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ABSTRACT
Multi-agent reinforcement learning has made significant progress

in recent years, but it remains a hard problem. Hence, one often

resorts to developing learning algorithms for specific classes of

multi-agent systems. In this paper we study reinforcement learning

in a specific class of multi-agent systems systems called mean-field

games. In particular, we consider learning in stationary mean-field

games. We identify two different solution concepts—stationary

mean-field equilibrium and stationary mean-field social-welfare

optimal policy—for such games based on whether the agents are

non-cooperative or cooperative, respectively. We then generalize

these solution concepts to their local variants using bounded ra-

tionality based arguments. For these two local solution concepts,

we present two reinforcement learning algorithms. We show that

the algorithms converge to the right solution under mild technical

conditions and demonstrate this using two numerical examples.

KEYWORDS
Multi-agent reinforcement learning; mean-field games; stationary

mean-field games; bounded rationality

ACM Reference Format:
Jayakumar Subramanian andAdityaMahajan. 2019. Reinforcement Learning

in Stationary Mean-field Games. In Proc. of the 18th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2019), Montreal,
Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) refers to systems in

which multiple agents are acting in a common and unknown en-

vironment. The presence of other agents makes MARL different

from traditional single agent RL. When we view the MARL setup

from the point of view of a particular agent, say agent i , all other
agents are part of the environment. Since these agents are also

learning and changing their policies, the environment faced by

agent i changes with time. Due to this perception of non-stationary

environment, traditional single agent RL algorithms cannot be used

in MARL.

Another feature of MARL is that the agents may be strategic (i.e.,

selfish) and wish to maximize their individual reward or they might

be cooperative and wish to maximize their team reward. Depending

on the case, the learning process in MARL should converge to a

variation of Nash equilibrium or of social-welfare optimal (or team

optimal) solution.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

There is a rich literature on MARL which models the multi-

agent interaction using the framework of stochastic dynamic games

starting with [30], where a Q-learning algorithm that converges to

a minimax solution of a zero-sum game was proposed. This was

extended to an algorithm that converges to the Nash equilibrium of

a general sum game (under some conditions) in [14]. Several other

variations have been proposed in the literature and we refer the

reader to [6, 13] for a detailed survey.

In recent years, there has been considerable interest in using

deep neural networks in MARL. Most papers adopt the paradigm

of centralized training with decentralized execution in which a cen-

tralized critic estimates the Q-function and decentralized actors

optimize the policy of the agents. Examples include BICNET [34],

MADDPG [31], and COMA [10].

These approaches, in general, do not scale with the number

of agents. In the literature on planning for multi-agent systems,

various frameworks have been proposed which easily scale to thou-

sands of homogeneous agents. These include swarm based mod-

els, mean-field games (MFG), mean-field teams, and cooperative

multi-agent systems [2, 18, 19, 28]. The central theme in all these

approaches is the idea of mean-field (MF) approximation from sta-

tistical physics [44].

Motivated by the success of the planning frameworks, there have

been several approaches which use mean-field approximation for

reinforcement learning. The earliest of these is [25], which proposed

a model based adaptive control algorithm for mean-field games. A

Q-learning based algorithm forMFG control of coupled oscillators is

proposed in [48]. Model-free Q-learning and actor critic algorithms

for mean-field games have been proposed in [33, 47]. A detailed

description of these papers is presented in Sec. 5.3. Another related

work is [46], which proposed amean-field based solution for inverse

RL. Mean-field games are related to the notion of anonymous games,

which considers static games with large number of anonymous

agents [4, 21]. A learning framework for such games was presented

in [22].

In the last decade, mean-field models have been successfully

used in many planning problems in control engineering, network

economics, and finance, but these results haven’t been translated

to the learning setup. A remarkable feature of mean-field models is

that as the number of agents becomes large, the non-stationarity

problem has negligible impact on the solution. In a mean-field

model, agents are homogeneous and coupled only through the

mean-field. Agents impact each other only through the mean-field

distribution and once this is fixed, the agents are decoupled. Thus,

MF models circumvent the non-stationarity problem by changing

the solution concept. It has been shown that under appropriate

conditions, the mean-field equilibrium is also a ε-Nash equilibrium,

where ε is O (1/
√
n).
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In this paper, we present reinforcement learning algorithms

for stationary mean-field games. In the game theory and stochas-

tic control literature, there are two very closely related modeling

frameworks that are referred to as mean-field games and stationary
mean-field games. We highlight the difference between these two

modeling frameworks in Sec. 5.2. The current literature on using

mean-field ideas in MARL focuses on computing Nash equilibrium

ofmean-field games.We propose reinforcement learning algorithms

that compute stationary mean-field equilibrium and social-welfare
optimal solution of stationary mean-field games. Both the modeling

framework and the solution concepts are different from what has

previously appeared in the MARL literature. Our main contribution

is to obtain RL algorithms for stationary MF models. Most existing

works for RL for MF assumes non-stationary solution concept.

2 BACKGROUND
2.1 Mean-field games (MFG)
Consider a mean-field game with n homogeneous agents, indexed

by the set N = {1, 2, . . . ,n}. Each agent has the same state and

action spaces, which we denote by X and A respectively. Both X

andA are finite sets. At any time t , X i
t ∈ X andAit ∈ A denote the

state and action of agent i ∈ N . In a MFG, the dynamical evolution

and the reward of each agent are decoupled from the rest of the

agents given the mean-field, where the mean-field or the empirical

distribution of the system is given by:

Zt (x ) =
1

n

∑
i ∈N

1{X i
t = x }, ∀x ∈ X. (1)

Note that Zt ∈ ∆(X), the space of probability mass functions on X.

The state of agent i evolves according to:

X i
t+1
∼ P (X i

t ,A
i
t ,Zt ), (2)

where P (x ,a, z) ∈ ∆(X) is the transition probability distribution

given the state x , action a and mean-field z. With a slight abuse of

notation, we use P (y |x ,a, z) to denote the probability that the next

state is y given that the current state, action and mean-field are x ,
a and z respectively. The per-step reward for each agent i ∈ N is

given by:

Rit = r (X
i
t ,A

i
t ,Zt ,X

i
t+1

). (3)

The utility or the expected total reward for agent i ∈ N is given by:

U i = E
[ ∞∑
t=0

γ tRit

]
, (4)

where γ ∈ (0, 1) is the discount factor.
The main idea of mean-field games is to approximate the above

finite population system by an infinite population system, where

the empirical mean-field almost surely converges to the statistical

mean-field due to the strong law of large numbers. Thus the agents

assume that:

Zt (x ) ≈
1

n

∑
i ∈N

P(X i
t = x ). (5)

In addition, it is assumed that agents use an identical time varying

policy (π1,π2, . . . ), where πt : X → ∆(A) is the stochastic policy at
time t andAit ∼ πt (X

i
t ). When all agents follow policy (π1,π2, . . . ),

the statistical mean-field evolves according to the discrete time

McKean Vlasov equation:

Zt+1 (y) =
∑
x ∈X

∑
a∈A

Zt (x )πt (a |x )P (y |x ,a,Zt ), ∀y ∈ X, (6)

which we denote as:

Zt+1 = Φ(Zt ,πt ). (7)

2.2 Stationary MFG
In stationaryMFG, the following additional assumptions aremade [1,

41, 42].

(A1) Time homogeneous policy: All agents follow a time-

homogeneous, stochastic policy, πt = π : X → ∆(A) for all
t , i.e., each agent chooses an action given by Ait ∼ π (X i

t ).
With a slight abuse of notation, we use π (a |x ) to denote the

probability of choosing action a in state x under policy π .
Let Π denote the space of all such policies.

(A2) Stationarity of mean-field: When all agents follow a

policy π ∈ Π, the mean-field of states {Zt }t ≥0 converges al-

most surely to a constant limit z, which we call the stationary
mean-field. Note that the stationary mean-field satisfies:

z = Φ(z,π ). (8)

(A3) Agent’s performance evaluation: Agents evaluate their
performance by assuming that the population is infinite and

the corresponding mean-field takes its stationary value at all

times. In particular, given a policy π ∈ Π and a candidate sta-

tionary mean-field distribution z ∈ ∆(X), agent i evaluates
its performance starting from initial state x ∈ X as:

Vπ ,z (x ) = E Ait∼π (X
i
t )

X i
t+1
∼P (X i

t ,A
i
t ,z )

[ ∞∑
t=0

γ t r (X i
t ,A

i
t , z,X

i
t+1

)
�����
X i

0
= x

]
.

Such a mean-field approximation may be written as the solu-

tion of the following Bellman fixed-point equation.

Vπ ,z (x ) =
∑
a∈A

π (a |x )
[∑
y∈X

P (y |x ,a, z)

×
[
r (x ,a, z,y) + γVπ ,z (y)

] ]
.

2.3 Solution concepts
When agents are strategic (non-cooperative), the following refine-

ment of Markov perfect equilibrium (MPE) is used as a solution

concept [1].

Definition 2.1 (Stationary mean-field equilibrium (SMFE)).
A stationary mean-field equilibrium (SMFE) is a pair of policy

π ∈ Π and mean-field z ∈ ∆(X) which satisfies the following

two properties:

(1) Sequential rationality: For any other policy π ′,

Vπ ,z (x ) ≥ Vπ ′,z (x ), ∀x ∈ X.

(2) Consistency: The mean-field z is stationary under policy π ,
i.e.,

z = Φ(z,π ).
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When agents are cooperative, the following refinement of social

welfare optimal solution is used as a solution concept.

Definition 2.2. (Stationary mean-field social-welfare opti-
mal policy (SMF-SO)) A policy π ∈ Π is stationary mean-field

social welfare optimal (SMF-SO) if it satisfies the following prop-

erty:

• Optimality: For any other policy π ′ ∈ Π,

Vπ ,z (x ) ≥ Vπ ′,z′ (x ), ∀x ∈ X,

where z and z′ are the stationary mean-field distributions

corresponding to π and π ′, respectively, i.e., satisfy

z = Φ(z,π ) and z′ = Φ(z′,π ′).

2.3.1 Comparison of the two solution concepts. The definitions
of sequential rationality and optimality are different. In particular,

sequential rationality is defined with respect to the mean-field z;
while considering the performance of an alternative policy π ′ ∈ Π
it is assumed that the mean-field does not change. In contrast, opti-

mality is a property of a policy; while considering the performance

of an alternative policy π ′ ∈ Π, the mean-field approximation of

the performance is with respect to the stationary mean-field corre-

sponding to π ′. Thus, in general, SMFE and SMF-SO are different.

2.4 Local solution concepts
Both the solution concepts described in Sec. 2.3 are global concepts,

i.e., they are defined over all possible policies π ∈ Π. They are

difficult to verify by agents with bounded rationality or limited

computational resources. So, we define local variations of these

solution concepts that are easier to verify. It is worth highlighting

that when these local solution concepts are unique (as is the case in

many examples), they coincide with the the global ones. To define

these local solution concepts, we make two assumptions:

(1) The initial states of all agents are independent and identically

distributed according to ξ0 ∈ ∆(X). Thus, the performance

of any policy π ∈ Π is given by:

Jπ ,z = EX∼ξ0
[Vπ ,z (X )] =

∑
x ∈X

Vπ ,z (x )ξ0 (x ).

(2) The policy π ∈ Π is parametrized by θ ∈ Θ, where Θ is a

convex and closed subset of a Euclidean space. We denote

the policy parametrized by θ ∈ Θ as πθ . Examples of such

parametrizations include Gibbs/Boltzmann distribution and

neural networks.

Both these assumptions are standard in the reinforcement learning

literature on policy gradient methods [40]. Based on these assump-

tions, we define the following local variants of SMFE and SMF-SO.

Definition 2.3. (Local stationary mean-field equilibrium
(LSMFE)) A local stationary mean-field equilibrium (LSMFE) is a

pair of policy πθ ∈ Π and mean-field z ∈ ∆(X) which satisfies the

following two properties:

(1) Local sequential rationality: ∂Jπθ ,z/∂θ = 0.

(2) Consistency: z = Φ(z,πθ ).

Definition 2.4. (Local stationary mean-field social welfare
optimal policy (LSMF-SO)) A policy πθ ∈ Π is local stationary

mean-field social welfare optimal (LSMF-SO) if it satisfies the fol-

lowing property:

• Local optimality: d Jπθ ,zθ /dθ = 0, where zθ is the stationary

mean-field distribution corresponding to πθ , i.e., satisfies
zθ = Φ(zθ ,πθ ).

2.4.1 Comparison of the two local solution concepts. From the

chain rule of derivatives, we have

d Jπ ,z (x )

dθ
=
∂Jπ ,z (x )

∂π

∂π

∂θ
+
∂Jπ ,z (x )

∂z

∂z

∂θ
.

The first term is equal to ∂Jπθ ,z (x )/∂θ . In general, ∂Jπ ,z (x )/∂z ,
0 and ∂z/∂θ , 0. Thus, local optimality is not the same as local se-

quential rationality. This is also illustrated by the numerical results

presented in Sec. 4.

2.4.2 Comparison of global and local solution concepts. Local
variants of Nash equilibrium have been studied in the literature [35].

An interesting feature for MFG is that uniqueness of SMFE does not

imply that LSMFE is same as SMFE. This is because unlike standard

Nash equilibrium, SMFE and LSMFE are a collection of a strategy

profile and stationary distribution. Sufficient conditions for LSMFE

to be unique (and agree with the SMFE) are:

(1) SMFE is unique.

(2) The value function is concave in the policy parameters for

every value of mean-field.

Conditions for unique local equilibrium are satisfied for themalware

spread model presented in Sec. 4 [15–17].

3 RL FOR STATIONARY MFG
In this section we propose two RL algorithms corresponding to each

of the local solution concepts defined in Sec. 2.4. For both cases

we assume that the agent has access to a simulator that yields the

next state and the per-step reward for an agent, given the agent’s

current local state, current action and the current mean-field.

3.1 RL algorithm for learning LSMFE
The key idea behind the RL algorithm to learn an LSMFE is as

follows. SupposeGθ,z is an unbiased estimator of ∂Jπθ ,z/∂θ . Then,
we can start with an initial guess θ0 ∈ Θ and z0 ∈ ∆(X) and at each
step of the iteration, update the guess (θk , zk ) using two-timescale

stochastic gradient ascent [8]:

zk+1
= zk + βk

[
Φ̂(zk ,πθk ) − zk

]
, (9a)

θk+1
=

[
θk + αkGθk ,zk

]
Θ
, (9b)

where [ · ]Θ denotes projection on to the set Θ and Φ̂(z,π ) is an
unbiased approximation of Φ(z,π ) which is generated as follows:

generate a mini-batch ofm samples (X j ,Aj ,Y j )mj=1
where X j ∼ z,

Aj ∼ π (·|X j ), and Y j ∼ P (X j ,Aj , z) and set

Φ̂(z,π ) (y) =
1

m

m∑
j=1

1{Y j = y}.

The learning rates {αk , βk }k≥0
are chosen according to the standard

conditions for two-timescale algorithms:

∑
αk = ∞,

∑
βk = ∞,∑

(α2

k + β2

k ) < ∞, lim

k→∞
αk = 0 , lim

k→∞
βk = 0 and lim

k→∞
αk/βk = 0.

Then, we have the following:

Proposition 3.1. If the following conditions are satisfied:
(1) Φ(z,πθ ), ∂Jπθ ,z/∂θ are Lipschitz in θ , z.
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(2) Φ̂(z,π ) and Gθ,z are unbiased estimators of of Φ(z,π ) and
∂Jπθ ,z/∂θ . Moreover, the estimation error Gθ,z − ∂Jπθ ,z/∂θ
has bounded variance.

(3) For all θ ∈ Θ, the ODE corresponding to (9a), i.e.,

ż = Φ(z,πθ ) − z

has a unique globally asymptotically stable equilibrium point,
which we denote by f (θ ).

(4) f (θ ) is Lipschitz in θ .
Then, almost surely:

(1) ∥zn − f (θn )∥ → 0 as n → ∞.
(2) Suitable continuous time interpolation of {θn } is an asymp-

totic pseudotrajectory of the semiflow induced by the ODE
corresponding to (9b) for θ , i.e,

˙θ = ∂Jπθ ,z/∂θ .

(3) The iteration (9) converges to a LSMFE.

Proof. Note that, because the image space of Φ is bounded, the

estimation error Φ̂(z,π ) − Φ(z,π ) is uniformly bounded. Thus, the

conditions stated in the proposition along with the learning rate

conditions specified for iteration (9) satisfy all the conditions stated

in [29, page 35], [8, Theorem 23]. The result then follows from

the application of the theorem given in [29, page 35], [8, Theorem

23]. Consequently, iteration (9) almost surely converges to a limit

(θ∗, z∗) such that [27]:

∂Jπθ ∗,z∗/∂θ = 0 and z∗ = f (θ∗),

which implies (πθ ∗ , z
∗) is a LSMFE. □

In theory, two-timescale algorithms are nice because they are

amenable to a proof of convergence. However, in practice, two-

time scale algorithms converge slowly because there are no good

methods to adapt the learning rates. So, rather than running a

two-timescale algorithm, it is often better to run a large but fixed

number of iterations of variable running at the faster timescale

for every iteration of variable running at the slower timescale. For

iteration (9) this is equivalent to running multiple iterations of (9a)

(with a fixed learning rate β) for every iteration of (9b). In the

sequel, we run B iterations of (9b) with βk = 1, which is shown

in Algorithm 1 and is equivalent to a particle based Monte Carlo

computation of the generated mean-field of the system.

To convert iteration (9) to a complete algorithm, we need an

algorithm that computes an unbiased estimatorGθ,z for ∂Jπθ ,z/∂θ
for a given z. Since z is fixed, ∂Jπθ ,z/∂θ may be computed using

any of the standard policy gradient based approaches for reinforce-

ment learning: likelihood ratio based gradient estimators [26, 40] or

simultaneous perturbation based gradient estimators [5, 23, 32, 37].

3.1.1 Likelihood ratio based gradient estimation. One approach
to estimate the performance gradient is to use likelihood ratio based

estimates [12, 36, 45]. Suppose the policy πθ (X ) is differentiable
with respect to θ . For any time t , define the likelihood function

Λtθ = ∇θ log[πθ (At | Xt )]. Then from [3, 40, 45] we know that:

∂Vθ,z (x )

∂θ
= EAt∼πθ (Xt )

[ ∞∑
t=0

γ tΛtθVπθ ,z (Xt )
���� X0 = x

]
.

Algorithm 1: Stationary_MF
input : θ : Policy parameter, ξ0 : Initial state distribution

B : Iteration count,m : Batch size

output : z : Final mean-field

for j = 1 : m do
for i ∈ N do

Sample X
i, j
0
∼ ξ0

z
j
0
= ξ0

for t = 0 : B do
for i ∈ N do

Sample A
i, j
t ∼ π (X

i, j
t )

Sample X
i, j
t+1
∼ P (X

i, j
t ,A

i, j
t , z

j
t )

for x ∈ X do
z
j
t+1

(x ) = 1

n
∑
i ∈N 1{X

i, j
t+1
= x }

z = 1

m
∑m
j=1

z
j
B+1

return z

Algorithm 2: Likelihood ratio based algorithm to compute

LSMFE

input : θ0 : Initial policy, z0 : Initial mean-field

ξ0 : Initial state distribution

K : Iteration count

B : Iterations for mean-field update

m : Batch size for mean-field update

output : (θ∗, z∗) : Estimated LSMFE solution

for iterations k = 0 : K do
zk+1

= Stationary_MF(θk , ξ0,B,m)
Gθk ,zk+1

= PolicyGradient(θk , ξ0, zk+1
)

θk+1
= [θk + αkGθk ,zk+1

]Θ

return θK+1

Thus,

∂Jθ,z
∂θ

= EX∼ξ0

[
∂Vθ,z (X )

∂θ

]
.

An algorithm to compute LSMFE based on the likelihood ratio

approach is given in Algorithm 2. The PolicyGradient function
in Algorithm 2 can be obtained by an actor only method such

as Monte Carlo [39] or Renewal Monte Carlo [38] or using an

actor critic method such as SARSA [39]. Additionally, variance

reduction techniques such as subtracting a baseline or using mini-

batch averaging may also be used.

3.1.2 Simultaneous perturbation based gradient estimation. An-
other approach to estimate the performance gradient is to use simul-

taneous perturbation based methods [5, 23, 32, 37]. This approach

is useful when the policy πθ is not differentiable with respect to

its parameters θ . Now, given any distribution ξ0, we can estimate

Jπθ ,z using Vπθ ,z as:

Jπθ ,z = EX∼ξ0
[Vπθ ,z (X )].

To generate the two-sided form of simultaneous perturbation

based estimate, we generate two random parameters θ+ = θ + c η
and θ− = θ − c η, where η is a random variable with the same
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Algorithm 3: Simultaneous perturbation based algorithm to

compute LSMFE

input : θ0 : Initial policy, z0 : Initial mean-field

ξ0 : Initial state distribution

K : Iteration count, c : Perturbation size

B : Iterations for mean-field update

m : Batch size for mean-field update

output : (θ∗, z∗) : Estimated LSMFE solution

for iterations k = 1 : K do
zk+1

= Stationary_MF(θk , ξ0,B,m)
Let η ∼ Rademacher(±1) or η ∼ N (0, 1)
θ+k = θk + ηβ and θ−k = θk − ηβ .

Ĵ+k = PolicyEvaluation(θ+k , ξ0, zk+1
)

Ĵ−k = PolicyEvaluation(θ−k , ξ0, zk+1
)

Gθk ,zk+1

=
η
2c ( Ĵ

+
k − Ĵ−k )

θk+1
= [θk + αkGθk ,zk+1

]Θ

return θK+1

dimension as θ and c is a small constant. Let π+ = πθ+ and π− =
πθ− . Then, the two-sided simultaneous perturbation estimate is

given by

Gθ,z =
η

2c
(Jπ +,z − Jπ −,z ).

When ηi ∼ Rademacher(±1), the above method is called simultane-

ous perturbation stochastic approximation (SPSA) [32, 37]; when

ηi ∼ Normal(0, I ) it is called smoothed functional stochastic ap-

proximation (SFSA) [5, 23].

An algorithm to compute LSMFE using the simultaneous per-

turbation approach is given in Algorithm 3. As in the case of the

likelihood ratio based approach, the PolicyEvaluation function
in Algorithm 3 may be obtained by an actor only method such as

Monte Carlo [39] or Renewal Monte Carlo [38] or using an actor

critic method such as SARSA [39].

3.2 RL algorithm for learning LSMF-SO
The key idea behind the RL algorithm to learn an LSMF-SO is as

follows. SupposeTθ is an unbiased estimator for d Jπθ ,zθ /dθ , where
zθ is the fixed point of z = Φ(z,πθ ). Then, we start with an initial

guess θ0 ∈ Θ, and at each step of the iteration, update the guess

using stochastic gradient ascent:

θk+1
=

[
θk + αkTθk

]
Θ
, (10)

where {αk }k≥0
is a sequence of learning rates that satisfies the

standard conditions:

∑
αk = ∞ and

∑
α2

k < ∞. Then, we have the

following:

Proposition 3.2. If the following conditions are satisfied:
(1) d Jπθ ,zθ /dθ is continuous in θ .
(2) Tθ is an unbiased estimator of d Jπθ ,zθ /dθ and the error Tθ −

d Jπθ ,zθ /dθ has bounded variance.
(3) The ODE for θ , i.e,

˙θ = d Jπθ ,zθ /dθ ,

has isolated limit points that are locally asymptotically stable.
Then, almost surely:

Algorithm 4: Simultaneous perturbation based algorithm to

compute LSMF-SO

input : θ0 : Initial policy

ξ0 : Initial state distribution

K : Iteration count, c : Perturbation size

B : Iterations for mean-field update

m : Batch size for mean-field update

output :θ∗ : Estimated LSMF-SO solution

for iterations k = 1 : K do
Let η ∼ Rademacher(±1) or η ∼ N (0, 1)
θ+k = θk + ηβ and θ−k = θk − ηβ .

z+k = Stationary_MF(θ+, ξ0,B,m)

z−k = Stationary_MF(θ−, ξ0,B,m)

Ĵ+k = PolicyEvaluation(θ+k , ξ0, z
+
k )

Ĵ−k = PolicyEvaluation(θ−k , ξ0, z
−
k )

Tθk =
η
2c ( Ĵ

+
k − Ĵ−k )

θk+1
= [θk + αkTθk ]Θ

return θK+1

(1) Suitable continuous time interpolation of {θn } is an asymptotic
pseudotrajectory of the semiflow induced by the ODE for θ .

(2) The iteration converges to a LSMF-SO.

Proof. The conditions stated above and the learning rate condi-

tions satisfy the standard stochastic approximation convergence

conditions as given in [7, 27]. Hence, the iteration (10) converges

almost surely to a limit θ∗ such that:

d Jπθ ,zθ /dθ = 0,

which implies (πθ ∗ , z
∗) is a LSMF-SO, where z∗ = Φ̂(z∗,πθ ∗ ). □

To convert iteration (10) to a complete algorithm, we need an

algorithm that computes an unbiased estimator Tθ,z of d Jπθ ,zθ /dθ .
Likelihood ratio based gradient estimators do not work in this

case because, in order to compute dE[r (X i
t ,A

i
t , zθ )]/dθ , we need

to compute dzθ /dθ and there are no good methods to do so. There

are some results in the literature on the sensitivity of the stationary

distribution of a Markov chain to its transition probability (e.g.,

[11] and references therein), but these results only provide loose

bounds on dzθ /dθ . However, it is possible to adapt simultaneous

perturbation based methods to generate estimators of d Jπθ ,zθ /dθ .
We present one such estimator in the next section.

3.3 Simultaneous perturbation based gradient
estimation

We first consider estimating zθ for a given πθ . Under (A2), when
each agent follows policy πθ , the mean-field converges to the sta-

tionary distribution zθ . Then, we can estimate zθ by simply running

the system for a sufficiently long time. An algorithm based on this

idea is shown in Algorithm 1.

Then, to generate the two-sided simultaneous perturbation based

estimate of d Jπθ ,zθ /dθ , we generate two random parameters θ+ =
θ + c η and θ− = θ − c η, where η and c are as in Sec. 3.1.2. Let

π+ = πθ+ and π− = πθ− . Generate z+ = zπ + and z− = zπ −

using Algorithm 1. Then, the two-sided simultaneous perturbation
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Figure 1: RL algorithm converging to LSMFE or LSMF-SO for the malware spread and product quality investments examples.
The solid line shows the median value and the shaded region shows the region between the first and third quartiles over 100
runs.

estimate is given by

Tθ =
η

2c

(
Jπ +,z+ − Jπ −,z−

)
.

An algorithm to compute LSMF-SO using simultaneous per-

turbation approach is given in Algorithm 4. As was the case for

Algorithm 3, the PolicyEvaluation function in Algorithm 4 may

be obtained by an actor only method such as Monte Carlo [39] or

Renewal Monte Carlo [38] or using an actor critic method such as

SARSA [39].

4 NUMERICAL EXPERIMENT
4.1 Example 1: Malware spread

4.1.1 Environment. We consider the malware spread model pre-

sented in [15–17, 20]. This model is representative of several prob-

lems with positive externalities. Examples of such models include

flue vaccination, economic models involving entry and exit of firms,

collusion among firms, mergers, advertising, investment, network

effects, durable goods, consumer learning etc. Hence, we consider

the malware spread problem as a representative problem where an

analytical solution is available. In this model, let X ∈ [0, 1] denote

the state (level of infection) of agent i , where where X i
t = 0 is the

most healthy state and X i
t = 1 is the least healthy state. The action

space A = {0, 1}, where Ait = 0 implies do nothing and Ait = 1

implies repair. The dynamics are given by

X i
t+1
=



X i
t + (1 − X i

t )ωt , for Ait = 0,

0, for Ait = 1,

where {ωt }t ≥1 is a [0, 1]-valued i.i.d. process with probability den-

sity f . The above dynamics imply that if the agent takes the do

nothing action, then its state deteriorates to a worse condition in

the interval [1 − X i
t , 1]; if the agent takes the repair action, then

its state resets to the most healthy state.

The rewards are coupled through the mean ⟨Zt ⟩ of the mean

field Zt (i.e., ⟨Zt ⟩ >=
∫

1

0
xZt (x )dx). Each agent incurs a cost

(k + ⟨Zt ⟩)X
i
t , which captures the risk of getting infected, and an

additional cost of λ for taking the repair action, i.e.,

r (X i
t ,A

i
t ,Zt ) = −(k + ⟨Zt ⟩)X

i
t − λA

i
t .

4.1.2 Model and policy parameters. We considern = 1000 agents,

f = Uniform[0, 1], k = 0.2, λ = 0.5 and γ = 0.9. The continuous

state space X = [0, 1] is discretized into 101 uniformly sized cells

{0, 0.01, . . . , 1}. We consider two different policy parametrizations:

(1) Threshold based policy: We consider threshold-based poli-

cies parametrized by θ ∈ [0, 1] such that
1
:

πθ (x ) =



0, if x < θ ,

1, if x ≥ θ .
(11)

We use this policy parametrization to estimate both LSMFE

and LSMF-SO. The parameterized policies of the form (11)

are not differentiable with respect to θ , so we estimate the

gradient using simultaneous perturbation methods (Algo-

rithms 3 and 4) with c = 0.1, η ∼ Rademacher(±1), ini-
tial value of the threshold chosen uniformly at random, i.e.,

θ0 ∼ Uniform[0, 1] . In both algorithms, policy evaluation is

done using Monte Carlo withm = 1000 trajectories of length

H = 200.

(2) Neural network (NN) based policy: We consider a neural

network policy with two hidden layers with 5 neurons and

tanh activation. We estimate the gradient using the likeli-

hood ratio method. We use REINFORCE [45] to compute the

performance gradient and backpropagate this gradient over

the NN to compute Gθ,z . Policy gradient estimation is done

using Monte Carlo (actor only) withm = 10 and H = 200.

Since we have a likelihood ratio based gradient estimation

approach only for the RL algorithm for LSMFE (Sec. 3.1.1),

we use this policy parametrization only to estimate LSMFE

(Algorithm 2).

1
It is shown in [15, 17] that such a parametrization is without loss of optimality.
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For both the policy parametrizations, z0 = ξ0 = Uniform(X),B =
200 and K = 200. We choose the learning rate using ADAM [24].

2

We repeat the experiment 100 times for both the policy parametriza-

tions.

4.1.3 Results. The performance J for LSMFE (using both pa-

rameterizations) and LSMF-SO (using threshold based policies) are

shown in Fig. 1a. For the threshold based policy, J and ⟨z∗⟩ were
evaluated using exact policy evaluation. For the neural network

policy, they were estimated using 10 Monte Carlo evaluation runs.

For comparison, the exact SMF-SO and SMFE solutions are also

plotted. The SMF-SO solution is computed by a brute force search

over all θ ∈ [0, 1]. The SMFE solution is computed using the method

described in [15]. These exact solutions are also shown in Fig. 1a.

The plots show that the convergence of the SPSA based RL algo-

rithm is fairly fast and the variation across multiple runs is small.

It is worth highlighting that LSMFE and LSMF-SO are different.

4.2 Example 2: Investments in product quality
4.2.1 Environment. We consider the investment decisions of

firms in a fragmented market with a large number of firms. This

model is adapted from [43]. In this model, each firm produces np
products. The state of each firm X i

t is represented by a np vector

with each element X
i, j
t ∈ [0, 1], j ∈ {1, . . . ,np } denoting the nor-

malized product quality for product j for firm i . At each time step,

each firm i ∈ N has to choose whether or not to invest in improv-

ing the quality of each of its products j ∈ {1, . . . ,np }. Investment

decisions are binary for each product. Thus the action space for

firm i is Ai = {0, 1}np , with |Ai | = 2
np
. When agent i decides

to invest in product j, the quality of product j manufactured by i
increases uniformly at random from its current value to the maxi-

mum value of 1, if the average mean-field for that product is below

a particular threshold q. If this average mean-field value is above q,
then the agent gets only half of the product quality improvement

as compared to the former case. This implies that when the average

quality of product j in the economy is below q, it is easier for each
agent to improve its quality for product j . When the agent does not

invest any amount in product j, its product quality for product j
remains unchanged. This is given as:

X
i, j
t+1
=




ωt (1 − X
i, j
t ), if ⟨Z j ⟩ < q and A

i, j
t = 1,

0.5ωt (1 − X
i, j
t ), if ⟨Z j ⟩ ≥ q and A

i, j
t = 1,

X
i, j
t , if A

i, j
t = 0,

(12)

where ωt is a [0, 1]-valued i.i.d. process with probability density f

and ⟨Z
j
t ⟩ is themean ofZ

j
t (i.e., equal to

∫
1

0
xZ

j
t (x )dx , j ∈ {1, . . . ,np }).

At each step, each agent i incurs a cost due to its investment

and earns a positive reward due to its own product quality for

each product j ∈ {1, . . . ,np } and a negative reward due to the

average product quality for product i , i.e., ⟨Z
j
t ⟩. This per-step reward

accumulated over all products is given as:

r (X i
t ,A

i
t ,Z

i
t ) =

np∑
j=1

[
d jX

i, j
t − c

j ⟨Z
j
t ⟩ − λA

i, j
t

]
(13)

2
The α parameter of ADAM is set equal to 0.01 for the threshold based policy and

0.1 for the NN policy. All other ADAM parameters are equal to their default values.

4.2.2 Model and policy parameters. We consider n = 100 agents,

f = Uniform[0, 1], np = 3, q = 0.4, c = [0.21, 0.22, 0.23], d =

[0.31, 0.32, 0.33], λ = [0.2, 0.21, 0.22], B = 200, K = 200, X
i, j
0
∼

Uniform[0, 1] and γ = 0.9. The policy is parametrizd using a two

layer neural network with 8 and 16 neurons respectively with a

tanh activation function for all hidden units. We use ADAM with

learning rate of 0.1.

4.2.3 Results. In this example, we only demonstrate the com-

putation of LSMFE using a neural network policy. We performed

100 independent runs for this example. We then clustered the tails

(last 10 iterations) of these 100 trajectories and found that there are

multiple LSMFE for this example. In Fig. 1b, we plot the median,

and the region between the first and third quantiles for the trajecto-

ries corresponding to the two most populated clusters. These two

clusters, named C1 and C2 in Fig. 1b, comprise of 52% and 42% of

the total number of trajectories respectively.

5 DISCUSSION
5.1 Finite vs. infinite populations
In both MFG and stationary MFG, the finite population system is

approximated by an infinite population system. The infinite popu-

lation system has two features: (i) each agent has an infinitesimal

impact on the evolution of the mean-field which can be ignored; and

(ii) the empirical mean-field can be approximated by the statistical

mean-field, which evolves in a deterministic manner for a given

policy. Thus, the strategic interactions between agents in a general

n-player game is replaced by two consistency requirements: the

policy is a best-response to the mean-field and the mean-field is

consistent with the policy. As a result, the n-agent learning problem
is reduced to optimality and consistency between a single generic

(or canonical) agent and the mean-field.

However, since we are approximating the finite population sys-

tem by an infinite population system, the approximation is mean-

ingful only if the corresponding approximation error is small. There

are several results in the mean-field games literature that show that

under various (generally mild) technical conditions, the infinite

population result is a O (1/
√
n) or a O (1/n) approximation of the

corresponding finite population result [18, 41]. These conditions are

often model specific, so we don’t list them here. What is important

to note from the point of view of learning is that under these con-

ditions, the learning algorithms proposed in this paper converge to

O (1/
√
n) orO (1/n) of the corresponding finite population solution.

5.2 Difference between MFG and stationary
MFG models

MFG and stationary MFG are closely related but there is a funda-

mental difference between them. In MFG, assumptions (A1)–(A3)

are not imposed. Thus the policy π̃ = (π̃1, π̃2, . . . ), π̃t : X → ∆(A),
is, in general, a time-varying policy (we denote the space of all such

policies as Π̃) and it is not assumed that the mean-field trajectory

z = (z1, z2, . . . ) converges to a limit. Thus, given a mean-field

trajectory z, the performance of a policy π̃ ∈ Π̃ is given by:

Ṽπ̃ ,z (x ) = E
[ ∞∑
t=0

γ t r (X i
t ,A

i
t , zt ,X

i
t+1

)
���� X

i
0
= x

]
.
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Note that even though the mean-field trajectory is fixed, the envi-

ronment and rewards perceived by a generic agent are time-varying.

Therefore, one cannot write a fixed-point Bellman equation for Ṽπ̃ ,z .
Nonetheless, a time-varying Bellman equation can be written and,

it is for this reason that, most of the literature on MFG apart from

the special case of linear dynamics and quadratic cost considers

finite horizon systems.

The commonly used solution concept for MFG is the following:

Definition 5.1 (NE-MFG). A Nash equilibrium for MFG is a pair

of time-varying policy π̃ = (π̃1, π̃2, . . . ) ∈ Π̃ and a trajectory

of mean-fields z = (z1, z2, . . . ) which satisfies the following two

conditions:

(1) Sequential rationality: For any other policy π̃ ′ = (π̃ ′
1
, π̃ ′

2
, . . . ),

we have:

Vπ̃ ,z (x ) ≥ Vπ̃ ′,z (x ), ∀x ∈ X.

(2) Consistency: The mean-field z evoles as:

zt+1 = Φ(zt , π̃t ), ∀t .

It is worth highlighting that NE-MFG is a pair of a trajectory of

time-varying policy and time-varying mean-field. In contrast, SMFE

is a pair of single policy and a single mean-field. Thus, SMFE is

considerably easier to compute and implement as compared to NE-

MFG. This simplicity comes at the cost of generality. The conditions

for existence of SMFE are generally stricter than those for NE-MFG.

5.3 Related work
In view of the above discussion, we revisit the related work on

mean-field approximation in MARL.

In [25], a model based adaptive control algorithm for computing

NE-MFG of linear quadratic systems is considered. It is assumed

that the dynamics takes one of finitely possible alternatives. Agents

use maximum likelihood estimation to estimate the most likely

dynamics and use certainty equivalent control laws corresponding

to the estimated model. The results of [25] are difficult to generalize

beyond the linear quadratic model.

In [48], a Q-learning algorithm for computing NE-MFG for a

family of coupled oscillators is considered. The mean-field approxi-

mation is used to develop an approximate dynamic program (ADP)

for the best-response equation and the ADP is solved using Q-

learning. The approximation used for the ADP is specific for the

model considered in [48] and does not apply to general models.

In [47], a Q-learning algorithm for computing NE-MFG for a

stochastic game is presented. It is assumed that all agents observe

the global state ((x1,x2, . . . ,xn ) in our model) and choose policies

that map global state to local actions. The mean-field approximation

is used to simplify the Q-function of the best-response and the

simplified Q function is solved using Q-learning or DPG. When

each agent has a local state (as is the case in the models presented

in this paper), the global state is n-dimensional and it is impractical

to assume that all agents know the global state. For example, in the

malware example presented earlier, it will mean that all agents know

the state of health of all agents in the system. Even if the global state

were known, searching over policies π : (x1,x2, . . . ,xn ) 7→ ∆(Ai )
will suffer from the curse of dimensionality.

In [33], a fictitious play based learning algorithm for computing

NE-MFG of finite horizon common interest MFG is presented.
3
In

this algorithm, one starts with a guess for the mean-field trajectory

and the policy and improves them using actor critic functions. The

proof of convergence relies on a technical property for NE-MFG for

finite horizon MFGs proved in [9] and it is not immediately clear

how that technical property can be extended to infinite horizon

stationary MFG.

It is worth highlighting that all the previous work on mean-field

based learning algorithms for MARL compute NE-MFG. As far as

we are aware, this is the first paper to propose mean-field based

learning algorithms to compute SMFE and SMF-SO for stationary

MFGs.

5.4 Remarks on the generality of the model
For simplicity of exposition, we presented our results for the sim-

plest model of stationary MFG. The results presented for this model

continue to hold for the following generalizations.

• The coupling in the dynamics and reward is through the

mean-field of states and actions rather than mean-field of

just the states. In this case, the argument presented in the

paper continues to work with minor changes because mean-

field of states and actions is a function of the policy and the

mean-field of states. In particular, if z̄ denotes the mean-field

of states and actions, then, in the infinite population limit

z̄t (x ,a) = z̄t (x )πt (a |x ), ∀x ∈ X,a ∈ A. (14)

• The states and/or actions are continuous rather than discrete.

In this case, the arguments hold under the standard condi-

tions on measurability of dynamics, upper semi-continuity

of the rewards, compactness of the action space, and the

growth conditions on the rewards to ensure that value func-

tions are well defined. An appropriate parametrization of

the policy using a sufficiently rich family of function approx-

imators such as radial basis functions or neural networks is

also needed.

• There is a heterogeneous population consisting of multi-

ple sub-populations of homogeneous agents. Such a model

can be converted to a homogeneous population model by

considering the type of the agent as a component of the state.
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