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ABSTRACT
While achieving the state-of-the-art performance in complex se-
quential tasks, deep reinforcement learning (deep RL) remains ex-
tremely data inefficient. Many approaches have been studied to
improve the data efficiency of deep RL algorithms. This dissertation
focuses on leveraging various transfer learning techniques to tackle
this problem. We first show that positive transfer can be achieved
cross-domains via direct weight transfer if the two agents share a
certain amount of similarities. Then we look into how could the
similarity between cross-domain tasks be quantified, such that we
only transfer useful information from one task to another while
blocking information that might have a negative effect. The third di-
rection we studied is the human-agent transfer mechanism, which
we integrate human knowledge via supervised pre-training on a
set of demonstration data collected from a human then transfer
to an agent. Lastly, several future directions are proposed for the
remainder of this dissertation.
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1 INTRODUCTION
In recent years, deep reinforcement learning (deep RL) has gained
great attention due to its ability to learn directly fromhigh-dimensional
sensor datawithout needing hand-crafted features. DeepQ-network
(DQN) [7] and asynchronous advantage actor-critic (A3C) [6] are
the first two successful deep RL algorithms where convolutional
neural networks (CNN) are used as function approximators for
classic RL algorithms. Both algorithms achieved impressive re-
sults in playing 49 distinct Atari games and have become the
benchmark in deep RL. The DQN algorithm combines Q-learning
[11] with CNN. In Q-learning, the agent learns a value function
Qπ (s,a) = Es ′[r + γ maxa′ Qπ (s ′,a′)|s,a] and deduce the optimal
policy π∗ by following actions that have the maximum Q value
Q∗(s,a) =maxπQ

π (s,a) at each state. In DQN, a three-layer CNN
followed by two fully connected layers (parameterized as θ ) are
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used to approximate Q(s,a;θ ) ≈ Q∗(s,a) since the state space of
raw sensor inputs are too large to compute Q values directly.

The A3C algorithm differs from DQN as it combines the actor-
critic framework [9] with a CNN. A3C is a policy-based algorithm
and maintains both a policy function (the actor) and a value function
(the critic). Unlike DQN where only one agent is executed, A3C
runs k actor-learners in parallel and each with their own copies of
the environment and parameters. An update is performed using
data collected from all actors.

Despite the achievements, deep RL remains extremely data ineffi-
cient. For example, both DQN and A3C algorithms need to consume
millions of experiences before learning to act reasonably in a game.
This thesis proposes to leverage transfer learning (TL) in various
ways to make deep RL more efficient. Taylor and Stone [10] stud-
ied TL in the RL domain and discovered that knowledge acquired
from well-trained source tasks could be transferred to target tasks
to accelerate learning, under the assumption that the source and
the target tasks share some degree of similarity (usually defined by
a human). Following Taylor and Stone [10], three key steps need
to be addressed to perform TL in deep RL: 1) how to select the
appropriate source task for a given target task, 2) how to quantify
the similarity between the source and the target, and 3) how to
perform knowledge transfer effectively. This thesis aims to study
how each step should be completed in the domain of deep RL.

2 CURRENTWORK
We first attempted to directly apply TL to improve learning speeds
for the DQN algorithm in two domains: Atari games and Cart-Pole
[4]. Following the three-step framework of TL, we first perform
source/target selection based on intuitive task similarities. For ex-
ample in Atari, we manually picked the game Breakout and Pong
because they are visually similar. Since we hand-picked the tasks,
the degree of task relatedness is considered as given by a human;
thus we assume the second step of quantifying similarity has been
implicitly fulfilled. Third, we selected the pre-training and fine-
tuning methods from the deep supervised learning literature [12]
as our transfer strategies. In particular, a source agent (e.g., Break-
out) is first trained from scratch till convergence, and then the
learned parameters are copied to a target agent (e.g., Pong) as its
network initialization (instead of initializing randomly) and later
fine-tuned in the target agent (Figure 1a). We also studied how
transferring different layers of the network affects learning by per-
forming layer-wise weight copying. Overall, our results show that
if the source and the target are related, the more layers transferred
the better the target agent performs.
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(a) Cross-domain transfer be-
tween RL agents [4].

(b) Cross-domain transfer be-
tween RL or SL agents via cosine
similarity measures [3].

(c) Same-domain transfer be-
tween SL pre-trained human
demonstrations and RL agents
[2].

(d) Same-domain transfer be-
tween SSL pre-trained human
demonstrations and RL agents
[Proposed method].

Figure 1: Overview of our current and planned work. RL: Re-
inforcement learning. SL: Supervised Learning. SSL: Semi-
Supervised Learning.

Next, we studied how to quantify task similarity during transfer
(i.e., the second step of the TL framework). Our recent work in [3]1
proposed a new algorithm to tackle the problem of negative transfer
due to potentially inaccurate or even false similarity measures. We
found that the cosine similarity between task gradients can be used
as an elegant measure for quantifying task similarity, thus knowing
when is one task helpful for another and for how long. We form
a particular type of transfer learning: transferring knowledge of
an auxiliary task (Taux ) to a main task (Tmain ) where only the
performance of Tmain is of interest, even though they are trained
simultaneously. The two tasks share a subset of parameters θ and
also have their own parameters ϕmain and ϕaux respectively. We
devised an algorithm that can automatically 1) leverageTaux when
it is helpful to Tmain , and 2) block negative transfer when Taux
hinders Tmain . Our objective minimizes Lmain at each time step t

argmin
λt

Lmain

(
θ t−α∇θ (Lmain+λ

tLaux ),ϕ
t
main−α∇ϕmainLmain

)
where λt = (siдn(cos(∇θLmain ,∇θLaux )) + 1)/2 is an adaptive
weight based on the cosine similarity between the gradients of
Lmain and Laux . Intuitively, when the gradients of both tasks are
pointing at similar directions (i.e., cosine similarity is non-negative),
we leverage Laux to minimize Lmain ; when the two tasks disagree
(i.e., cosine similarity is negative), we ignore Laux and minimize
Lmain alone. Despite its simplicity, our algorithm showed empirical
success in detecting and blocking potential negative transfer in
various domains: deep supervised learning on subsets of ImageNet,
RL on gridworlds, and deep RL on Atari games (Figure 1b).

Thus far we have studied cross-domain agent-to-agent transfer
(Figure 1a and 1b). However, positive transfer is hard to guaran-
tee when a domain shift presents. Thus, we consider a different
mechanism that integrates human demonstrations as the source
and performs human to agent transfer within the same domain;

1Work done during an internship at DeepMind

the complication of cross-domain task selection and similarity mea-
surement can be avoided. Our latest work [2] studied leveraging
non-expert human demonstrations to improve the A3C algorithm
in the Atari domain (Figure 1c). Unlike the learning from demonstra-
tion literature (e.g., [1, 5]) which assume expert demonstrations are
available, our method does not make this assumption. This makes
our method of higher practical utility.

The first step of our method is to ask a non-expert human player
to play a game for less than 20 minutes and stored all state-action
observations. Then, we performed supervised pre-training on the
collected demonstrations using the same network architecture as
in A3C. We assume that the action demonstrated by the human
is the ground truth label for a given state. The classifier learns a
mapping between the state and the action which can be viewed
as a feature learner that captures important regions of the game.
After pre-training, we performed weight copying and transferred
parameters of the classifier to an A3C agent. As expected, agents
initialized with human knowledge outperformed baseline agents in
all six Atari games tested.

Themost significant contribution of this work is that we provided
the first empirical analysis of what features are learned from super-
vised pre-training and why pre-training on human demonstration
helps. In particular, we proposed a visualization method modified
from the Gradient-weighted Class Activation Mapping (Grad-CAM)
[8] and using which we were able to observe similarities between
features learned during pre-training versus that of an RL agent, indi-
cating why pre-training could be helpful. For example in the game
of Breakout, after pre-training the network learned to pay attention
to the paddle since it is associated with the action; a converged A3C
agent also pays attention to similar regions around the paddle and
also learned to track the movement of the ball—knowing where the
paddle is indeed was a useful prior for the agent. Visualization re-
sults are available at https://sites.google.com/view/pretrain-deeprl.

3 FUTUREWORK
We are interested in several directions in this dissertation. First,
we have an immediate research plan to look into other approaches
to leverage human knowledge. While we have shown that a small
amount of noisy demonstration data is sufficient for improving deep
RL, a larger amount of better quality data could be more helpful.
Suppose we do not add a further burden to the human demon-
strator (e.g., increase demonstration time), we want the agent to
self-generate extra useful information. For this purpose, we propose
to leverage semi-supervised learning during the pre-training stage
(Figure 1d). In addition to the collected human demonstrations, we
can execute an arbitrary policy to randomly explore the environ-
ment and save all observations. The demo data can be viewed as
the labeled data while the agent-generated observations are the
unlabeled data—this resembles the setting of a semi-supervised
learning problem, and existing techniques can be applied.

Another direction we will explore is to combine pre-training
with the cosine similarity measure. For example, an agent might
want to avoid negative transfer from a lousy demonstration. We
might be able to measure the gradient cosine similarity between the
demonstration and the agent such that we disregard demonstrations
that are too distinct from the optimization goal of the agent.
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