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ABSTRACT
Curriculum learning in reinforcement learning is a training method-
ology that seeks to speed up learning of a difficult target task, by
first training on a series of simpler tasks and transferring the knowl-
edge acquired to the target task. Automatically choosing a sequence
of such tasks (i.e., a curriculum) is an open problem that has been
the subject of much recent work in this area. In this paper, we build
upon a recent method for curriculum design, which formulates the
curriculum sequencing problem as a Markov Decision Process. We
extend this model to handle multiple transfer learning algorithms,
and show for the first time that a curriculum policy over this MDP
can be learned from experience. We explore various representations
that make this possible, and evaluate our approach by learning cur-
riculum policies for multiple agents in two different domains. The
results show that our method produces curricula that can train
agents to perform on a target task as fast or faster than existing
methods.
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1 INTRODUCTION
Over the past two decades, transfer learning [12, 25] is one of sev-
eral lines of research that have sought to increase the efficiency of
training reinforcement learning agents. In transfer learning, agents
train on simple source tasks, and transfer knowledge acquired to
improve learning on a more difficult target task. Typically, this has
been a one-shot process, where information is transferred from
one or more sources directly to the target task. However, as the
problems we task reinforcement learning agents with become ever
more complex, it may be beneficial (and even necessary) to grad-
ually acquire skills over multiple tasks in sequence, where each
subsequent task builds upon knowledge gained in a previous task.
This insight is the basis for curriculum learning [4, 15].

The goal of curriculum learning is to design a sequence of source
tasks (i.e., a curriculum) for an agent to train on, such that after
training on that sequence, learning speed or performance on a
target task is improved. Automatically designing a curriculum is
an open problem that has only recently begun to be examined [5, 8,
9, 16, 19, 23]. One recent approach [16] proposed formulating the
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selection of tasks using a (meta-level) curriculum Markov Decision
Process (MDP). A policy over this MDP, called a curriculum policy,
maps from the current knowledge of an RL agent to the task it
should learn next. However they did not demonstrate whether the
curriculum policy could actually be learned. Instead, they proposed
an algorithm to approximate a single execution of the curriculum
policy, corresponding to an individual curriculum.

Until now, it was not known if curriculum policies could be
learned: that is, whether it is possible to find a representation that
is both compact enough and generalizable enough to facilitate learn-
ing. Our main contribution is to demonstrate that curriculum poli-
cies can indeed be learned, and we explore various representations
that make this possible. In addition, we generalize the curriculum
MDP model proposed by Narvekar et al. [16] to handle different
kinds of transfer learning algorithms. Finally, we empirically show
that the curricula produced by our method are at least as good as,
or better than those produced by two existing curriculum methods
on two different domains. We also demonstrate that curriculum
policies can be learned for agents with different state and action
spaces, agents that use different transfer learning algorithms, and
different representations for the curriculum MDP.

2 BACKGROUND
Our work builds upon multiple ideas in reinforcement learning,
transfer learning, and curriculum learning. In this section, we briefly
describe background on each of these areas.

2.1 Reinforcement Learning
Wemodel an agent’s interaction with its environment as an episodic
Markov Decision Process (MDP). An episodic MDPM is a 6-tuple
(S,A,p, r , S0, Sf ), where S is the set of states, A is the set of
actions, p (s,a, s ′) is a transition function that gives the probability
of transitioning to state s ′ after taking action a in state s , and r (s,a)
is a reward function that gives the immediate reward for taking
action a in state s . In addition, we will use S0 to denote the initial
state distribution, and Sf to represent the set of terminal states.

At each time step t , the agent observes its state and chooses an
action according to its policy π : S 7→ A. The goal of the agent is
to learn an optimal policy π∗, which maximizes its expected return
(the cumulative sum of rewards) until the episode ends. There are
two main classes of methods for learning π∗: value-function-based
approaches and policy-search-based approaches. In this paper, we
will primarily consider value-function-based approaches.We expect
adapting our methods to policy-search-based approaches to be a
relatively straightforward extension.

Value-function-based approaches first learn a value function
Vπ (s ), which gives the expected return achievable from state s by
following policy π . When a model is not known, an action-value
function Qπ (s,a) can be learned instead, which gives the expected



return for taking action a in state s and following π thereafter, using
an algorithm such as SARSA or Q-learning [22]. The optimal policy
π∗ is derived by acting greedily with respect to Q∗ (s,a).

When the state space is large or continous, it is not practical to
maintain a separate entry in a lookup table for each state-action
value. Instead, the state is represented by a set of state variables, and
the value function is approximated as a function of state features
ϕ (s ) derived from the state variables of s , and a weight vector θ ,
which instantiates the function approximation.

There are many options for extracting state features ϕ (s ) from
the state variables of s . One option which we use in this paper
is tile coding [22], which overlays grid-like tilings over different
subsets of state variables. The value of the state variables determine
which tiles in each tiling are activated, and the activated tiles form
the features ϕ (s ). Each tile is associated with a weight which con-
tributes equally towards the output of the function approximation.
Typically, multiple overlapping tilings are used, which allows the
approximator to generalize.

There are also different types of functions we can use to represent
the value or action-value funtion. Linear function approximators
calculate the value as the inner product between the weight vec-
tor and feature vector: θ · ϕ (s ). Similarly, the action-value can be
calculated as θ · ϕ (s,a). 1 Non-linear function approximators such
as neural networks are also possible, and have become increas-
ingly common in recent years. The goal during learning is to find
weights θ , such that the policy πθ (s ) derived from its associated
value function is optimal.

2.2 Transfer Learning
When the target environment or task is too difficult tomake progress
on, learning can be accelerated by training on one or more source
tasks, and transferring the knowledge acquired to the target task.
This idea is the basis for transfer learning [12, 25]. Many different
techniques exist to transfer knowledge from one task to another.
In this paper, we will use value function transfer [26] and transfer
via reward shaping [23].

In value function transfer, the parameters of an action-value
functionQsource (s,a) learned in a prespecified source task are used
to initialize the action-value function in the target taskQtarget (s,a).
Doing so provides an initialization bias that can allow an agent to
explore more efficiently in the target task.

In transfer via reward shaping, the reward function in the target
task is augmented by adding an additional shaping reward f , that
is derived from the source tasks. Thus, the new reward function
becomes:

r ′(s,a, s ′) = r (s,a, s ′) + f (s,a, s ′) (1)
We use potential-based advice [27], which restricts the form of

f to be a difference of potential functions:

f (s,a, s ′) = Φ(s ′,π (s ′)) − Φ(s,a) (2)
where Φ is a potential function. Choosing shaping rewards of

this form guarantees that adding f to the reward does not change
the optimal policy [17]. Following the work of Svetlik et al. [23],
we use the value function learned in a source task as the potential
function: Φ(s,a) = Qsource (s,a). When multiple source tasks are
1When it is clear from context, we will abbreviate ϕ (s, a) and ϕ (s ) as ϕ .

present, as will be the case in curriculum learning, the potential
function is composed as the sum of value functions from the set of
sources X:

Φ(s,a) =
∑
i ∈X

Qi (s,a) (3)

2.3 Curriculum Learning
Curriculum learning is an extension of transfer learning, where the
goal is to automatically design and choose a full sequence of tasks
(i.e. a curriculum)M1,M2, . . .Mt for an agent to train on, such that
learning speed or performance on a target task Mt is improved.
Transfer learning is leveraged to transfer information between each
pair of tasks in this sequence.

Our work builds upon the model proposed by Narvekar et al.
[16], which formulates curriculum generation as an interaction
between two agents acting in two different MDPs. One is a learning
agent that is trying to solve a specific target task MDPMt , as is the
standard case in reinforcement learning. The second is a curriculum
agent, which interacts in a second, higher level curriculum MDP,
and whose goal is to sequence tasksM for the learning agent. The
way the process unfolds is as follows: the learning agent starts
with some initial policy – this is represented as the initial state
of the curriculum agent. The curriculum agent selects an action,
which corresponds to a task to learn. The learning agent interacts
with that task, and updates its policy as a result of learning, which
corresponds to a transition in the curriculum agent’s state. Learning
a task also returns a reward, which is the cost of learning that task.
The process terminates once the learning agent learns a policy that
can achieve a desired performance threshold on the target task.

This process was defined formally as follows (the superscript C
denotes elements of the curriculumMDP; the superscript is dropped
when referring to the learning agent trying to solve the task):

Definition 1: A curriculum MDP (CMDP) MC is a 6-tuple
(SC ,AC ,pC , rC , SC0 , S

C
f ), where:

State Space The set of states SC consist of the set of all poli-
cies π the learning agent can represent, in a form that is
executable on the target task. For example, the initial state
SC0 could be the uniform random policy. The terminal states
SCf are states whose policies achieve a return of at least some
desired performance threshold δ on the target task.

Action Space The set of actions AC , are the prespecified set
of tasks a learning agent can train on.

Transition Function The transition function pC (sC ,aC , s ′C )
gives the probability that s ′C is the learning agent’s policy
after training on aC and starting with policy sC .

Reward Function The reward function rC (sC ,aC ) is the neg-
ative of the time (measured e.g., in experience samples or
wall clock time) needed to learn task aC starting from policy
sC .

A policy πC : SC 7→ AC on a CMDP specifies which task
to train on given a learning agent policy sC . Executing πC for a
particular learning agent produces a curriculum. Learning a full
policy over a CMDP can be very difficult, due to stochasticity in
the learning algorithm (which leads to stochasticity in the CMDP
transition function), a very large and continuous state space, and
the high cost of taking a CMDP action. Thus, past work on explicit



curriculum generation has tried to find traces of specific curricula
using approximations and heuristics, rather than learning a full
CMDP policy [16, 23]. In this work, we explore the challenges
involved in learning πC

∗

.

3 LEARNING CURRICULUM POLICIES
Before discussing how to learn a curriculum policy, we first briefly
extend the definition of a curriculum MDP. A shortcoming of the
previous definition is that it assumes the underlying transfer learn-
ing mechanism is value function or policy transfer. Intuitively, the
state space of a CMDP represents different states of knowledge. A
transition between states reflects the change in knowledge from
training on a task and transferring/incorporating the information
acquired. In value function transfer, the knowledge learned from a
task is represented by the value function of the agent itself. How-
ever, for transfer via reward shaping, knowledge is represented in
terms of a potential-based shaping reward.

Thus, the CMDP state space and transition function are directly
related with the transfer learning algorithm being used. The goal
of the agent is to reach a state of knowledge that allows solving
the target task in the least amount of time. Therefore, for an agent
that uses reward shaping, the CMDP state is represented as a set
of potential functions, derived from the value functions of source
tasks already learned. The goal is to find a CMDP state whose sum
of potential functions creates a shaping reward that allows learning
the target task as fast as possible.

Representing CMDP State Space
Wenowdetail how to represent the CMDP state to facilitate learning
of curriculum policies. Recall that in the standard reinforcement
learning setting, the agent perceives its state as a set of raw state
variables. These are typically used to extract basis features ϕ (s),
which transform the state variables into a space more suitable
for learning and for use in function approximation. Given these
features and a functional form, the goal is to learn weights θ for
the value function or policy. We introduce an analagous process
for curriculum design agents acting in CMDPs. We will ground the
discussion assuming the learning agent uses value function transfer.
However, the idea is easily applied to the reward shaping setting
by noting that the potential-based reward, like the value function,
can be expressed as a function of state features and weights.

The first question is how to represent the raw state variables sC
of the CMDP state space. The representation chosen must be able to
represent any policy the underlying learning agent can represent.
Assuming the learning agent derives its policy from an action-
value function Qθ (s,a), the form of the function – in particular,
the way values are calculated from ϕ (s,a) and θ (for example, the
architecture of a neural network) – determines the class of policies
that can be represented. The functional form of Qθ (s,a) and how
learning agent features ϕ are extracted are fixed. Thus, it is specific
values of the weight vector θ that actually instantiates a policy
in this class. Therefore, it follows that we can represent the state
variables for a particular CMDP state sC using the instantiated
vector of learning agent weights θ .

sC = θ (4)

Different instantiations of θ correspond to different CMDP states.
Typically, these weightsθ will take on continuous values. Therefore,
in order to learn a CMDP action-value functionQC

θC
(sC ,aC ), it will

be necessary to do some kind of function approximation. While
it is possible to directly use the raw θ as features for function
approximation in the CMDP, learning may be more efficient in
an alternative basis space. Thus, it may be beneficial to extract
CMDP basis features ϕC (sC ,aC ), mirroring what is done in the
standard MDP setting. For example, with linear value function
approximation,QC

θC
(sC ,aC ) = θC ·ϕC (sC ,aC ). The goal then is to

learn the weights θC for the CMDP’s value function. Any standard
RL algorithm can be used to do this.

The questions that remain are: (1) how to convert raw CMDP
state variables to CMDP basis features, i.e., the form of ϕC (sC ,aC );
and (2) what kind of functional form to use to represent the function
approximation. The best way to do these will vary by domain.
However, in the next 2 subsections, we provide specific examples
and guidelines for representations and function approximations
that can apply across a broad class of domains.

Discrete State Representations. First we propose one specific
way of extracting CMDP state features and performing function
approximation, that can be applied when the parameters θ are tied
to specific states, as is common in tabular reinforcement learning.

Assume again the learning agent learns an action-value function
Qθ (s,a), for each state-action pair in the task. We can represent Q
as a linear function of “one-hot" featuresϕ (s,a) and their associated
weights θ :

Qθ (s,a) = θ · ϕ (s,a) (5)

In other words, all the action-values are stored in θ , and ϕ (s,a)
is a one-hot vector used to select the activated action-value from θ .
Our approach for designing ϕC is to utilize tile coding over subsets
of action-values in θ . Specifically, the idea is to create a separate
tiling for each primitive state s in the domain. Each such tiling will
be defined over the action-values in θ associated with state s . Thus,
this creates |S| tiling groups, where each group is defined over
|A| CMDP state variables (i.e., action-values). To create the feature
space, multiple overlapping tilings are laid over each group.

Since action-values can take a large range of values, we suggest
normalizing the action-values within each tiling. Thus, each tiling
is over the relative preferences of the different actions in a state.
The entire CMDP basis state is the concatenation of all of these
tiled features. The effect of this approach is that when computing
the value of a CMDP state sC , the policy for each primitive state
contributes equally towards the total value. Two CMDP states will
be “closer" in representation space the more ϕC activates the same
tiles – which will happen if they have similar action preferences
for primitive states in their task state spaces.

Continuous State Representations. The representation prob-
lem is harder in the continuous case, since each parameter θi is
not local to a state, and we cannot use a state-by-state approach to
create a basis feature space. In principle, any continuous feature
extraction and function approximation scheme can form the basis
of ϕC (tile coding, neural nets, etc.). We offer 2 guidelines that
we found useful in defining successful ϕC representations in our
experiments.



The first is that the precise form ofϕC should be informed by the
domain and the structure of the learning agent’s function approx-
imation. The discrete case discussed previously is a special case
of this setting. In the discrete case, aggregating action-values in a
state-by-state basis could be thought of as exploiting the structure
and what we know about the parameter vector θ : namely, that it
consists of action values that share states. Depending on the func-
tion approximation used by the learning agent, it may be possible
to draw similar insights to design ϕC .

The second guideline for creating ϕC is to capture the relative
effect of each θi on different action preferences. In the discrete case,
this was done by normalizing the action values within each state to
create preferences. However, since in general parameters may not
be local to a state, the normalization needs to be done directly on
the parameter values. In other words, we need to think about how
each parameter θi affects the policy as a whole over all states, and
how each parameter θi relates to another. If the parameters θ are
not related, one option would be to create a separate tiling over each
parameter, and normalize over all the parameter values. We will
demonstrate a specific example of creating ϕC for the continuous
case in the experiments (Sections 4.1.4 and 4.2.4).

4 EXPERIMENTAL RESULTS
We evaluated learning curriculum policies for agents on a grid
world domain [16] as well as a Ms. Pac-Man domain [24]. These do-
mains were selected because they allow us to compare to previous
methods; test our approach using different agent representations,
different transfer learning algorithms, and different CMDP repre-
sentations; and test its scalability to a more complex setting.

We will show the results as CMDP learning curves. The x-axis
on these learning curves are over CMDP episodes. Each CMDP
episode represents an execution of the current curriculum policy
for the agent. Thus, multiple tasks are selected over the course of a
single CMDP episode, with each task taking a varying number of
steps/episodes, which contributes to the cost on the y-axis. Tasks
are selected until the desired performance can be achieved in the
target task, at which point the CMDP episode is terminated. In
short, the curves show how long it would take to achieve a certain
performance threshold on the target task following a curriculum,
where the curriculum is represented by the CMDP policy, which is
being learned over time.

We compare curriculum policies learned for each agent to two
static curricula. The first is the baseline no curriculum policy. In this
case, on each episode, the agent learns tabula rasa directly on the
target task. The flat line plotted represents the average time needed
to learn the target task directly. Note that the line is flat because the
“curriculum" is fixed and does not change over time. The second is a
curriculum produced by following an existing curriculum algorithm
(from [16] for the gridworld and from [23] for Ms. Pac-Man, to
compare with past work). We also compare to a naive learning-
based approach, which represents CMDP states using a list of all
tasks learned by the learning agent. For example, the start state is
the empty list. Upon learning a taskM1, the CMDP agent transitions
to a new state [M1]. If the CMDP agent subsequently selects task
Mt , the resulting state is [M1,Mt ]. Note that this representation
is a cruder approximation of the underlying process, as learning
2 different tasks that impart the same knowledge will lead to 2

Figure 1: Grid world target task.

different states under this representation. In order to deal with the
combinatorial explosion of the size of the state space with this naive
representation, we limit the number of tasks that can be used as
sources in the curriculum to a constant (between 1 and 3 in our
experiments), and force the selection of the target task after.

Hyperparameters for the learning agents were chosen using
previously reported results in the respective domains. Hyperparam-
eters for the CMDP agents were set as described in Sections 4.1.3
and 4.2.3. These were not extensively optimized.

4.1 Gridworld Experiments
First we examine learning curriculum policies for 3 learning agents
that have different state and action spaces [16], but use the same
transfer learning algorithm (value function transfer), in a grid world
domain (see Figure 1). In addition, we compare the effect of two
different types of representations for the CMDP state. The first
CMDP representation is based on the finite state space represen-
tation discussed earlier, while the second CMDP representation is
created directly from θ without using an intermediary state-based
action-value representation. In the next sections, we describe the
domain and learning agents, followed by the representations for the
CMDP state space and their effects on learning curriculum policies.

4.1.1 Domain Description. The gridworld consists of a room
with 4 different types of objects. Keys are objects the agent can
pickup by executing a pickup action. These are used to unlock locks,
which can depend on one or more keys, by executing an unlock
action. Pits are obstacles that terminate the episode upon contact.
Finally, beacons are landmarks placed on the 4 corners of a pit.

The goal of the agent is to traverse the world and unlock all the
locks. To do so, at each step, the agent can move in one of the 4
cardinal directions, execute a pickup action, or an unlock action.
Successfully picking up keys give a reward of +500, unlocking a
lock rewards +1000, falling into a pit ends the episode with a reward
of -200, and a constant step penalty of -10 is applied for all other
actions.

4.1.2 Learning Agent Descriptions. We created 3 different learn-
ing agents that have varied sensing and action capabilities, based on
the agents presented by Narvekar et al. [16]. Creating these specific
agents allows us to show that our approach works regardless of the
state and action representation used by the learning agents, and
also allows us to compare with the results of Narvekar et al. [16].
We refer the reader there for full details of the agents, but recap the
main elements and differences here for completeness.

The first agent, the basic agent, has 16 sensors, grouped into
4 on each side. The first sensor in each quadruple measures the



Euclidean distance to the closest key from that side, the second the
distance to the closest lock, the third the distance to the closest
beacon, and the fourth detects whether there is a pit adjacent to
the agent in that direction. An additional sensor indicates whether
all keys in the room have been picked up, referred to as the noKey
sensor. The agent used Sarsa(λ) with ϵ-greedy action selection,
value function transfer for transfer learning, and CMAC tile coding
with linear function approximation, with tile widths set to 1.

For the basic agent, we created two tilings: one over the 13
percepts from the key, beacon, pit, and noKey sensors, and another
over the 13 percepts from the lock, beacon, pit, and noKey sensors.
These tilings formed ϕ (s ) for the basic agent. The exploration rate
ϵ was set to 0.1, eligibility trace parameter λ to 0.9, and learning
rate α to 0.1 (these values match those reported in [16]).

The second, action-dependent agent, has the same sensors as the
basic agent, but they are tiled differently, leading to a different
ϕ (s ): one tiling is over the lock, pit, and noKey features; a second
is over the key, pit, and noKey features; and a third is over the
beacon and pit features. In addition, unlike the basic agent, the
state representation is action-dependent. That is, when considering
the move right action, the agent’s feature vector uses values only
from the right side sensors. The weights in the tilings are shared,
so that the same set of weights is used for the state in each of the
directions.

Finally, the rope agent is like the basic agent, except that it has
4 additional actions, which are to use a rope in one of the four
directions. Doing so opens a path across a pit if one is present, and
incurs the step cost of -10.

4.1.3 CMDP Description. We defined our curriculum MDP as
follows:

State space. The start state SC0 was derived from an untrained,
uniformly initialized learning agent. The set of terminal states
SCf were all states where the learning agent’s policy allowed it to
achieve a return of at least 700 on the target task. This performance
threshold was the maximum that all the agents could achieve after
training to convergence on the target task. Representations used
for the CMDP state space are described in the next section.

Action space. Source tasks were created using the TaskSimplifi-
cation and OptionSubGoals heuristics [15]. These heuristics create
source tasks by simplifying the domain, for example by reducing
the size of the grid or the number of keys, locks, and pits, and by
changing the goal of the task to be picking up keys. A total of 10
different tasks were created, and with the target task, these formed
the action space AC of the CMDP agent. The properties of these
source tasks are summarized in Table 1.

Transition function. The (unknown) transition function is sto-
chastic, describing how learning a task changes a learning agent’s
policy.

Reward function.The environment returns a reward rC (sC ,aC )
as the negative of the time needed to learn task aC from state sC .
A task is considered learned once the policy ceases to change for
10 episodes. Time is measured using game steps.

Learning on the CMDP was done using Sarsa(λ) with ϵ = 0.001,
λ = 0.9, and α = 0.1.

4.1.4 CMDP State Space Representations. One of the main chal-
lenges addressed in this research is identifying a representation

Task Num Grid Size Num Keys Num Locks Pit Present Rope Required

1 5x5 1 0 No No
2 10x10 1 0 No No
3 5x5 0 1 No No
4 10x10 0 1 No No
5 7x1 1 0 Yes Yes
6 7x6 1 0 Yes Yes
7 7x1 0 1 Yes Yes
8 7x6 0 1 Yes Yes
9 7x7 1 0 Yes No
10 7x7 0 1 Yes No

Target 10x10 1 1 Yes No

Table 1: Properties of tasks in the gridworld experiments.
“Rope required" indicates tasks where a pit blocks direct
paths from the agent to the goal, necessitating a rope action.
When a lock is not present, the episode terminates when all
keys are picked up.

for the CMDP state space that is both generalizable and compact
enough to enable efficient learning of a curriculum for a range of
agents. To this end, we instantiated and evaluated two forms for
ϕC .

Recall that the learning agents use tile coding with linear func-
tion approximation. Here, ϕ is a feature vector that indicates which
tiles have been activated for state s and action a, and θ are the
corresponding weights in each tile. These weights θ form the raw
CMDP state variables sC . We discuss two different ways to con-
struct ϕC (θ ), which will convert the raw state variables into a
CMDP basis feature space suitable for learning.

Finite State Representation. The learning agents use Sarsa(λ)
with an egocentric feature space. Thus, the parameters θ learned
are not action-values for each state. However, since the underlying
domain has a fixed number of states, we can simulate the finite
state representation case by moving the learning agent to each of
the states in the target task and computing action values. Let this
new parameter of weights be θ ′. We can now utilize the procedure
described in Section 3 to create a CMDP feature space ϕC (θ ′).

Continuous State Representation. The above representation
is only well-defined in environments with a discrete underlying
state space. We therefore also explore a CMDP representation that
can apply in continuous domains by creating ϕC directly from
θ without using an intermediary state-based action-value repre-
sentation. Recall that the CMDP state variables sC = θ are the
weights associated with all the tiles. Each of these tiles is part of
a tiling group. For example, the basic and rope agents had 2 tiling
groups over different subsets of its sensor percepts, while the action-
dependent agent had 3 tiling groups. All tiles in a tiling group are
related to each other. Thus there is an inherent structure to the
parameters in the tiles.

However, forming a ϕC tiling group over the weights of all the
tiles associated with a ϕ tiling would not generalize well, because it
would require nearly identical action-preferences in every state to
activate common tiles. Therefore, we created a separate tile group
for each θi . Since the weights θ within each learning agent’s tilings
ϕ are still correlated, we normalized the weights associated within
each ϕ tile group.
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Figure 2: CMDP learning curves for the (a) basic agent, (b) action-dependent agent, and (c ) rope agent using different curricu-
lum design approaches and CMDP state space representations. The y-axis represents the cost (i.e., negative of the time needed)
to reach a performance of 700 on the target task, following the curriculum policy at episode X. All curves are averaged over
500 runs. Each curriculum method was statistically significantly better than no curriculum using a 2 tail t-test with p < 0.05.

4.1.5 Results and Discussion. We learned curriculum policies for
all 3 learning agents using both the finite and continuous state rep-
resentations for the CMDP state space. The target taskMt is shown
in Figure 1. The corresponding CMDP learning curves are shown
in Figures 2(a) - 2(c). The results show that each agent successfully
learned curriculum policies using both CMDP representations that
were better than learning without a curriculum, and comparable
to the curricula generated by previous work [16]. However, unlike
this previous work, our approach does not require additional prior
information about source tasks (such as task descriptors). In ad-
dition, the results show that our approach is robust to different
predefined agent and CMDP representations.

4.2 Ms. Pac-Man Experiments
In the previous section, we demonstrated that CMDPs can be
learned for agents with different actions and/or state represen-
tations. Another relevant way in which agents can differ is the
algorithm by which they transfer knowledge from a source to a
target task. Thus, in this section, we evaluate the robustness of
our approach to different underlying transfer learning methods,
while simultaneously evaluating the scalability to a significantly
more complex Ms. Pac-Man domain (see Figure 3). In particular, we
examine the case when the learning agent stays the same, but uses 2
different types of transfer learning methods: value function transfer
and reward shaping. The change in transfer algorithm affects both
the CMDP state space representation, and the CMDP transition
function, which we will describe in the following sections.

4.2.1 Domain Description. Our implementation is based on code
released by Taylor et al. [24] and augmented by Svetlik et al. [23].
The goal of the Ms. Pac-Man agent is to traverse a maze and accu-
mulate points by eating edible objects such as food pellets, while
avoiding ghosts. At each time step, Ms. Pac-Man can move along
one of the 4 cardinal directions (though not every action is available
in every state). The agent receives a reward of 10 for eating a pill
and 50 for a power pill. Eating a power pill temporarily makes the
ghosts edible. Eating the first ghost gives a reward of 200; each
subsequent ghost eaten multiplies this reward by a factor of 2. The
game ends when all food pellets and power pills have been eaten, a

Figure 3: Ms. Pac-Man target task

ghost eats Ms. Pac-Man, or when a time limit of 2000 game steps
have occurred.

While the domain is technically discrete, it has a combinatorially
large state space. There are over a thousand positions in the target
task maze, and the state consists of the locations of Ms. Pac-Man,
each food pellet, power pill, each of the 4 ghosts, the last move of
each ghost, and whether each ghost is edible. Thus, it is essential
for the Ms. Pac-Man learning agent to use function approximation.

4.2.2 Learning Agent Description. We created a Ms. Pac-Man
learning agent using the low-asymptote feature set described in
Svetlik et al. [23], Taylor et al. [24]. The state space of the agent is
represented by a set of action-dependent egocentric features, that
count the fraction of pills, power pills, ghosts, and edible ghosts
there are in each direction up to different “depths." The depth is
represented in terms of junctions, i.e., locations in the maze where
there are more than 2 possible actions. For example, the ghost
feature for depth 1 would return the fraction of ghosts there are
along one direction until the first junction. The features were used
to learn a linear value function approximator.

The agent was trained using Sarsa(λ), with ϵ = 0.05, α = 0.001,
γ = 0.999, and λ = 0.9. See the code by Svetlik et al. [23] for
implementation details.



Task Num Num Junctions Num Ghosts Num Pills Num Power Pills

1 2 0 53 1
2 2 1 65 2
3 40 2 234 4
4 36 4 240 4
5 8 0 179 4
6 8 2 179 4
7 8 4 179 4
8 13 2 209 4
9 13 4 209 4
10 13 0 209 4
11 24 0 231 4
12 24 2 231 4
13 24 4 231 4
14 24 4 231 4

Target 36 4 240 4

Table 2: Properties of source tasks in the Ms. Pac-Man ex-
periments. “Num Junctions" indicates how many maze po-
sitions had 3 or more direction actions possible. Note that
some tasks have similar properties; however, the layout of
the maps in these tasks differed. Please see the code release
from Svetlik et al. [23] for more details.

4.2.3 CMDP Description. We defined our curriculum MDP as
follows:

State space. As before, the start state SC0 was an untrained,
randomly initialized learning agent. The set of terminal states SCf
were all states where the learning agent could achieve a return of
at least 2000 on the target task.

Action space.Weused the same 15 tasks used in the code release
of Svetlik et al. [23] to form the action spaceAC . These tasks were
formed by varying the type of maze, as well as the number of pills,
ghosts, and power pills. Their properties are summarized in Table
2.

Transition function. As before, the (unknown) transition func-
tion is stochastic, describing how Ms. Pac-Man’s value function or
set of shaping potentials changes as a result of learning a task.

Reward function. We measure the cost of learning a task in
terms of the number of game steps needed. Following the experi-
mental setup of [23], a task is considered learned when at least 35%
of the maximum reward possible for that task can be achieved. The
maximum reward for a task is calculated analytically by summing
the points accrued for eating all the pills, and all the edible ghosts
for each power pill.

Learning on the CMDP was done using Sarsa(λ) with ϵ = 0.001,
λ = 0.9, and α = 0.05.

4.2.4 CMDP State Space Representations. We consider 2 differ-
ent CMDP state space represenations that result from the use of 2
different transfer learning algorithms. In the value function trans-
fer case, the raw CMDP state variables sC are the weights θ of the
Ms. Pac-Man agent’s linear function approximator. To create the
CMDP space ϕC , we normalize θ and use tile coding, creating a
separate tiling over each θi . In the reward shaping setting, each
source task in the curriculum is associated with a potential function
(derived from the value function). As multiple tasks are learned, the
potentials are added together, and used to create a shaping reward
(as done in Svetlik et al. [23]). Thus, the raw CMDP state variables
are the summed weights of the potential functions. As in the value
function case, we use tile coding to create a separate tiling over
each potential weight feature to create the CMDP basis space.

4.2.5 Results and Discussion. Figure 4(a) shows CMDP learning
curves for Ms. Pac-Man using value function transfer and Figure
4(b) shows the curves using transfer with reward shaping. The
results again clearly demonstrate that curriculum policies can be
learned, and that such policies are more useful than training directly
on the target task. They also show that the approach is adjustable
to different types of transfer learning algorithms. In addition, we
compared the reward shaping approach with that of Svetlik et al.
[23], who also use reward shaping for transfer in their curriculum
algorithm, and found that a much better curriculum is possible in
this more complex domain.2

Finally, we also study the effect of the hyperparameter that con-
trols when to finish training on a source task. For the previous two
experiments in Ms. Pac-Man, training on a source was stopped after
35% of the max possible return in the task was achieved, to repli-
cate the experimental conditions of Svetlik et al. [23]. Since their
approach precomputes a curriculum and does not model the state
of the learning agent’s progress, this termination condition must be
carefully chosen to ensure something can be learned in each source
task. In contrast, with our approach, we can train on source tasks
for an arbitrarily small amount of time, as the curriculum policy
can learn to reselect a task if additional experience in that task is
required.

In Figure 4(c), we reproduce the continuous state representation
CMDP learning curves using value function transfer from Figure
4(a) and reward shaping from Figure 4(b). These are denoted in
the figure by “(return-based)", and train on sources until 35% of
the max return is achieved. We compare them against an approach
that is identical to “(return-based)" approaches, but that trains for
5 episodes on a task at a time. These CMDP learning curves are
denoted with “(small fixed)." The results show that agents do not
need to train for a long time or to convergence on source tasks, and
that our approach can adapt to this hyperparameter setting.

5 RELATEDWORK
The idea of using a curriculum to train reinforcement learning
agents has been around for a long time. Curriculum-like strategies
have been used accelerate training in domains from robotics [3,
13] to complex multiagent games [15, 29]. However, typically the
curriculum was generated manually, by either a domain expert or
naive users [18].

Automatically sequencing tasks into a curriculum is an open
problem that has only recently begun to receive attention. Due
to the complex nature of the problem, most existing work makes
some kind of simplifying assumption. For example, some methods
restrict the type of source tasks available for training. For instance,
some methods [8, 9] only change the initial and terminal state
distributions of the final task to create source tasks, while others
change the reward function [19, 21]. In contrast, our method allows
source tasks to vary in any way from the target task MDP. However,
unlike some of these methods, the set of sources must be provided
in advance.

2Our results are based on a reproduction of their experiments using their publicly
released code. Interestingly, we also get slightly better results for their method than
they report in their paper. We measure cost in episodes for this experiment only to
facilitate comparison to their work.
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Figure 4: CMDP learning curves on the Ms. Pac-Man target task, using (a) value function transfer, (b) transfer with reward
shaping, and (c) a comparison between the continuous representations for value function and reward shaping transfer, using
different criteria to determinewhen to stop training on source tasks. All curves are averaged over 500 runs. Cost ismeasured in
game steps for (a) & (c), and episodes for (b). Each curriculummethod was statistically significantly better than no curriculum.
In (b), the CMDP-based approaches were statistically better than Svetlik et al. [23]. In (c), the “small fixed” approaches were
statistically better than their corresponding “return-based” methods. These were tested using a 2-tail t-test with p < 0.05.

Another class of sequencing methods assume additional domain
information about the sources is available to aid in sequencing
the tasks. One common assumption is the availability of task de-
scriptors [5, 16, 23], which describe how tasks in a domain relate
to one another, and serve as a proxy for task difficulty. Such do-
main information is typically combined with heuristics, such as
transfer potential [23], to guide the selection and training of tasks.
In contrast, our approach relies on direct interaction and experi-
ence in source tasks to learn a curriculum, and does not use task
descriptors.

Our approach falls within a class of methods that take an MDP-
based approach to curriculum generation. It builds off the work of
Narvekar et al. [16], who formulated the idea of curriculum MDPs.
Closely related is the work of Matiisen et al. [14], who model cur-
riculum generation as a POMDP, using a different reward objective
and without assuming access to the learning agent’s parameters.
However, neither of these works actually attempted to learn a policy
on the MDP/POMDP. Instead, they opted to use heuristics to ex-
tract a single sequence curriculum, rather than the full curriculum
policy.

The problem of curriculum learning has similarities to the prob-
lem of source task selection in transfer learning. In this problem, the
goal is to select the best source task from a prespecified set for a
given target task. These approaches typically compute a similarity
measure between the MDPs of the source and target task [2, 7], or
learn a model of transferability between source-target task pairs
[11, 20]. However, none of these methods have been successfully
applied to select a multi-step sequence of tasks.

Finally, curriculum learning has also been explored in the context
of supervised learning [4, 6, 10]. Various related paradigms such
as multi-task reinforcement learning [28] and lifelong learning [1]
have also been examined. The main difference between curriculum
learning and these works is that we have full control over the order
in which tasks are selected, and the goal is to optimize performance
for a specific target task, rather than all tasks.

6 CONCLUSION AND FUTUREWORK
In this paper, we showed that a more general representation of a cur-
riculum than previous work, a curriculum policy, can be learned. The
key challenge of learning a curriculum policy is creating a CMDP
state representation that allows efficient learning. We extended
the original curriculum MDP definition to handle multiple types
of transfer learning algorithms, and described how to construct
CMDP representations for both discrete and continuous domains
to faciliate such learning. Finally, we demonstrated that curriculum
policies can be learned on a gridworld and pacman domain. The
results show that our approach is successful at creating curricula
that can train agents to perform on a target task as fast or faster
than existing methods. Furthermore, our approach is robust to mul-
tiple learning agent types, multiple transfer learning algorithms,
and different CMDP representations.

One limitation of our approach is that learning a full curriculum
policy can take significantly more experience data than learning
the target policy from scratch. An important direction for future
work is investigating the extent to which this cost can be amortized
by reusing learned curricula for multiple, similar target tasks. The
contributions of this paper are an essential prerequisite for such
an investigation. Another interesting direction for future work is
to examine the extent to which the methods presented here gen-
eralize to policy-gradient-based approaches and transfer learning
algorithms, in addition to the value-function-based algorithms that
were used in all of our experiments.

ACKNOWLEDGEMENTS
The authors would like to thank Felipe Leno da Silva and the anony-
mous reviewers for reviewing this paper. This work has taken place
in the Learning Agents Research Group (LARG) at UTAustin. LARG
research is supported in part by NSF (IIS-1637736, IIS-1651089, IIS-
1724157), Intel, Raytheon, and Lockheed Martin. Peter Stone serves
on the Board of Directors of Cogitai, Inc. The terms of this arrange-
ment have been reviewed and approved by the University of Texas
at Austin in accordance with its policy on objectivity in research.



REFERENCES
[1] Haitham B Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. 2014. On-

line multi-task learning for policy gradient methods. In Proceedings of the 31st
International Conference on Machine Learning (ICML-14). 1206–1214.

[2] Haitham Bou Ammar, Eric Eaton, Matthew E Taylor, Decebal Constantin Mocanu,
Kurt Driessens, Gerhard Weiss, and Karl Tuyls. 2014. An automated measure
of mdp similarity for transfer in reinforcement learning. In Workshops at the
Twenty-Eighth AAAI Conference on Artificial Intelligence.

[3] Minoru Asada, Shoichi Noda, Sukoya Tawaratsumida, and Koh Hosoda. 1996.
Purposive behavior acquisition for a real robot by vision-based reinforcement
learning. Machine learning 23, 2-3 (1996), 279–303.

[4] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In Proceedings of the 26th Annual International Conference
on Machine Learning. ACM, 41–48.

[5] Felipe Leno Da Silva and Anna Helena Reali Costa. 2018. Object-Oriented Cur-
riculum Generation for Reinforcement Learning. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS).

[6] Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. 2018. Learning to
Teach. In Proceedings of the International Conference on Learning Representations.

[7] Norman Ferns, Pablo Samuel Castro, Doina Precup, and Prakash Panangaden.
2012. Methods for computing state similarity in Markov decision processes. arXiv
preprint arXiv:1206.6836 (2012).

[8] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. 2018. Automatic
Goal Generation for Reinforcement Learning Agents. In Proceedings of the 35th
International Conference on Machine Learning. Stockholmsmässan, Stockholm
Sweden, 1515–1528.

[9] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. 2017. Reverse Curriculum Generation for Reinforcement Learning. In
Proceedings of the 1st Annual Conference on Robot Learning.

[10] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. 2017. Automated Curriculum Learning for Neural Networks. arXiv
preprint arXiv:1704.03003 (2017).

[11] David Isele, Mohammad Rostami, and Eric Eaton. 2016. Using task features
for zero-shot knowledge transfer in lifelong learning. In Proceedings of the 25th
International Joint Conference on Artificial Intelligence (IJCAI). 1620–1626.

[12] A. Lazaric. 2011. Transfer in Reinforcement Learning: a Framework and a Survey.
In Reinforcement Learning: State of the Art, M. Wiering and M. van Otterlo (Eds.).
Springer.

[13] Patrick MacAlpine and Peter Stone. 2018. Overlapping Layered Learning. Artifi-
cial Intelligence 254 (January 2018), 21–43.

[14] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2017. Teacher-
Student Curriculum Learning. arXiv preprint arXiv:1707.00183 (2017).

[15] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. 2016. Source
Task Creation for Curriculum Learning. In Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016).

[16] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. 2017. Autonomous Task Se-
quencing for Customized Curriculum Design in Reinforcement Learning. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI).

[17] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In ICML,
Vol. 99. 278–287.

[18] Bei Peng, James MacGlashan, Robert Loftin, Michael L. Littman, David L. Roberts,
andMatthew E. Taylor. 2016. An empirical study of non-expert curriculum design
for machine learners. In In Proceedings of the IJCAI Interactive Machine Learning
Workshop.

[19] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas De-
grave, Tom Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Sprin-
genberg. 2018. Learning by Playing-Solving Sparse Reward Tasks from Scratch.
In Proceedings of the International Conference on Machine Learning (ICML).

[20] Jivko Sinapov, Sanmit Narvekar, Matteo Leonetti, and Peter Stone. 2015. Learning
Inter-Task Transferability in the Absence of Target Task Samples. In Proceedings
of the 2015 ACM Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS). ACM.

[21] Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam, and Rob Fergus. 2017. Intrin-
sic Motivation and Automatic Curricula via Asymmetric Self-Play. arXiv preprint
arXiv:1703.05407 (2017).

[22] Richard Sutton and Andrew Barto. 1998. Reinforcement Learning: An Introduction.
MIT Press.

[23] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and
Peter Stone. 2017. Automatic Curriculum Graph Generation for Reinforcement
Learning Agents. In Proceedings of the 31st AAAI Conference on Artificial Intelli-
gence (AAAI).

[24] Matthew E. Taylor, Nicholas Carboni, Anestis Fachantidis, Ioannis Vlahavas, and
Lisa Torrey. 2014. Reinforcement learning agents providing advice in complex
video games. Connection Science 26, 1 (2014), 45–63.

[25] Matthew E. Taylor and Peter Stone. 2009. Transfer Learning for Reinforcement
Learning Domains: A Survey. Journal of Machine Learning Research 10, 1 (2009),
1633–1685.

[26] Matthew E. Taylor, Peter Stone, and Yaxin Liu. 2007. Transfer Learning via Inter-
Task Mappings for Temporal Difference Learning. Journal of Machine Learning
Research 8, 1 (2007), 2125–2167.

[27] Eric Wiewiora, Garrison W Cottrell, and Charles Elkan. 2003. Principled methods
for advising reinforcement learning agents. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03). 792–799.

[28] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. 2007. Multi-task
Reinforcement Learning: a Hierarchical Bayesian Approach. In Proceedings of the
24th International Conference on Machine Learning. ACM, 1015–1022.

[29] Yuxin Wu and Yuandong Tian. 2017. Training agent for first-person shooter
game with actor-critic curriculum learning. In Proceedings of the International
Conference on Learning Representations (ICLR).


	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Transfer Learning
	2.3 Curriculum Learning

	3 Learning Curriculum Policies
	4 Experimental Results
	4.1 Gridworld Experiments
	4.2 Ms. Pac-Man Experiments

	5 Related Work
	6 Conclusion and Future Work
	References

