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ABSTRACT
We present an experimental tool for verification of strategic abil-
ities under imperfect information, as well as strategy synthesis.
The problem is well known to be hard, both theoretically and in
practice. The tool, called StraTegic Verifier (STV), implements
several recently developed algorithms to overcome the complexity.
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1 INTRODUCTION
As the systems around us become more complex, and at the same
time more autonomous, the need for unambiguous specification
and automated verification rapidly increases. Logics of strategic
reasoning provide powerful tools to reason about various aspects
of MAS [1, 3, 26, 31]. A typical property that can be expressed
says that the group of agents A has a collective strategy to enforce
temporal property φ, no matter what the other agents in the system
do. Specifications in agent logics can be then used as input tomodel
checking, which makes it possible to verify the correct behavior of
a multi-agent system by an automated tool [9, 10, 13, 23].

Verification of strategic abilities is difficult for a number of rea-
sons. The prohibitive complexity of model checking and strategy
synthesis is a well known factor [5, 12, 25], which can be alleviated
only to some degree by using symbolic data structures [4, 7, 13, 28].
Things become even harder for agents with imperfect information.
The complexity ranges from NP–complete to undecidable [14, 31].
Even more importantly, fixpoint equivalences do not hold [6, 11],
which makes the application of standard fixpoint algorithms invalid
and the use of symbolic methods questionable. Most known ap-
proaches boil down to iteration over all the possible strategies [8, 24,
27]. Unfortunately, the number of available strategies is enormous.

Our team at PAS has recently developed two novel techniques
that try to overcome the complexity [15, 17, 21]. In this short pa-
per, we present an experimental tool STV that implements the
techniques, together with a number of verification scenarios. The
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implementation is still preliminary (e.g., it does not provide a flexi-
ble input specification language). Still, it already allows to “play”
with the verification problem, test the scalability of the new tech-
niques, and visualize the complexity of models and strategies on
intuitive benchmark scenarios.

2 APPLICATION DOMAIN
STV is aimed at verification of strategic abilities in multi-agent
systems, and synthesis of strategies that guarantee a given temporal
goal. Many relevant properties of MAS refer to abilities of agents
and their groups. In particular, most functionality requirements can
be specified as the ability of the authorized users to achieve their
goals. At the same time, many security properties can be phrased
in terms of the inability of unauthorized users to compromise the
system. Concrete examples include:

• Formalizations of individual and group responsibility [33, 34],
• Functionality properties for teams of logistic robots, operating
in an industrial environment [22, 30],

• Properties of receipt-freeness, coercion-resistance and voter-
verifiability in voting procedures [2, 16, 32],

• Fairness in contract-signing protocols and non-repudiation
protocols [19, 20],

• Existence of winning strategies in general games [29], as well
as specific multi-player games such as Bridge [15, 17].

3 SCENARIOS
The tool includes the following verification scenarios:

(1) Existence of awinning strategy in the ancient story of TianJi [23],
(2) Ability of a team of “workers” to defeat a given castle in the

Castles benchmark from [27],
(3) Existence of a winning strategy for the declarer in the card

game of Bridge (Bridge Endplay [15]),
(4) Ability of a team of drones to visit a given number of loca-

tions (the Drones benchmark [18]),
(5) A variant of coercion-resistance in a simple voting protocol

(Simple Voting [15]).

4 FORMAL BACKGROUND

Models. The main part of the input is given by an imperfect infor-
mation concurrent game structure [1, 31], i.e., a labeled multi-agent
transition system with the transitions labeled by synchronous ac-
tions from all the agents in the system. The knowledge of each
agent is represented by its epistemic indistinguishability relation.
An example model is shown in Figure 1.
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Figure 1: Simple voting model

Strategies. A strategy is a conditional plan that specifies what the
agent is going to do in every possible situation. Here, we consider
the case of imperfect information memoryless strategies, represented
by functions from the agent’s local states (formally, abstraction
classes of its indistinguishability relations) to its available actions.
The outcome of a strategy from state q consists of all the infinite
paths starting from q and consistent with the strategy.
Formulas. Given a modelM and a state q in the model, the formula
⟨⟨A⟩⟩γ holds in (M,q) iff there exists a strategy for A that makes γ
true on all the outcome paths starting from any state indistinguish-
able from q. For more details, we refer the reader to [1, 31].

5 TECHNOLOGY
STV does explicit-state model checking. That is, the states and tran-
sitions of the model are represented explicitly in the memory of
the tool. We have implemented model generators for the scenar-
ios presented in Section 3; the user sets the values of the scaling
parameters (e.g., the number of drones and their initial level of
energy), and the corresponding model is generated. After that, two
approaches to model checking can be selected: fixpoint approxima-
tion and dominance-based strategy search.
Approximate fixpoint verification [15, 17]. The first approach is based
on computing fixpoint approximations of the verified formula. Two
formulas are produced for ⟨⟨A⟩⟩γ :

• The lower approximation trL(⟨⟨A⟩⟩γ ) is a fixpoint expression
in an extension of alternating epistemic µ-calculus [6] such
that, if trL(⟨⟨A⟩⟩γ ) holds, then ⟨⟨A⟩⟩γ must hold as well;

• The upper approximation trU (⟨⟨A⟩⟩γ ) asks for perfect infor-
mation strategies instead of imperfect information ones in
the semantics of ⟨⟨A⟩⟩. Thus, whenever trU (⟨⟨A⟩⟩γ ) returns
false, ⟨⟨A⟩⟩γ must be false, too.

Depth-first search with removal of dominated strategies [21]. The
second technique is based on a novel notion of strategic dominance,
applied in an incremental, DFS-based search for a winning strategy.
We say that partial strategy σA dominates σ ′

A w.r.t. the context σCA
iff: (i) σA and σ ′

A share the same set of input states, and (ii) for each
input state q, the set of possible output states of σA is a subset of

Config. DominoDFS Approx. Optimized approx. MCMAS
(1, 1) 0.0006 0.0008 < 0.0001 0.12
(2, 2) 0.01 0.01 < 0.0001 8712
(3, 3) 0.8 0.8 0.06 timeout
(4, 4) 160 384 5.5 timeout
(5, 5) 1373 8951 39 timeout
(5, 5) memout memout 138 timeout
(6, 6) memout memout 4524 timeout

Table 1: Performance results for Bridge Endplay

Config. DominoDFS MCMAS SMC
(1, 1, 1) 0.3 65 63
(2, 1, 1) 1.5 12898 184
(3, 1, 1) 25 timeout 6731
(2, 2, 1) 25 timeout 4923
(2, 2, 2) 160 timeout timeout
(3, 2, 2) 2688 timeout timeout
(3, 3, 2) timeout timeout timeout

Table 2: Performance results for Castles
those for σ ′

A. In other words, σA is “tighter” than σ ′
A, and induces a

smaller set of outcome paths.
The algorithm, called DominoDFS, attempts to expand the con-

text strategy that contains the initial state by exploring its frontier.
For each state at the current frontier, DominoDFS collects all the
available one-step strategies, and then removes the dominated ones.
Besides the basic version, we have implemented several heuristics
that determine the order of the search.
Implementation and evaluation. STV is implemented in Python 3.
The algorithms have been evaluated on several benchmarks, with
very promising results [15, 17, 21]. We used the state of the art
model checker MCMAS [23] and the experimental tool SMC [27]
as reference points. The results for Bridge endplay and Castles are
shown in Tables 1 and 2, with the irrelevant columns omitted from
the tables (fixpoint approximation is not applicable to Castles, and
Bridge Endplay cannot be correctly encoded in SMC).

6 USAGE
The current version of STV (which can be found here) allows to:

• Select a class of predefined parameterised models and a pre-
defined formula for verification (cf. Section 3),

• Set the values of the parameters that control scalability,
• Generate and display the explicit state-transition graph,
• Run the fixpoint approximation algorithm (lower and upper
approximation),

• Run the dominance-based verification (DominoDFS),
• Display the verification result (truth value of the formula in
the initial state of the model, states in the model where the
formula holds, and possibly also the winning strategy that
has been found).

7 CONCLUSIONS
Model checking strategic abilities under imperfect information is
notoriously hard. Currently, no tools exist that would handle even
toy examples in a satisfactory way. STV is our first step towards
practical verification of such properties. We believe it is worth
sharing with the MAS community even in this preliminary form.
Acknowledgements. The authors acknowledge the support of the
National Centre for Research and Development (NCBR), Poland,
under the PolLux project VoteVerif (POLLUX-IV/1/2016).
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