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ABSTRACT

Modeling social interactions based on individual behavior has al-

ways been an area of interest, but prior literature generally pre-

sumes rational behavior. Thus, such models may miss out on cap-

turing the effects of biases humans are susceptible to. This work

presents a method to model egocentric bias, the real-life tendency

to emphasize one’s own opinion heavily when presented withmul-

tiple opinions. We use a symmetric distribution, centered at an

agent’s own opinion, as opposed to the Bounded Confidence (BC)

model used in prior work. We consider a game of iterated interac-

tions where an agent cooperates based on its opinion about an op-

ponent. Our model also includes the concept of domain-based self-

doubt, which varies as the interaction succeeds or not. An increase

in doubt makes an agent reduce its egocentricity in subsequent in-

teractions, thus enabling the agent to learn reactively. The agent

system is modeled with factions not having a single leader, to over-

come some of the issues associated with leader-follower factions.

We find that agents belonging to factions perform better than in-

dividual agents. We observe that an intermediate level of egocen-

tricity helps the agent perform at its best, which concurs with con-

ventional wisdom that neither overconfidence nor low self-esteem

brings benefits.
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1 INTRODUCTION

Decision making has been a long-studied topic in the domain of

social agent-based systems, but most earlier models were rudimen-

tary and assumed rational behavior [20, 57]. Decision making is

strongly driven by the opinion that an agent holds; this opinion is

shaped over time by its own initial perceptions [45], its view of the

world [19], information it receives over various channels, and its

own memory [21]. This process of opinion formation is fairly com-

plex even under the assumption that Bayesian reasoning applies

to decision making. Years of research in psychology has shown

that humans and even animals [11, 29] are susceptible to a wide

plethora of cognitive biases [5]. Despite the immense difficulties

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and Mul-
tiagent Systems (www.ifaamas.org). All rights reserved.

in the understanding and description of opinion dynamics, it con-

tinues to be an area of immense interest because of the profound

impact of individual and societal decisions in our everyday lives.

In this work, we model agents with egocentric bias and focus on

agents’ opinion formation based on its perception, memory, and

opinions from other agents. Egocentric bias may be described as

the tendency to rely too heavily on one’s own perspective. The

bias has been claimed to be ubiquitous [46] and ineradicable [38].

Egocentric bias is commonly thought of as an umbrella term, and

covers various cognitive biases, including the anchoring bias [23,

49, 65] and the “false consensus effect” [55]. Recent research seems

to suggest that such bias is a consequence of limited cognitive abil-

ity [44] and the neural network structure of the brain [35].

The initial approaches to model opinion dynamics were heavily

inspired by statistical physics and the concept of atomic spin states.

They were thus detached from real life and allowed only two levels

of opinions [13, 63]. There was also the social impact model [47, 48]

and its further variations with a strong leader [33].

Later models, such as the ones proposed by Krause [37] and

Hegselmann [31] considered continuous values for opinions and

introduced the BoundedConfidence (BC)model which incorporated

the confirmation bias. The BC model and the relative agreement

model by Deffuant et al. [14] inspired by the former, have remained

in favor until now [1, 42]. Confirmation bias has also been modeled

in other contexts, such as trust [50] and conversational agents [8,

30].

Historically, models concentrating on opinion dynamics have

revolved around consensus formation. However, opinions are not

formed at an individual or societal level without any consequence.

Rather, these opinions lead to decisions and these decisions have a

cost, a result, and an outcome. In reality, humans as well as animals

learn from outcomes and there are subtle changes introduced in

this process of opinion formation during subsequent interactions.

The assignment of weights to all opinions including one’s own

is a major issue in opinion formation. In the BCmodel, the weights

are taken as a uniform distribution within the interval, and opin-

ions outside of this are rejected. The problem with this model is

that it is too rigid. To introduce some level of flexibility into our

model, we consider the assignment of weights as per a symmetric

distribution centered around the agent’s perspective with its flat-

ness/spread varied according to that agent’s level of egocentricity.

We consider a game of iterated interactions where an agent, say

A, is paired with some random agent, say B, in one such iteration.

Each of these interactions is a “Continuous Prisoner’s Dilemma”

(CPD) [66], which allows an agent to cooperate at various levels

bounded by [0, 1]. Here, opinions are based upon an agent’s knowl-
edge about the opponent’s level of cooperation in prior interac-

tions and thus lies between 0 and 1. Thus,A has its own opinion of

B and it also takes opinions of B from other sources. A aggregates
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all the opinions and cooperates at that level, and it then decides

the outcome of this interaction based on B’s level of cooperation.

Our model also captures an agent’s reaction to this outcome.

When an agent succeeds, there is a rise in self-esteem and this is

reflected in a higher egocentricity in subsequent interactions. We

model reaction to failure as a loss of self-esteem i.e., a rise in self-

doubt on this domain [58]. This domain-based self-doubt is a key

aspect of this model as it helps an agent to learn reactively.

In our model, agents can belong to factions as well. While most

works have modeled factions as a leader-followers structure [2, 4],

we model a faction with a central memory, that holds the faction’s

view on all agents in the system. The faction’s view is an unbiased

aggregate of individual opinions of its members. To sum up, an

agent can have up to three different levels of information—its own

opinion, opinions from friends, and the faction’s view.

Through simulation, we find results about optimum level of ego-

centricity and the effect of faction sizes. Varying the levels of ego-

centricity among agents, it is observed that agents with an interme-

diate level performmuch better than agentswith either lowor high

levels of egocentricity. This is in strong agreement with conven-

tional wisdom that neither overconfidence nor low self-confidence

brings optimum results. Agents in larger factions are observed to

performbetter, and results indicate a linear proportionality between

value and faction size as suggested by Sarnoff’s Law. Also, to under-

stand the effects of other attributes of the system, we vary the num-

ber of interactions, the proportion of different agents, the types of

agents, etc.

2 RELATED WORK

In his work on opinion dynamics [61], Sobkowicz writes:

“Despite the undoubted advances, the sociophysical

models of the individual behaviour are still rather

crude. Most of the sociophysical agents and descrip-

tions of their individual behaviour are too simplistic,

too much ‘spin-like’, and thus unable to capture the

intricacies of our behaviours.”

Our work thus focuses on three key aspects—egocentricity, self-

doubt, and the concept of factions. In this section, we review the

existing work in these domains.

Egocentric Bias

Egocentric bias is the tendency to rely too heavily on one’s own

perspective and/or to have a higher opinion of oneself than others.

Ralph Barton Perry [51] coined the term egocentric predicament

and described it as the problem of not being able to view reality

outside of our own perceptions. Greenwald [27] described it as a

phenomenon in which people skew their beliefs in agreement with

their perceptions or what they recall from their memory. We are

susceptible to this bias because information is better encodedwhen

an agent produces information actively by being a participant in

the interaction.

Research suggests that this skewed view of reality is a virtually

universal trait and that it affects each person’s life far more sig-

nificantly than had been realized [46]. It has also been shown to

be pervasive among people and groups in various contexts such

as relationships, team sports, etc. [56]. It is closely connected to

important traits such as self-esteem and confidence [39]. A high

degree of egocentric bias hinders the ability to empathize with oth-

ers’ perspectives, and it has been shown that egocentricity tends to

be lower in depressed individuals [25]. Egocentric bias also plays

a key factor in a person’s perception of fairness: people tend to

believe that situations that favor them are fair whereas a similar

favor to others is unjust [22, 26]. Perceived fairness is a crucial el-

ement in several resource allocation problems. Most importantly,

it has been shown to be ineradicable even after standard debiasing

strategies such as feedback and education [38].

Prior work has been done to model confirmation bias, but the

most used model has been the Bounded Confidence (BC) model.

The BC model was first introduced by Krause in 2000 [37]. Later,

Deffuant et al. [14] proposed a relative agreement model (RA)which

extended the BC model. In the BC model, an agent considers only

those opinions that are sufficiently close to its own, and shuns

any opinion outside the confidence threshold. This model has been

used to model confirmation bias in many papers [15, 16, 31, 61, 67].

Self-doubt

There can bemultiple responses to a perceived failure—lowering

of one’s aspiration, loss of self-esteem manifested as an increase in

doubt, or even leaving the activity altogether [41].

The term self-esteem has been used in three ways—global self-

esteem, state self-esteem and domain specific self-esteem [10]. We

are primarily concernedwith an agent’s domain-specific self-esteem

in this paper, which is a measure of one’s perceived confidence per-

taining to a single domain. Our work models the self-doubt which

is a counterpart of this. Self-doubt is defined as “the state of doubt-

ing oneself, a subjective sense of instability in opinions” [7].

Factions

Factions have been broadly considered to be specific sets of agents.

However, a faction has been modeled in different ways. Some fac-

tions have been modeled as a leader-follower group, where the

leader determines the group dynamics [4]. Even if the group does

not have an assigned leader to start with, it has been suggested

that an agent with high cognitive capacity eventually emerges as a

leader [2]. Such a leader eventually impacts the performance of the

entire group. Factions can also be modeled as a selfish herd, where

each agent is a member for its own gain [28]. However, this struc-

ture does not have a single leader and such models have proved

useful in modeling certain group behaviors [6, 53].

3 EGOCENTRIC INTERACTIONS

We consider a system of agents playing a game of iterated inter-

actions. In each iteration, an agent A is paired with some agent B

randomly. Since the model is based on the Continuous Prisoner’s

Dilemma (CPD) [66], an agent can cooperate at any level between 0

and 1, with 0 corresponding to defection and 1 to complete cooper-

ation. CB (t) denotes B’s level of cooperation with A in interaction

t , and this value lies between 0 and 1.

The opinion ofA aboutB at the next interaction t+1, denoted by

ηA(B, t + 1) is based on A’s previous ω previous experiences with

B, where ω is the memory size:

ηA(B, t) =
CB (t − 1) +CB (t − 2) + . . . +CB (t − ω)

ω
(1)

A has its own opinion of B and also collects opinions of B from

its friends (described in Section 3.3) as well. It aggregates these
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opinions according to its egocentricity, and this aggregate is used

as its level of cooperation in the next interaction with B. If B coop-

erates at a satisfactory level, A decreases its doubt on B and thus

is more egocentric in the next interaction with B. These concepts

and corresponding formulations are outlined in the following sub-

sections.

3.1 Egocentricity

As discussed in the previous section, current models of egocentric-

ity consider a Bounded Confidence (BC) model and all opinions

within this interval get the same weight [14, 37, 61]. This uniform

distribution of weights across the confidence interval is not an

accurate depiction because such a model would assign the same

weight to one’s own opinion and an opinion on the fringes of the

interval. Also, an opinion that is outside the interval by a mere

fraction is to be completely rejected, which is too rigid. This raises

the need for some flexibility, and hence we use a Gaussian (nor-

mal) distribution to calculate the weights. The use of a symmetric

distribution to model the agent’s judgments with egocentric bias is

a manifestation of the anchoring-and-adjustment heuristic, which

has a neurological basis [64] and is well known in studies of the

anchoring bias [23, 65]. The same type of distribution is seen in

the context of anchoring bias in the work of Lieder et al. [44]. The

mean of the curve is the agent A’s opinion of the other agent B, as

the mean gets the highest weight in this distribution.
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Figure 1: Weights assigned for a range of opinions

Each agent has a base egocentricity E0, which is a trait of the

agent and remains constant. The egocentricity of an agent A with

respect to B is obtained by factoring the doubt ofA about B on A’s

base egocentricity. This egocentricity ismanifested as the spread of

the Gaussian curve, σ . The base spread σ0 is inversely proportional

to the base egocentricity:

σ0 =
1

E0
(2)

The higher the egocentricity of an agent, the lower is the spread

of the curve, thus assigning a relatively high weight to its own

opinion. The lower the egocentricity of the agent, the flatter is the

curve, thus assigning roughly the same weight to all opinions in-

cluding its own. However, this spread depends on agent B and is

an adjusted value of the base spread, σ0.

3.2 Self-Doubt

Literature in psychology suggests several strategies as responses

to failure—quitting, readjusting levels of aspiration, and increas-

ing self-doubt [41]. In this work, we model an increase in domain-

specific self-doubt as the response to failure, since self-doubt has

been claimed to be useful [68]. In response to a successful inter-

action, an agent gains in self-confidence, i.e., the self-doubt is de-

creased. To classify an interaction as success or failure, A has a

threshold of satisfaction λ;B’s level of cooperation has to be higher

than λ for A to deem the interaction successful.

Self-doubt is used by agent A as a multiplicative factor on the

base spread to obtain the relevant spread for aggregating opinions

about agent B. Since doubt is a multiplicative factor, doubt about

all agents is initialized as 1, and agent A uses σ0 as the spread ini-

tially.With subsequent interactions, doubt varies as described, and

this ensures a constantly changing level of egocentricity, based on

outcomes of previous interactions. Since the spread has to be pos-

itive at all times, doubt is lower-bounded by 0. Theoretically there

is no fixed upper bound for doubt, but beyond a certain value, the

curve gets flat enough to a point where all opinions effectively get

the same weight. As doubt tends to zero, the agent is completely

certain of its opinion and rejects all other opinions. Doubt is sub-

jective, and the doubt of A about B is denoted by DA(B). It is up-
dated after each interaction between A and B, being incremented

or decremented by a constant c depending onwhetherA is satisfied

or dissatisfied with the interaction.

The spread of the Gaussian curve used for assigning weights to

opinions aboutB is calculated considering the agent-specific doubt

and its base spread, σ0:

σ = σ0DA(B) (3)

This σ defines the spread of the normal distribution used by A

to assign weights to different opinions on B.

3.3 Social Structures

Though leader-follower models are seen in certain contexts, such

as in the context of modeling countries [59], oligopolies [40], and

insurgents [60], there is evidence that other models with no ex-

plicit leader-follower structure are appropriate to understandmany

societal behaviors. The “selfish herd” model [28] was originally

suggested for animals seeking to avoid predation and other dan-

gers, but it is seen to explain human social behavior as well [52, 53].

Such models explain economic behavior [54] as well as the evolu-

tion of fashions and cultural changes in society [6]. Social media

as well as online purchases are also best explained in this way [17].

Group decision making in humans does not follow a strict leader-

follower structure even in the presence of bias [62], and the same is

also truewhen it comes to solving complex problems by teams [32].

Gill [24] gives the example of Wikipedia as a well-known example

of “collaborative intelligence” at work.

Therefore, we model our agent system as being split into fac-

tions, without any single authoritarian faction leader who sets the

faction’s view. Rather, each faction is modeled to be a herd where

all members contribute towards the formation of a central mem-

ory, which holds an unbiased aggregate of member opinions about

each agent in the system.
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The contribution of all members is assumed to be authentic and

complete. However, the level of adherence of the faction’s view is

different for each agent. Some agents can be modeled as extreme

loyalists, who suspend their own judgment and simply adhere to

the faction view, while there are others who are individualists and

do not always conform. We introduce the notion of faction align-

ment κ , which is a measure of an agent’s adherence with its faction,

with 0 indicating total nonconformance and 1 complete adherence.

The friends of an agent A are a small subset of the agents in A’s

faction. The number of friends may be different for each agent and

friendships are defined at randomwhen factions are initialized, but

remain intact thereafter. A friendship is the two-way connection

between two friends. Based on the seminal work of Dunbar [18]

on the number of friends in primate societies, a recent paper sug-

gests the concept of Dunbar layers [12]—an individual’s network

is layered according to strength of emotional ties, with there be-

ing four layers in all and the two outermost layers having 30 and

129 members, which suggests that the average number of friends

is about 25% of the overall social circle. As the number of friends

for an individual is variable, as is the total number of friendships in

the faction, we use z
2/8 as an upper bound for the number of friend-

ships within the faction, where z is the faction size. Friends are the

only source of opinions for an agent. Agents fully cooperate when

they interact with a friend.

3.4 Game Setting

The standard Prisoner’s Dilemma (PD) is discrete, so each agent

can choose one of only two possible actions: cooperate or defect.

However, not all interactions can be modeled perfectly by such

extreme behavior.

In the Continuous Prisoner’s dilemma (CPD) [34, 66], a player

can choose any level of cooperation between 0 and 1. We borrow

the concept and the related payoff equations from Verhoeff’s work

on the Trader’s Dilemma [66]. Here, a cooperation level of 0 and 1

correspond to the cases of complete defection and complete coop-

eration respectively in the PD.

Consider two agents A and B in a CPD, with their cooperation

levels being a and b respectively. The payoff functions [66] are ob-

tained from the discrete payoff matrix by linear interpolation:

pA(a,b) = abC + ab̄S + ābT + āb̄D (4)

whereC,T ,D, S are the payoffs in the standard PD as shown below

Player B

1 0

Player A
1 (C,C) (S,T )
0 (T , S) (D,D)

The conditions for choosing the values of these variables are

2C > T + S and that T > C > D > S . Most work on PD, including

Axelrod’s seminal work on evolution of cooperation [3], uses this

set of values: 〈C = 3,T = 5,D = 1, S = 0〉, and we do the same.

3.5 Opinion Aggregation

There are three phases in each interaction between two agents A

and B:

(1) Phase 1: A adjusts its own opinion ηA(B) and all opinions it

has received from its friends {ηf1 (B),ηf2 (B), . . .}, withweights
represented by vectorW to form an intermediate opinion,

O ′.
(2) Phase 2: A incorporatesMF (B), the faction’s view about B,

to the intermediate opinion O ′ using its faction alignment

κ as the weight.

(3) Updates: The interaction takes place, payoff ρA is updated,

the outcomes classified according to A’s satisfaction λ, and

doubt DA(B) is updated.
Consider an agent A, which hasm friends 〈f1, f2, . . . fm〉, wish-

ing to form an informed opinion about another agent B, given its

own and its friends’ opinions of B.

Phase 1

As per the definition of opinion in (1), the opinions of B by A

and its friends can be structured as a vector E, given by

E =



ηA(B)
ηf1 (B)
ηf2 (B)
.
.
.

ηfm (B)



(5)

The corresponding weights to each opinion are denoted by the

vectorW as,

W =
[
wA wf1 wf2 . . . wfm

]
(6)

Our main problem here is to come up with aW that takes A’s

egocentricity into account. As described in Section 3.1, we consider

a normal probability distribution for this purpose.

wx =
1

σ
√
2π

e
−(ηx (B)−µ )2

/
2σ 2

(7)

where µ = ηA(B), σ = σ0 × DA(B)
So, O ′, the opinion at the end of Phase 1, is given by

O ′ =W · E (8)

This can also be written in an algebraic form as

O ′ = wAηA(B) +
m∑

i=1

wfi ηfi (B) (9)

Phase 2

Phase 2 of opinion formation focuses on incorporating the fac-

tion’s view of agent B into the opinion arrived at in phase 1,O ′. Let
the faction view on B be denoted byMF (B) and let κA represent

A’s level of alignment towards its faction. Now, the final opinion

about B is a κ-weighted average of O ′ andMF (B)

O = κAMF (B) + (1 − κA)O ′ (10)

Updates

The updates phase starts offwith updating the payoff ρA accord-

ing to (4).

ρA = ρA + pA(a,b) (11)

Based on the outcome of this interaction with B (the level of co-

operation b), A updatesDA(B), its doubt about B. For A to classify

its interaction as successful, b has to be greater than λ. DA(B) is
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decremented by a constant c if the interaction is successful, and it

is incremented by c otherwise, as outlined in Section 3.2.

DA(B) =
{
DA(B) + c, b < λA
DA(B) − c, b > λA

(12)

Thus, A aggregates opinions about B received from its friends,

taking into account its level of egocentricity and its doubt about B.

4 AGENT TYPES

An agent pool consisting of three types of agents is considered. The

agents are categorized into different types based on their internal

working and attributes. The system is initially configured with at-

tributes such as the total number of agents, the proportion of differ-

ent types, the number of factions in the system, and the number of

iterations. In each iteration, an agent is randomly paired with one

other agent, then they interact, and finally, each agent updates its

experiences and payoff. We formally define the various attributes

of an agent before delving into the intricacies of each type.

Basic Attributes

All agent types have four basic attributes as described below:

• α is a unique identifier for each agent,α ∈ {1, . . . ,N },where
N is the number of agents in the system.

• ρ is the agent’s cumulative payoff, a metric to capture the

efficiency or performance, ρ ∈ Z+ ∪ {0}, where Z+ denotes
the set of positive integers.

• ω is the memory size of an agent, ω ∈ Z+.
• E, the experiences is a two-dimensional vector withN rows

and ω columns. E[i][j] = Ci (t − j), whereCX (t) denotesX ’s
level of cooperation in interaction t .

E =



C1(t − 1) C1(t − 2) . . . C1(t − ω)
C2(t − 1) C2(t − 2) . . . C2(t − ω)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CN (t − 1) CN (t − 2) . . . CN (t − ω)


Extended attributes

Apart from the basic attributes, an agent type may also have

several other attributes that enable their functionality and behav-

ior. We describe them as follows:

• D represents the self-doubt of an agent. It is a vector in-

dexed by agent id and reflects the level of uncertainty of the

agent’s own opinion about the corresponding other agent.

For agent A,DA = [DA(1),DA(2), ...DA(N )], 0 < DA(j) <
∞.
• F is the set of friends of an agent. Friends of an agent A can

be described as a subset of its faction, FA ⊂ ϒ (see below).

• σ0 represents the base spread of an agent, as defined in (2),

σ0 ∈ R+, where R+ is the set of positive real numbers.

• λ represents the threshold of satisfaction of an agent, as out-

lined in Section 3.5; 0.5 ≤ λ < 1.

• κ represents the faction alignment of an agent; 0 ≤ κ ≤ 1.

4.1 Factions and Friends

A faction is formally defined as a 3-tuple, Ψ = 〈γ , ϒ,M〉 where:
• γ is a unique identifier for each faction.

• ϒ is the set of member agents.

• M , the central memory is a vector indexed by agent id, and

each cell holds the aggregate of members’ opinions about

the corresponding agent.

M =
[∑

k∈ϒ ηk (1,t )
|ϒ |

∑
k∈ϒ ηk (2,t )
|ϒ | . . .

∑
k∈ϒ ηk (N ,t )
|ϒ |

]

Each faction is uniquely represented by an identifier and holds

a set of agents with the condition that an agent can belong to one

faction only. Each faction maintains a central memory which in-

dicates past levels of cooperation by all agents in the system (not

just the ones in the faction). The faction’s memory is updated by

all members at the end of each interaction, and is accessible only

to its members.

The number of friends are constrained as per the description in

Section 3.3. Agents always fully cooperatewhen they interact with

their friends. Any friend can access an agent’s experiences.

4.2 Partisan Agents

A partisan agent Π is formally defined as a 9-tuple as given below.

A partisan agent uses all the extended attributes in addition to the

basic attributes.

Π = 〈α, ρ,ω, E,D, F ,σ0, λ,κ〉
Behavior of a partisan agent

Consider that agent A is paired up with agent B in one itera-

tion. The goal for agent A is to come up with an optimum level of

cooperation given its own prior experiences with B and the opin-

ions it receives from its friends. The crux of the problem here is to

come up with the necessary Gaussian distribution, defined by µ,σ .

Then the opinions are collected, weighed, faction value incorpo-

rated, and then the agent cooperates at this level. The interaction

takes place and then the agent updates the values and learns. The

process is outlined in Algorithm 1, and it can be broken down into

four meaningful steps as described below.

(1) Initialization

As discussed already, the curve needs to be centered at the

agent’s own opinion. So, µ is set asA’s opinion of B formed on the

basis of its prior experiences, EA(B). According to (3), σ is set as

product of two factors—A’s base spread (σ0) and A’s doubt on B,

DA[B].
Initialize two empty vectors OpinionSet and Weights to cap-

ture the opinions and their respective weights. These vectors cor-

respond to E andW defined by (5) and (6) respectively. This initial-

ization is shown in lines 1–4 of Algorithm 1.

(2) Collection of opinions and assignment of weights

First append A’s opinion and its weight to OpinionSet and

Weights respectively. This is shown in lines 6–7, where the func-

tion Append(l, i) appends item i to list l . GaussianPDF(x, µ,σ ) re-

turns the value of Gaussian PDF defined by µ and σ at x .

Iterate through the list of A’s friends, and for each friend, ex-

tract its opinion about B and assign the corresponding weight ac-

cording to (7). Append the opinion and the weight to OpinionSet

andWeights respectively. This iteration is captured in the for loop

at lines 8–13.

(3) Deciding on a final level of cooperation

Perform a dot product on OpinionSet and Weights as per (8)

to get the intermediate decision (O ′) based on local opinions (Line

14). A retrieves its faction’s view on B and stores in FactionView.
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GetFactionRating(F ,X ) returns the faction F ’s view about an agent

B. The final level of cooperation is taken as the alignment-weighted

average of O ′ and FactionView according to (10). This calculation

is shown in lines 15–17 of Algorithm 1.

(4) Updating payoff and doubt

Calculate payoff according to (4) and updateA’s payoff (Line

18). Compare B’s level of cooperation b with A’s threshold of sat-

isfaction and update doubt of A on B according to (12). This con-

dition check is done in lines 19–23 of Algorithm 1. The last line of

the algorithm describes the concept of sharing experiences with

its faction and that ends this interaction.

Algorithm 1: Behavior of agent A of type Π

/* Initialize µ and σ for Gaussian Distribution

*/

1 µ ← A.Experience[B];

2 σ ← σ0 × DA(B);
3 OpinionSet← ∅ ;
4 Weights← ∅ ;
5 Friends← A.Friends ;

6 Append(OpinionSet,A.Experience[B]);

7 Append(Weights,GaussianPDF(A.Experience[B],µ,σ));

/* For each friend, retrieve opinion and weight

*/

8 for i ← Friends do

9 iexp ← i.Experience[B];

10 Append(OpinionSet, iexp);

11 w← GaussianPDF(iexp ,µ,σ);

12 Append(Weights,w);

13 end

/* Perform dot product of OpinionSet and Weights

*/

14 O’← DotProduct(Weights,OpinionSet) ;

15 FactionView← GetFactionRating(A.factionId,B);

16 FacAlign← A.falign;

/* LvlCoop represents level of cooperation of A

*/

17 LvlCoop← O’ × (1 − FacAlign) + FactionView × FacAlign;
18 Calculate and update payoff;

19 if b > A.satisfaction then

20 A.Doubt[B] = A.Doubt[B] - c;

21 else

22 A.Doubt[B] = A.Doubt[B] + c;

23 end

24 Share experience with faction;

4.3 Individual Trust-Based Agents

An individual trust-based agent Ω is defined by a 5-tuple as given

below. It uses only one extended attribute, λ.

Ω = 〈α, ρ,ω, E, λ〉
The only distinction here is that each cell in experiences (E)

stores the outcomes of the corresponding interaction with that

agent. The outcomes can either be 0 or 1 signifying failure or suc-

cess. We model the agents with an attribute called satisfaction (λ)

to determine the outcome of an interaction. There is no commu-

nication or sharing of experiences among these agents and they

strictly operate only based on their experiences.

Algorithm 2: Behavior of agent A of type Ω

/* A.Experiences[B] is a vector which represents

previous outcomes in interactions with B */

1 LvlCoop← Average(A.Experiences[B]);

2 Calculate and update payoff;

3 if b > A.satisfaction then

4 Append(A.Experiences[B],1);

5 else

6 Append(A.Experiences[B],0);

7 end

Behavior of an Individual trust-based agent

Individual trust-based agents rely on their history of interac-

tions with other agents as their only source of information to help

in decision making. Consider a case where agent A is paired with

agent B in an iteration. A retrieves the vector corresponding to B

from its Experiences vector EA and calculates an average of values

and it cooperates at this level (line 1).

A interacts with B and payoffs are calculated (line 2) and up-

dated according to (4). Each agent has an attribute called threshold

of satisfaction and this helps to classify an interaction as success or

failure. If agent B cooperates at a level greater than the threshold of

satisfaction (λA), it is classified a success, and a failure otherwise.

In case of success, the corresponding vector is appended with 1

and in case of a failure, it is appended with 0. This is captured in

lines 3–7 of Algorithm 2.

4.4 Suspicious TFT Agents

A Suspicious Tit-for-Tat (S-TFT) Agent ∆ is defined by a 4-tuple

and does not use any extended attribute. The only distinction here

is that their experiences vector can only capture the most recent

interaction with that agent i.e., ω = 1.

∆ = 〈α, ρ,ω, E〉
S-TFT agents are a standard type of agents which have been

well explored in IPD games [3, 9]. As the name suggests, an S-TFT

agent A defects completely on its first interaction with B owing

to its “suspicious” nature. However, in subsequent iterations, A co-

operates at the same level that B has cooperated in the previous

interaction.

5 EXPERIMENTS AND RESULTS

The agent pool is configured with all its parameters as described in

Section 4 and in each iteration, an agent is paired randomly with

one other agent. At the end of an interaction, payoffs and expe-

riences are updated. Agents capable of learning modify their self-

doubt based on the outcome. This flow is outlined by Figure 2. We

vary several parameters in the configuration of model and individ-

ual agents’ attributes such as egocentricity to observe their effects

on performance. The findings are presented in the following sub-

sections.
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Figure 2: Workflow for system

5.1 The Importance of Egocentricity

To observe the impact of different degrees of egocentricity, we

considered a system of 500 agents equally distributed among all

3 types. We consider 5 factions in the system and vary the value

of base egocentricity (E0). We find that payoffs are highest for an

intermediate level of egocentricity and is not as good for both ex-

tremely high values and extremely low values. Our results concur

with the conventional wisdom that egocentricity has to be at a

moderate level for better gains (Figure 3).
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Figure 3: Effect of egocentricity on payoffs

5.2 Comparing Payoffs of All Agent Types

To understand the payoffs for each type and to see how they fare

against others, the system’s total number of agents is varied along

with the number of factions, in such a way that each faction holds

about the same number of agents. This is done to avoid any varia-

tions resulting from changes in faction size. We increase the num-

ber of agents in the system from 50 all the way up to 500. Figure 4

clearly indicates that partisan agents always perform better than

the other types.

5.3 Proportion of Partisan Agents

To see if partisan agents perform better at all levels of representa-

tion in the system, we vary the proportion of partisan agents in
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a system of 200 agents with 5 factions. Since we are keeping the

total number of agents and the number of factions constant and

increasing the representation of partisan agents, factions contain

on average a higher number of partisan agents, and hence their

payoffs are expected to be higher, as seen in Figure 5.
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Figure 5: Effect of proportion of partisan agents on payoffs

5.4 Effect of Faction Size

To understand the effect of faction sizes on payoffs, we consider a

system of 1300 agents with half of them partisan agents and the

rest equally distributed among the other types. We consider 10 fac-

tions in the systemwith sizes ranging from 10 to 225. As the faction

size increases, the average payoff per partisan agent also increases

and this is seen in Figure 6. (Payoffs for other agent types do not

depend on faction sizes, for obvious reasons.)

Network externality can be described as a change in the benefit,

or surplus, that an agent derives from a good when the number

of other agents consuming the same kind of good changes [43].

Over the years, various network pioneers have attempted to model

how the growth of a network increases its value. One such model

is Sarnoff’s Law which states that value is directly proportional

to size [36] (an accurate description of broadcast networks with a

few central nodes broadcasting to many marginal nodes such as

TV and radio).

Since each of our factions has one central memory that caters

to all members, it is similar to broadcast networks and Figure 6

exhibits a similar proportionality (with a large offset).
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5.5 Number of Interactions and Payoffs

The number of interactions is a crucial aspect when it comes to

comparing strategies because S-TFT agents may gain a lot in their

first interaction with other agents, and if there are no subsequent

interactions with the same agents, it is highly profitable for them.

However, partisan agents grow better with each interaction be-

cause of the availability of more information. We consider a sys-

tem of 500 agents equally distributed among all 3 types and vary

the number of interactions per agent. As expected, S-TFT agents

have their best payoffs for lower numbers of interactions, but their

payoffs start to fall rapidly with increasing interactions. Partisan

agents steadily receive better payoffs as the number of interactions

increases (Figure 7).
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Figure 7: Number of interactions and payoffs

5.6 Number of Factions and Payoffs

For partisan agents, the number of factions in the system plays

a vital role. When there are many factions in the system, agents

are scattered across factions, thus weakening each faction by re-

ducing the information contained in the faction’s central memory.

Hence, we expect payoffs to decrease as number of factions are

increased. We have considered a system of 200 agents equally dis-

tributed among types and vary the number of factions from 10 to

100. It is clear from the Figure 8, that when factions are fewer in

number, partisan agents achieve high payoffs, but as the number

of factions increase, the advantage of a faction is diluted and the

payoff decreases.
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6 CONCLUSIONS

We live in a deeply fragmented society where differences of opin-

ion are sometimes so high that communication may break down

in some instances. A clear model of various biases is important to

understand the underlying mechanics of how some hold opinions

that may seem irrational to others.

We present a model that closely captures the reality by imbib-

ing the agents with egocentric bias and doubt.We use a symmetric

distribution centered at an agent’s own opinion to assign weights

to various opinions and thus introduce more flexibility than pre-

vious models. We also model a response to failure, by altering the

self-doubt on that topic. This balance between egocentricity and

doubt enables the agent to learn reactively.

Opinion aggregation from multiple sources is now more impor-

tant than ever owing to the effects of social media and mass com-

munication. Hence, there is a need for appropriate models that re-

alistically capture the way humans form opinions. Group opinion

dynamics continue to be an area of immense interest and hence we

have also introduced a model of a faction with a central memory.

We observe that our model of factions seems to support the theory

of network effects, and to be consistent with Sarnoff’s Law.

In people, high egocentricity may be connected with anxiety or

overconfidence, and low egocentricity with depression or feelings

of low self-worth. Our results also support the notion that ego-

centricity needs to be moderate and that either extreme is not as

beneficial.

It is also observed that partisan agents generally perform much

better than the other types that have been considered, which too

seems to have parallels in human society.
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