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ABSTRACT

Reinforcement learning in cooperate multi-agent scenarios is im-
portant for real-world applications. While several attempts before
tried to resolve it without explicit communication, we present a
communication-filtering actor-critic algorithm that trains decen-
tralized policies which could exchange filtered information in multi-
agent settings, using centrally computed critics. Communication
could potentially be an effective way for multi-agent cooperation.
We supposed that, when in execution phase without central crit-
ics, high-quality communication between agents could help agents
have better performance in cooperative situations. However, in-
formation sharing among all agents or in predefined communica-
tion architectures that existing methods adopt can be problematic.
Therefore, we use a neural network to filter information between
agents. Empirically, we show the strength of our model in two
general cooperative settings and vehicle lane changing scenarios.
Our approach outperforms several state-of-the-art models solving
multi-agent problems.
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1 INTRODUCTION

Learning to cooperate between several interacting agents has been
well studied [1, 11, 13]. And cooperative learning has been studied in
multiple domains [2, 6, 8, 9]. In multi-agent reinforcement learning
(MARL) collaboration, communication is critical, especially for
scenarios where a large number of agents work collaboratively,
such as autonomous vehicles planning [3], smart grid control [12],
and multi-robot control [10].

We propose a communication-filtering actor-critic framework,
called CFAC, to enable agents to learn effective and efficient com-
munication under partially observable distributed environment. We
train decentralized policies which could exchange filtered informa-
tion in multi-agent settings, using centrally computed critics. The
intuition behind our idea is that communication is crucial to get a
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best result in cooperative settings. If we made our agents use all
kinds of information from other agents, it would be very difficult
to study something really useful during training. So we need to
extract relative information from it, and we use a neural network
to do the filtering job.

2 METHODS
2.1 Background

In this work, we consider multi-agent domains that are fully co-
operative and partially observable. All agents are attempting to
maximize the discounted sum of joint rewards. No single agent can
observe the state of the environment. Instead, each agent receives
a private observation that is correlated with that state.

2.2 Communication-Filtering Actor-Critic
(CFAC)

Our CFAC network structure is shown in Figure 1. Our network
consists of three parts: the critic network, the policy network, and
the information filtering network. Among them, the critic network
is centralized, the policy network is decentralized, and the infor-
mation filtering network is semi-centralized. Each policy network
obtains the partial observations that can be observed in the current
global state from the environment, and obtains the filtered and
efficient information from the information filtering network, and
outputs the current time decision. The training process and pseudo
code 1 are as follows. Note that b is defined in [4].

The training of our method is an extension of actor-critic. More
concretely, consider a game with N agents, and the critic Q, actor
7, and information-filtering network F is parameterized by 6, ¢,
and «, respectively. The experience replay buffer R contains the
tuples (CO, 0,A,C,R,0’), recording the experiences of all agents,
where C0 = (c(l), cg ey c(;\[) is output information of state before
for each agent, O = (01, 02, ..., 0n7) is observation for each agent,
A = (a1, az,...,aN) is action for each agent, C = (c1, ¢z, ..., cN) i
output information for each agent, R = (r1,r2, ..., rn) is reward for
each agent, and O’ = (07,05, ..., o;\]) is observation of next state for
each agent.

2.3 Experiments

2.3.1 Setup and Baselines. We focus on experimental scenarios
where observation space is continuous but action space is discrete.
We evaluate our method on three experiments, a cooperative nav-
igation, a cooperative treasure collection, and a cooperative lane
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Figure 1: Communication-Filtering Actor-Critic archi-
tecture with a centralized critic, a semi-centralized
information-filtering network, and decentralized poli-
cies.

Algorithm 1 Communication-Filtering Actor-Critic

Input: Policy parameters 6, Critic parameters ¢, Information-

filtering network parameters x

1: Randomly initialize policy network 7, critic network Q, and
information-filtering network F with parameters 0, ¢, and x

2: Initialize target networks with parameters 8 < 6, {/ < ¢/, and
K ¢« K

3: Initialize replay buffer R

4: for episode = 1, M do

5: Receive initial observation state 07 and initial information
state c?
6: fort=1,Tdo
7: Select action a; ~ mg(o¢,d;), where d; = F,c(c(t))
8: Execute action a; and observe reward r;, new informa-
tion state c;, and new state o;
o: Store transition (c(t), 0¢,at,Ct,7t,0;) in R
10: Sample a random minibatch of M transitions
(c9, 01, ai, i, ri, 0}) from R
11: Sety; =ri + YQI/;(”é’Fk)
12: Update critic by minimizing the loss:
1 2
L=+ Z(yi -0Qy)
13: Update the actor policy and information-filtering net-
work using the sampled policy gradient:
1
Vol =+ Z Vo, clog 7o(Fx)(Qy ~ b)
14: Update the target networks:
0—10+(1-17)0
ey +1-ny
Ke—1k+(1-1)k
15: end for
16: end for

changing that is important in the field of autonomous driving. Re-
garding our method and our experiments, we compare to four of the
state-of-the-art approaches recently proposed for centralized train-
ing of decentralized policies: CommNet [13], COMA [4], MAAC
[5], ATOC [7]. Besides that, in order to know how important our
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Figure 2: Results of our three experiments: cooperative nav-
igation (left), cooperative treasure collection (middle), coop-
erative lane changing (right).

communication mechanism is, we use global state instead of par-
tial observation as input to our method labeled ours with global
observation.

Cooperative Navigation N agents cooperatively reach L land-
marks, while avoiding collisions. Each agent is rewarded based on
the proximity to the nearest landmark, while it is penalized when
colliding with other agents.

Cooperative Treasure Collection This cooperative environ-
ment involves N total agents, which are treasure hunters, M total
treasures, which are colored purple or blue, and 2 banks, each of
which is painted purple or blue. The role of the hunters is to collect
the treasure of any color, which respawn randomly upon being
collected, and then deposit the treasure into the correctly colored
bank.

Cooperative Lane Changing We evaluate our model and other
state-of-the-art approaches on the problem of learning cooperative
policies for negotiating lane changes among multiple autonomous
vehicles in the highway environment. We extend this environment
so that it could meet our need for the experiment.

2.3.2  Results and Analysis. Our model and the models to be com-
pared are suitable for experiments with continuous observations
but discrete actions. So our experiments are meaningful. Models
like DDPG that are well-known for their good effects but suitable
for continuous actions are not used for comparison. Our experi-
mental indicator is called normalized mean episode rewards, as
shown in Figure 2. We only consider the total rewards of all agents,
regardless of the reward of a single agent. We test models every
100 episodes, testing 10 episodes each time, and taking the average
reward as an indicator.

3 CONCLUSIONS

We presented a general framework called communication-filtering
actor-critic in cooperative multi-agent environment. Communica-
tion is indispensable in the context of cooperation, and we have
adopted a semi-centralized approach to achieve effective commu-
nication. By comparing with state-of-the-art models, our model’s
experimental performance is still satisfactory. It can be seen from
experiments that our communication model of partial observation
can even be comparable to the complete observation model.
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