponds
to an upper bound of the negative marginal log-likelihoods of un-
labeled instances, and give a generalization bound that explicitly
incorporates it into the analysis. We instantiate our framework
using neural networks, and build a concrete model, DAuto.
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1 INTRODUCTION
The ability to be able to adapt to and learn from different domains
and environments is crucial for agents to generalize. However, mak-
ing accurate predictions relies heavily on the existence of labeled
data for the desired tasks. On the other hand, generating labeled
data for new learning tasks is often time-consuming. As a result,
this poses an obstacle for applying machine learning methods to
broader application domains. Domain adaptation focuses on the
situation where we only have access to labeled data from source
domain, which is assumed to be different from, but related to the
target domain we want to apply our model to. The goal of domain
adaptation algorithms under this setting is to generalize better in
the target domain by exploiting labeled data in the source domain
and unlabeled data in the target domain.
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In this paper we propose a probabilistic framework for domain
adaptation that combines both generative and discriminative mod-
eling in a principled way. We start from a simple yet general genera-
tive model, and show that a special choice on the prior distribution
of model parameters leads to the usual discriminative modeling.
This provides us a general way to interpolate between generative
and discriminative extremes through different choices of priors. Due
to the generative nature, the framework provides us a principled
way to use unlabeled instances from both the source and the target
domains. Under this framework, if we use non-parametric kernel
density estimators for the marginal distribution over instances, we
can show that the popular reconstruction loss of autoencoders corre-
sponds to an upper bound of the negative marginal log-likelihoods
of unlabeled instances. This provides us a novel probabilistic inter-
pretation on why unsupervised training with general autoencoders
may help with discriminative tasks. Theoretically, we provide a
generalization bound that incorporates the reconstruction loss of
autoencoders into analysis, showing that the reconstruction loss
can be used as a data-dependent measure that characterizes the
complexity of the dataset. From this perspective, our interpretation
may also be used to explain the recent success of autoencoders in
semi-supervised learning [5]. To the best of our knowledge, this
is the first probabilistic interpretation for general autoencoders,
though interpretations exist for specific variants, e.g., denoising
autoencoders [7] and contractive autoencoders [6].

To better understand how the proposed model works in practice,
we instantiate our framework with flexible neural networks, which
are powerful function approximators, leading to a concrete model,
DAuto. DAuto is designed to achieve the following three objectives
simultaneously in a unified model:

(1) It learns representations that are informative for the main
learning task in the source domain.

(2) It learns domain-invariant features that are indistinguishable
between the source and the target domains.

(3) It learns robust representations under reconstruction loss
for instances in both domains.

Under mild assumptions, we also provide a theoretical analysis for
DAuto that explains why these three objectives are necessary in
order to achieve a small generalization error.

2 THE MODEL
Let x ∈ Rd be an input instance and y be its target variable:
y ∈ {0, 1} in the classification setting or y ∈ R in the regression
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setting. A fully generative model can be specified as p(x,y;ϕ,ψ ) =
p(x;ϕ)p(y | x;ψ )p(ϕ,ψ ), where ϕ is the model parameter that
governs the generation process of x; ψ is the model parameter
for the conditional distribution y | x, and p(ϕ,ψ ) is the prior
distribution over both model parameters. Using the above joint
model, if we assume that the prior distribution p(ϕ,ψ ) factorizes
as p(ϕ,ψ ) = p(ϕ)p(ψ ), then we will have maxϕ,ψ p(x;ϕ)p(y |

x;ψ )p(ϕ)p(ψ ) = maxψ p(y | x;ψ )p(ψ ) · maxϕ p(x;ϕ)p(ϕ). Note
that in this case only the first term in R.H.S. is concerned with
the prediction, which means unsupervised learning on p(x;ϕ)p(ϕ)
does not help generalization. In other words, the independence
assumption between ϕ andψ equivalently reduces our joint model
over both x and y into discriminative models that only contain
parameters ψ if we only care about prediction accuracy. On the
other extreme, if we have ϕ = ψ , then this corresponds to hav-
ing a prior p(ϕ,ψ ) = p0(ϕ,ψ )δ (ϕ − ψ ) that constrains ϕ and ψ
to be shared in both generative processes: maxϕ,ψ p(x;ϕ)p(y |

x;ψ )p0(ϕ,ψ )δ (ϕ −ψ ) = maxϕ p(x;ϕ)p(y | x;ϕ)p0(ϕ), where p0 is a
base distribution and δ (·) denotes the Kronecker delta function. It
can be seen that when ϕ = ψ , the formulation exactly reduces to
the usual MAP inference criterion over both x and y.

The discussion shows that depending on the choice of the prior
distribution over ϕ andψ , we can easily recover both discriminative
and generative modelings. In practice the sweet spot often lies in
a mix of both models [4]: discriminative training usually wins at
predictive accuracy, while generative modeling provides a princi-
pled way to use unlabeled data. To achieve the best of both world,
let us consider the case where ϕ andψ have a common subspace,
i.e., some model parameters are shared in both the generation pro-
cess of x and y | x. To make our discussion concrete, think if we
have p(x;ϕ) = д′(f (x; ζ );ϕ\ζ ) and p(y | x;ψ ) = h(f (x; ζ ),y;ψ\ζ ),
where ζ are the shared parameters of both ϕ andψ . Domain adap-
tation is possible under this setting whenever f (·; ζ ) forms a rich
class of transformations so that unlabeled instances from both do-
mains have similar induced marginal distribution. As a generative
model, it also allows algorithms to use unlabeled instances from
both domains to optimize the marginal likelihood function p(x;ϕ),
which also helps the predictive task p(y | x;ψ ).

Now we use our probabilistic framework and instantiate it with
proper choices of both the marginal distributions as well as the
conditional distributions. To this end, we propose to use nonpara-
metric kernel density estimator (KDE) to model p(x;ϕ). Specifically,
let K(·) be the chosen kernel and {xi }ni=1 be a set of unlabeled
instances. Our KDE for p(x;ϕ) is given by:

p(x;ϕ) ∝
1
nw

n∑
i=1

K

(
x − д(f (xi ; ζ );ϕ\ζ )

w

)
(1)

wherew > 0 is the bandwidth and f : Rd → RD and д : RD → Rd

are two feature transformations. Our definition of KDE differs from
the original one [8] by the additional parametric transformations
д ◦ f applied to x, and when д ◦ f = I , our definition reduces to the
original definition.

For the conditional distribution y | x, depending on whether
y ∈ R or y ∈ {0, 1}, typical choices include linear regression or
logistic regression. To make the model more expressive, we can
first augment them with nonlinear transformation f applied to

the input instance. The transformation f is shared between both
p(x;ϕ) and p(y | x;ψ ). Our model is completed by specifying the
prior distribution as p(ϕ,ψ ) = p0(ϕ,ψ )δ (ϕ(ζ ) −ψ (ζ )). The δ (·) con-
strains the common parameter ζ to be shared by both p(x;ϕ) and
p(y | x;ψ ). The base distribution p0(ϕ,ψ ) can be chosen as a flat
(possibly improper) prior, which corresponds to the usual MLE
criterion; or other forms of distributions that effectively introduce
regularizations on both ϕ andψ . Putting all together, maximizing a
combination of conditional and marginal likelihoods correspond to
the following unconstrained minimization problem:

max
ψ ,ϕ

m∑
i=1

logp(yi | xi ;ψ ) − λ
n∑
j=1

| |xj − д(f (xj ; ζ );ϕ\ζ )| |22

To instantiate our framework, in this work we consider neural
networks as flexible function approximators for our desired trans-
formations f and д. Specifically, we use fully-connected neural
networks to parametrize f and д and softmax function to parame-
trize h. If y ∈ R, we can simply change the softmax function to be
an affine function as the output. For the simplicity of discussion,
assume we only use a one-layer fully connected network to repre-
sent f and д: f (x) = σ (Wf x) and д(z) =Wдz, whereWf ∈ RD×d ,
Wд ∈ Rd×D and σ (·) is an element-wise nonlinear activation func-
tion. Let h(z) = softmax(Whz) be the softmax layer to compute the
conditional probability of class assignment.

Although our model has the capacity to learn the shared trans-
formation f under which unlabeled data from both domains have
similar marginal distributions, the objective function discussed
so far does not necessarily induce such a transformation. For the
purpose of domain adaptation, it is necessary to add a regularizer
that enforces this constraint. One popular and effective choice is
the H -divergence introduced by [1–3]. It can be shown that the
H -divergence can be approximated by the binary classification
error of the domain classifier that discriminates instances from the
source or the target domain [2]. The intuition here is: given a fixed
class of binary labeling functions, if there exists a function that is
easy to tell instances in the source domain from those in the target
domain, then the distance between these two domains is large. Let
h̃ = softmax(Wd z) be the domain classifier where z = σ (Wf x) is the
shared representation constructed by encoder f . The regularizer
takes the form as a convex surrogate loss for the binary 0-1 error.
Putting all together, the optimization problem of our joint model
can be formulated as follows:

min
Wf ,Wд,Wh

max
Wd

m∑
i=1

Ly (xi ,yi ;Wf ,Wh )

+ λ
n∑
j=1

Lr (xj ;Wf ,Wд) − µ
n∑
j=1

Ld (xj ;Wf ,Wd ) (2)

where Ly (·, ·) is the prediction loss, Lr (·) is the reconstruction loss
and Ld (·) is the domain classification loss. As a result, DAuto is
designed to achieve the following three objectives simultaneously
in a unified framework: 1). It learns representations that are in-
formative for the main learning task in the source domain. 2). It
learns robust representations under reconstruction loss. 3). It learns
domain-invariant features that are indistinguishable between the
source and the target domains.
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