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ABSTRACT
Cooperation among selfish agents can be promoted by allowing
agents to condition behavior on reputation. Social norms – dic-
tating how agents update the reputations of others – are central
in determining whether this mechanism is effective. In particular,
norms that reward justified defection have been shown to promote
cooperation. A major limitation of existing models is that they as-
sume all agents adopt a uniform norm, in a top down fashion. Here
we show that when agents can spontaneously adopt novel norms,
a learning process will see them drift towards socially undesirable
outcomes. We present a model where agents can choose both how
to react to reputations and how to assign the reputations of others
– making social norms emergent. In this scenario cooperation can
only be achieved when the space of norms is severely restricted.
In the real world, reputation systems have a mixed record. This
is often attributed to the costly nature of assigning reputations,
and the ability of agents to easily whitewash their reputations. Our
result suggests that even if these issues are overcome, enabling co-
operation via reputation is likely to require additional mechanisms
or restrictions upon the norms of the agents in the system.
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1 INTRODUCTION
Fostering cooperation among self-interested agents is a challenge
in natural as well as artificial systems [1]. If cooperation is costly,
but the benefits of cooperation can be enjoyed by all parties, the
temptation to pay no cost is a dominant strategy and cooperation
collapses [27]. To allow cooperation to flourish, some mechanism
that enables correlated interactions – so that cooperative types meet
each other more frequently, or so they can treat uncooperative types
differently – is required. One such mechanism is direct reciprocity,
which allows agents that interact repeatedly to condition their
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strategies on past interactions. In this setting, strategies such as
Tit-for-tat can support cooperative equilibria [2, 7, 13, 38].

When agents are anonymous or do not interact repeatedly, they
can instead rely on indirect reciprocity [23]. This mechanism de-
pends on the existence of public reputations, which allow agents
to favour those that enjoy a good reputation by cooperating more
with them. The cost of cooperation can then be offset by the ben-
efits of having a good reputation [16]. This idea of reputation is
ubiquitous across computing applications, including distributed
and multiagent systems [8, 41].

Reputation systems are used across many domains [10], but their
application is not without issues [11]. These include white-washing
reputations [3], eliciting specious feedback [14], or low rates of
participation [28]. Models of indirect reciprocity can be used as
important tools to design reputation-based systems [30, 31, 33].
Such models provide a dynamic account of how agents solve the
challenge of cooperation in simple but illustrative scenarios. These
dynamic features are crucial because these settings often lead to
multiple equilibria where static models do not necessarily single
out a prediction [16].

The framework of indirect reciprocity uses evolutionary game
theory (EGT). In EGT agents are boundedly rational and, instead
of solving for equilibrium, follow simple rules that are updated
by a dynamic learning process [36]. Agents that perform well in a
population are more likely to be imitated or copied in subsequent
generations. Originally conceived in evolutionary biology, EGT is
also relevant for cultural learning by processes of imitation [17]
and as a device for predicting human behaviour [12]. Although
these processes may seem idiosyncratic to biological modelling, its
long-term convergence is qualitatively similar to related processes
such as reinforcement learning, or other learning mechanisms that
rely exclusively on individual information [5].

In models of indirect reciprocity agents learn how to react to
the reputations of others from payoffs derived from a series of
interactions with random partners [23]. A strategy therefore de-
termines whether an agent with a particular reputation value is
worth cooperating with. A separate process is required to update
the reputations of the agents. In these models, a social norm [42]
determines how agents will assign the reputations of others after
each encounter. Thus, a norm is simply a function that produces a
reputation value given a combination of factors. Accordingly, these
models can be used to study and compare alternative social norms
for reputation assignment.

Early work has shown that very simple norms that assign a good
reputation for cooperating and bad reputation for defecting are
unable to sustain high levels of cooperation, because they cannot
distinguish ‘justified punishment’ from uncooperative behavior
[22]. Later work has shown that, in any space of possible norms,
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the set of norms that sustain high levels of cooperation share a
small number of intuitive features: they discriminate against those
who defect against those with good reputation, and they allow
agents with good reputation to retain a good reputation if they
defect against a ‘bad’ agent [24, 25]. These results have since been
generalized, with some qualification, to a broad range of cases [e.g.
26, 29, 33].

Traditionally, models of indirect reciprocity follow a top-down
approach [40]. The social norm to assign reputations is imposed
on the system offline [34]. This assumption limits the scope of ap-
plications to situations where the behaviour of the agents can be
artificially constrained in a centralised fashion. The point of depar-
ture for this paper is to extend the models of indirect reciprocity
to analyse the prospects of cooperation if agents are free to adopt
idiosyncratic methods of assigning reputation, thus modelling a
system whereby norms emerge ‘bottom up’ [35].

Our paper addresses the problem of modelling selfish agents in
a cooperative setting, who can choose whether to cooperate or not
on the basis of public reputation information while also having free-
dom to choose how to report the reputations of those with whom
they have interacted. We examine the dynamic process whereby
agents learn to react to and assign the reputations of others. This
investigation gives a more thorough assessment of the prospects for
maintaining cooperation using a mechanism of indirect reciprocity
in environments where agents are unconstrained and social norms
are emergent. Our main result is that cooperation can only be sus-
tained when the set of norms is restricted. The dynamic process
of learning always allows for defection to take over cooperative
norms and actions.

The rest of this paper is organised as follows: Section 2 describes
the basic setup of indirect reciprocity. Section 3 describes the tech-
nique used to analyze bottom-up reputation dynamics. We present
our results in Section 4 and discuss the implications in Section 5.

2 PRELIMINARIES
2.1 Prisoner’s dilemma
We use the prisoner’s dilemma (PD) game as a fundamental model
of cooperation. For simplicity, we focus on a a subset of PDs de-
termined by two parameters, b and c [21], where the gain from
defection is constant, regardless of the other player’s behavior.
Agents can choose to cooperate at a cost c , bestowing a benefit b on
the opponent. Alternatively they may defect, at no cost, possibly
reaping benefits from the opponent if she cooperates. The payoff

matrix is given by:
(

0 b
−c b−c

)
, with actions defect (0) and cooperate

(1) respectively. For b > c > 0 defection is dominant, and mutual
defection is the only Nash equilibrium.

The techniques we describe will apply to any symmetric 2 × 2
game, but we focus on cooperation in this setting as a benchmark
application.

2.2 Strategies: Actions and Norms
Following [32], [33] and [31], we consider agents with binary repu-
tations 0 and 1. For convenience we will sometimes refer to these
labels as “bad” or “good” (respectively), without ascribing any par-
ticular meaning to them. Since agents condition their actions on

reputations, the full action set for a game with discrete binary
reputations comprises 4 strategies as follows:

• Defectors: Always defect regardless of opponent reputation
• Paradox: Cooperates with “bad” opponents, and defects to-
wards “good” opponents.

• Reciprocators: Defect towards “bad” opponents, and cooper-
ates with “good” opponents.

• Cooperators: Always cooperate regardless of opponent repu-
tation

We can denote the strategy set S = {0, 1, 2, 3}; with the corre-
sponding binary encoding of each strategy, determining the action
towards good, and bad individuals respectively. For example, strat-
egy 1 (Paradox) is (01)2, which implies defecting against individuals
with 1 reputation, and cooperating against individuals with 0 repu-
tation. Strategy 2 (Reciprocator) is (10)2, which implies cooperating
against individuals with 1 reputation, and defecting against indi-
viduals with reputation 0.

Now we define the space of social norms, i.e., functions to assign
reputations to others based on the outcome of the game and the
reputations of those involved in each interaction. For a PD game, a
second order norm would transform the action of the donor, and
the reputation of the recipient, into a new reputation for the donor
[32]. Since there are 4 combinations of actions and reputations, an
assignment norm can be encoded as a bit-string of length 4; thus
we obtain a space of 16 possible norms.

The norms are naturally encoded with integers, 0, 1, . . . , 15. The
interpretation is given by the binary representation as follows:
The first bit determines what reputation to assign to an agent that
cooperates against a good agent; the second bit determines what
reputation to assign to agents defecting against good agents; the
third bit determines the reputation of someone that cooperates
against a bad agent, and the last bit determines what reputation to
assign to someone who defects against a bad agent. Hence

d = (dG,C ,dG,D ,dB,C ,dB,D )2.

For instance, norm 9 is encoded (1, 0, 0, 1)2 and only assigns a good
reputation to agents that either defect with a bad agent (bit 0), or
cooperate with a good agent. Norm 10, (1, 0, 1, 0)2 assigns a good
reputation to those that cooperate and bad to those that defect,
without regarding the reputation of the opponent. And so on.

2.3 Top-down social norms
We first describe the standard top-down approach, where agents
all use the same norm to update reputations as decided by a central
planner. Following [32], we considers a group of N agents playing
a PD game with binary reputations as described in Section 2.2. We
use the small mutation assumption, namely that new behaviors
arise in the population at a slow enough rate that there are never
more than two types present in the population at a given time [4].
At each time-step, random pairs are formed and the game is played.
After each interaction, a randomly chosen agent in each interaction
pair gets her reputation updated according to the specified norm. As
is standard, we assume that agents are subject to execution errors,
defecting when they intended to cooperate with small probability
ϵ . They may also commit errors while judging the reputations of
others (with probability χ ), or errors may occur when reputations
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are updated at the community level (with probability α ). To incor-
porate execution errors, we transform the strategy p → (1 − ϵ)p,
and to incorporate public reputation error, we transform the norm
d → (1 − 2α)d + α .

An agent’s new reputation is based on a report from the in-
teraction partner – what we call “second-party reporting”. This
assumption is of potential interest, given concerns about reputation
systems based on imperfect observations [9]. The second-party
case is a natural best-case scenario, justifying relatively low error
rates in our model. We have also derived results for third-party
reporting, but under the small mutation assumption which we use
for our analytic derivations, because there are only two types in
the population at any given time, there is no interesting difference
between the approaches.

The agents repeat this process for a number of rounds. Due to
errors, the process is an ergodic discrete Markov Chain whose sta-
tionary distribution can be completely characterized. For a given
population, this probability distribution specifies what is the proba-
bility of each reputation configuration. Given that the distribution
of reputations and strategies determines the distribution of payoffs,
we can thus compute the expected payoff in the long run for each
type of player in a given population.

To model the dynamic behaviour of agents, [32] use an imitation
process [37]. This is also a a discrete Markov chain, whose station-
ary distribution determines which strategies are prevalent in the
population, and therefore, the level of cooperation in the system.

The conclusion from [32] is that only 2 out of 16 possible norms
enable cooperation:“Stern Judging” (SJ) and “Simple Standing” (SS).
SJ assigns a good reputation to those cooperating with good part-
ners as well as those defecting with bad partners, and assigns bad
reputation otherwise; it is encoded 9 = (1001)2. SS assigns a good
reputation to those cooperating – regardless of the partner’s rep-
utation – as well as those defecting against bad individuals; it is
encoded 11 = (1011)2. The important properties shared by these
norms are that they (i) reward cooperation with other individu-
als with a “good” reputation, and (ii) they are discriminating with
regard to defection: they regard defection against bad individuals
as good, and defection against good individuals as bad. In models
investigating larger spaces of norms, these same properties are
observed to be present in all and only the norms which promote co-
operation at high levels [25]. In a top-down set-up, accordingly, the
only way to obtain cooperation is for a central planner to enforce a
cooperative norm such as SJ [32].

3 BOTTOM-UP SOCIAL NORMS
We now describe the dynamical processes for reputation and learn-
ing. These processes are assumed to happen at different timescales,
whereby agents adopt a fixed behavioral strategy for a sufficiently
long time that the reputation distribution stabilizes before agents ex-
ploring other strategies. Elsewhere – [32], [33] – it has been shown
that this numerical technique closely aligns with agent-based sim-
ulations.

3.1 Reputation dynamics
In the case of bottom-up social norms, each agent is characterized
by the pair (p,d), where p is one of the behavioral strategies S , and

d is the norm used by the agent to report reputation. A strategy
is therefore a pair (p,d) and the strategy space now comprises
16 × 4 = 64 strategies, instead of 4 in the top-down setting. We will
refer to the space of all possible pairs (p,d) as Ŝ .

Ŝ = {(p,d)|p ∈ {0, 1, 2, 3},d ∈ {0, 1, 2, . . . , 15}}
After a pair [(p,d), (p′,d ′)] interacts, each agent employs its

norm to report a reputation to the broader community. Taking into
account the various possible errors, and whereCpx is the probability
that an agent with strategyp cooperates with a partner of reputation
x , the probability the agent being assessed by norm d will acquire
a good reputation is given by:

G
p,d
x = (1 − χ )(C

p
xdx,C + (1 −C

p
x )dx,D )

+ χ (C
p
xd1−x,C + (1 −C

p
x )d1−x,D )

The probability of being assigned a bad reputation is 1 −G
p,d
x .

With the above expressions, we can now track the changes in
the number of good and bad individuals within the population by
developing a transition matrix for the corresponding finite Markov
chain. For a population of size Z , we assume there are k individuals
using strategy (p,d) and Z − k individuals using strategy (p′,d ′).
We denote the number of individuals with good reputation of each
type as h,h′, respectively.

The probability of a transition to a state in which one additional
individual using strategy p,d acquires a good reputation can be
given by:

H+p,d (h,h
′) =

k − h

Z

(
h

Z − 1
G
p,d
G +

h′

Z − 1
G
p,d ′

G

+
k − h − 1
Z − 1

G
p,d
B +

Z − k − h′

Z − 1
G
p,d ′

B

)
And the probability of a transition to one additional agent who

uses p,d acquiring a bad reputation can be given by:

H−
p,d (h,h

′) =
h

Z

(
h − 1
Z − 1

(
1 −G

p,d
G

)
+

h′

Z − 1
(
1 −G

p,d ′

G
)

+
k − h

Z − 1
(
1 −G

p,d
B

)
+
Z − k − h′

Z − 1
(
1 −G

p,d ′

B
) )

Equivalent expressions for p′,d ′ are straightforward extensions
of the above.

The matrix H is then given by:

Hi, j =



H+p,d (hi ,h
′
i ), hj = hi + 1 ∧ h′j = h

′
i

H−
p,d (hi ,h

′
i ), hj = hi − 1 ∧ h′j = h

′
i

H+p′,d ′(hi ,h
′
i ), hj = hi ∧ h′j = h

′
i + 1

H−
p′,d ′(hi ,h

′
i ), hj = hi ∧ h′j = h

′
i − 1

H=(hi ,h
′
i ), i = j

0, otherwise
where

H=(hi ,h
′
i ) = 1−H+p,d (hi ,h

′
i )−H

−
p,d (hi ,h

′
i )−H

+
p′,d ′(hi ,h

′
i )−H

−
p′,d ′(hi ,h

′
i )
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Entries in the matrix (i, j) specify the transition probability from
state (hi ,h′i ) to state (hj ,h′j ), where i and j are indices that range
over the full space of reputation configurations, for given Z ,k . The
resulting Markov process is ergodic and accordingly, we derive
the stationary distribution σ , representing the long-run probabil-
ity distribution over reputation states. This is obtained from the
eigenvector of H associated with eigenvalue 1.

3.2 Learning dynamics
To calculate payoffs, and therefore the learning dynamics, we first
calculate the probabilities that a given agent makes a donation and
receives a donation, give the configuration of reputations in the
population (h,h′).

Dp (h,h
′) =

h

k

(
h − 1 + h′

Z − 1
C
p
G +

Z − h − h′

Z − 1
C
p
B

)
+
k − h

k

(
h + h′

Z − 1
C
p
G +

Z − h − h′ − 1
Z − 1

C
p
B

)
The probability that an individual using strategy p receives a dona-
tion is Rp (h,h′).

Rp (h,h
′) =

h

k

(
k − 1
Z − 1

C
p
G+

Z − k

Z − 1
C
p′

G

)
+
k − h

k

(
k − 1
Z − 1

C
p
B+

Z − k

Z − 1
C
p′

B

)
The payoff of individuals using strategy p is calculated by:

fp (k,h,h
′) = bRp (h,h

′) − cDp (h,h
′).

Payoffs for individuals using strategy p′ can be calculated in
an analogous way. We can now calculate the average fitness of
a strategy by summing over the stationary distribution of every
possible reputation configuration.

f̄p (k) =
k∑

h>0

Z−k∑
h′>0

σh,h′ fp (k,h,h
′)

From these payoff values we now specify the learning process.
Agents imitate those that are more successful as follows. At each
time period, we choose two agents – a focal agent and a role model.
The focal agent imitates the strategy of the role agent with proba-
bility Ipr defined as follows:

Ipr = [1 + exp(∆f )]−1

where ∆f is the payoff difference between the focal and the role
agent. With a small exploration probability, an imitator will switch
to another random strategy in the strategy space. This allows for
agents to occasionally try out new strategies. The dynamics can be
specified by inspecting fixation probabilities. This is the probability
that a single individual with strategy j, will take over a population
of agents using strategy i , and is defined as follows:

ρi→j =
[
1 +

Z−1∑
l=1

l∏
k=1

T−(k)

T+(k)

]−1

where, T±(k) is the probability that a population with k type i
agents, and Z − k agents of type j, will have k ± 1 agents of type
i in the next time-step. These are straightforward to compute on
the basis of Ipr [37]. The Markov chain with transition matrixM =

7.0 % 5.3 % 4.3 % 3.7 % 3.3 % 3.2 % 3.0 % 2.8 %

Percentage of optimal cooperation

Top-down with SJ social norm

Top-down with SS social norm

Bottom-up social norms

Figure 1: Cooperation top-down vs bottom up.

[ρi→j ]i j approximates the imitation dynamics [4]. The long term
evolutionary dynamics can be summarized with ϕ, the stationary
distribution associated withM . This distribution is defined over the
strategy space, and we denote the abundance of strategy i in the
long run, ϕi .

To measure the degree of cooperativeness in the population, we
compute a cooperation index (CI ), namely the weighted average of
cooperative acts that takes place in each state of the dynamics [32].
We use the fixation probabilities we have just derived as weights.
D is as described above, the probability of an arbitrary agent coop-
erating. σd (p,k) is the probability having k good individuals in a
population under norm d .

Thus,

CI =
∑
s ∈Ŝ

ϕs

Z∑
k=0

Dps (k, 0)σ
ds (ps ,k)

where, for any s ∈ Ŝ , s = (ps ,ds ).

4 RESULTS
To simplify comparisons and for demonstration purposes we follow
[32] in setting default parameters, with ϵ = 0.08, α = χ = 0.01,
b/c = 5 and Z = 50. Results are qualitatively similar across a wide
range of parameters. We first study the effect of bottom-up norms
on overall cooperation; next, we look at the typical dynamics of
imitation, and finally we inspect how different restrictions on norms
affect cooperation.

4.1 Cooperation: Top-down vs Bottom-up
We start by measuring how the cooperation index changes when
allowing agents to use emergent social norms. These results are
depicted in Figure 1 as a function of the number of agents. For a
benchmark comparison, we also plot cooperation achieved using
the most effective cooperation-promoting norms as found in [32].

To quantify the loss of efficiency due to decentralization, in
similar fashion to the price of anarchy [18], we measure the ratio
of bottom-up cooperation over highest cooperation achieved top-
down. The bottom-up approach can only reach up to 7% of the most
efficient top-down social norm in small populations, and a meagre
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Figure 2: Bottom up CI for increasingly cheap cooperation.

3% for more than 50 agents. The collapse of cooperation is evident
across all population sizes.

Interestingly, for bottom-up reputation CI is monotonically de-
creasing with the number of agents in the range studied. This stands
in contrast to our top-down approach, where larger groups lead
to more cooperation. Nonetheless, a top-down approach is vastly
more effective in fostering efficient social outcomes. This holds
even in the case of very cheap cooperation with large b/c ratios, as
shown in Figure 2.

4.2 Dynamics of Bottom-up reputation
We now turn to understanding the collapse of cooperation. To do
this, we step back from the measures of cooperation and inspect ϕ.
This is depicted in Figure 3 – the inserts show strategies as grouped
by action (p) and social norm (d). Bottom-up reputation dynamics
overwhelmingly favor defecting strategies who take up > 80% of
the distribution.

No particular norm is strongly favored in the long term. This
implies the ability of successful top-down norms, such as SJ and SS,
to withstand defection is lost when different norms are allowed to
co-exist. To further understand how social norms lose ground in
the population we can inspect the transition matrix of the imitation
processM .

ThematrixM contains the transition probabilities ρi→j , between
any two strategies i and j. If two strategies always get the same
payoff, the chance that one of the will take over from one single
mutant is 1

Z [19]. We can classify each transition probability using
this benchmark of neutrality as follows [20]:

• A population of type i agents can repel invasions by type
j agents if ρi→j <

1
Z .

• A population of type i agents is invaded by type j agents if
ρi→j >

1
Z .

• A population of type i agents will drift to type j agents if
ρi→j =

1
Z .

Using default parameters, Figure 4 shows this classification for
all the entries inM . We highlight (with arrows) residents that are

able to repel invasions from defectors. These correspond to social
norms that are potential catalysts of cooperation.

We find 8 strategies that can repel defection. Half of them use
the paradox action strategy (i.e. defect against ‘good’ reputations
and cooperate with ‘bad’ reputation opponents). Given that the
reputation labels are devoid of meaning, these paradox actions
foster cooperation by coordinating on the ‘bad’ = 0 label. The other
half of the norms are reciprocators who coordinate to cooperate on
the 1 label. The two types use symmetric norms that simply flip the
meaning of the label leading to the same behaviour, so the mirror
of a given norm d is (1 − dB,C , 1 − dB,D , 1 − dG,C , 1 − dG,D ). This
symmetry has been discussed elsewhere [24, 32].

Ignoring the symmetry that leads to equivalent behaviour, and
focusing on reciprocator types that coordinate to cooperate on the
1 label, the pairs (p,d) that can repel defection are: (2, 8), (2, 9),
(2, 10) and (2, 11). The corresponding social norms are: Shunning
(SH), which only assigns a good reputation to those that cooperate
with good opponents; Stern Judging (SJ) which in addition rewards
justified defection; Image scoring (IS) which disregards reputations
rewarding only cooperative acts; and Simple Standing (SS) which
behaves like IS but also rewards justified defection.

While all of these norms are able to withstand the direct invasion
of defectors, Figure 4 shows none of them are immune to invasion
by neutral mutants. These mutants typically have the same be-
havioral strategy but alternative norms. Because an agent’s norm
makes negligible difference to its payoff, two agents with the same
behavior and different norms [(p,d), (p,d ′)] will frequently be neu-
tral with respect to each other. Through random processes of drift,
therefore, it is always possible for a neutral mutant to take over the
whole population, given enough time [19].

Neutral mutants who employ less effective norms are therefore
harmful to cooperation because they create an indirect path for
defectors to invade. Starting from a population entirely composed
of reciprocators using an effective norm like SJ, a neutral mutant
can always drift in with a bad norm, and then the population can
be invaded directly by non-cooperative strategies. This stepping
stone dynamic has been observed in models of direct reciprocity as
well [6, 38]. Figure 5 depicts a typical transition from a good social
norm into defection.

4.3 Restricting the space of norms
We now discuss how cooperation can be restored. While allowing
for all norms destroys the prospects of cooperation, restricting the
space of norms that can operate in the system can potentially bring
some efficiency back. This exercise will also help us understand how
certain norms may be more disruptive than others when working
in tandem with norms that are known to foster cooperation.

To tackle this question, we analyze the dynamics arising from
only allowing a small subsets of norms. Given a subset E ⊂ Ŝ ,
we build the matrixME that describes all the transitions between
strategies of the form (p,d) with d ∈ E. We then compute the
stationary distribution, and the corresponding indexCI . We further
measure the ratio of bottom-up cooperation in subset E over highest
cooperation achieved top-down. We do this for all subsets of size
2 and 3. Table 1 lists the subsets with a CI of 0.2 or higher – for
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Figure 3: Long-term dynamics ϕ with a bottom-up approach. Inset figures group strategies by norms and by actions

simplicity we have skipped the mirror combinations that lead to
the same behaviour and achieve identical scores.

The top-performing subsets all include the SJ social norm. Most
norms coincide with the set of norms that withstand defection
as described above (SJ, SS, SH and IS). These norms are also very
similar to each other. We can use the edit distance as a way to to
measure how consistent the norms are compared to each other –
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Neutral mutant arises

Neutral mutant
takes over via drift

Defector (p0, d0)
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invades

Figure 5: Typical dynamics from cooperation into defection

1 or 2 on Table 1. Similar norms play along well with each other
since reputations and actions employed are now aligned.

Using norms that are aligned can bring a substantial amount
of cooperation back – up to 85% with SJ and SS. However, as we
increase the number of norms cooperation collapses as inconsisten-
cies between norms unavoidably arise. We can thus conclude that
only a very restricted flavor of bottom-up dynamics is effective at
keeping defection at bay.

Table 1: Cooperation with a subset of social norms

Subset of Norms CI % of optimal cooperation
(9, 11) 0.71 85
(8, 9, 11) 0.38 46
(9, 10, 11) 0.30 36
(9, 10) 0.30 36
(9, 13) 0.29 34
(8, 11) 0.27 33
(8, 9, 13) 0.25 30
(8, 9, 10) 0.23 27
(9, 11, 13) 0.2 23
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5 DISCUSSION
We have formulated the dynamics of imitation for a game of coop-
eration based on indirect reciprocity. Unlike previous approaches,
our formulation allows for emergent social norms, in which agents
themselves determine how to update the reputations of others. In
other words, we inspect the reputation dynamics with bottom-up
social norms, and show why it is hard to sustain cooperation in
this setting.

Our main result demonstrates that indirect reciprocity is, at best,
a radically incomplete mechanism for the maintenance of coopera-
tion in a decentralized fashion. Absent an additional factor such as
population structure, direct reciprocity, or policing of reputation
reporting, cooperation collapses when agents are free to innovate
and adopt alternative socials norms.

The exact results predicting the collapse of cooperation rely
on two simplifying assumptions: the exploration rate used by the
agents is low, and reputations are assumed to change faster than
strategies. Relaxing these assumptions is unlikely to restore coop-
eration. In top-down models, it has been shown that higher explo-
ration rates tend to harm cooperation [29]; and that the timescale
separation between learning and reputation assignment does not
have a strong effect in the top-down approach [32]. There is no
reason to suspect these assumptions would have the opposite effect
in the model presented here. Our model also represents a “best case”
for cooperation scenario by assuming reporting to be costless [31].
Notwithstanding that, we still find cooperation is significantly im-
paired.

In a broader context, our result can be illuminated by observing
that a reputation system is itself a variety of public good. A system of
communication that allows effective discrimination between friend
and foe is fragile, and requires ongoing maintenance to be valuable.
Incorrect reports, relative to the prevailing system, are a form of
informational pollution: degrading the cooperative environment.
In this model, the challenge might appear to be much easier to
surmount, because reporting reputation is costless. But because
there is no penalty for harming the reputational environment (by,
e.g. adopting a mutant norm), mere processes of neutral drift suffice
to make cooperative equilibria unattainable.

Public goods games are a particularly difficult variety of cooper-
ative problem to solve, because they distribute responsibility for
maintaining a public benefit over numerous agents. Without a coor-
dinating mechanism to hold individual agents to account, defection
is likely to be an optimal strategy, and cooperation collapses. This
challenge affects not just reputational systems, but any system of
costless communication where there are potential conflicts of in-
terest [15], and it remains a pressing puzzle to understand how to
replicate the successes of human communication in artificial sys-
tems. With the increasing presence of artificial agents in the human
infosphere [39], understanding how to use indirect reciprocity to
preserve cooperation is an urgent challenge.
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