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ABSTRACT

This paper solves the cooperative overtaking problem in
autonomous driving using reinforcement learning techniques.
Learning in such a situation is challenging due to vehicular
mobility, which renders a continuously changing environment
for each learning vehicle. Without no explicit coordination
mechanisms, inefficient behaviors among vehicles might cause
fatal uncoordinated outcomes. To solve this issue, we propose
two basic coordination models to enable distributed learning
of cooperative overtaking maneuvers in a group of vehicles.
Extension mechanisms are then presented to make these
models workable in more complex and realistic settings with
any number of vehicles. Experiments verify that, by capturing
the underlying consistency of identities or positions during
vehicles’ movement, efficient coordinated behaviors can be
achieved simply through vehicles’ local learning interactions.
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1 INTRODUCTION

Autonomous driving is one of the most important AI applica-
tions and has attracted extensive interest in recent years from
both technology companies and research institutes, due to its
promise in improving safety, efficiency, energy consumption,
comfort and mobility [5]. In order to enable fully autonomous
driving functionalities, a vehicle should form safe, control-
lable, and robust driving policies of following, overtaking,
changing lanes or taking turns, etc. However, since there are
many possible scenarios (e.g., innumerable traffic patterns
and varying driving styles), manually tackling all possible
cases will likely yield too simplistic and suboptimal policies.

Proc. of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), N. Agmon, M. E. Taylor,
E. Elkind, M. Veloso (eds.), May 13–17, 2019, Montreal, Canada. ©
2019 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Even with significant expert domain knowledge, hand craft-
ing a controller that operates effectively in all cases may not
be always feasible.

These challenges naturally suggest using machine learning
approaches, particularly Reinforcement Learning (RL) [27],
to learn optimal driving strategies that are able to adapt to
changing environments and unseen scenarios. A large number
of studies have applied RL in various settings of autonomous
driving, using tabular forms of Q-learning [15, 18], RL with
function approximations [23] or policy gradient approaches [4].
The recent integration of deep learning has greatly promoted
the successful applications of RL in solving real-world complex
control problems in autonomous driving [2, 9, 24, 30].

All these studies, however, only focus on learning a driving
policy for a single vehicle. This is contradictory to the fact
that autonomous driving is a typical Multi-Agent System
(MAS), due to the coexistence of multiple vehicles and their
concurrent decision making and interaction processes [25]. In
fact, the development of wireless communication and vehi-
cle automation technologies has rapidly lead to the advent
of Connected Autonomous Vehicles (CAVs) [16], that are
capable of not only collecting real-time traffic data such as in-
dividual vehicle’s state information, traveling maneuver and
trajectories but also sharing these data with other surround-
ing vehicles. In CAVs, a major technical issue is how to design
high-level strategic control policies to coordinate multiple
vehicles for avoiding potential conflicts. Along this paradigm,
several studies investigated RL in multi-vehicle applications,
such as cooperative adaptive cruise control (CACC) [4], coop-
erative lane changing [17], and intersection navigation [10].
All these studies, however, directly applied simple distributed
RL in a multi-vehicle context. Since no explicit coordination
mechanisms have been applied, this simplification may result
in inefficient driving policies and sometimes fatal uncoordi-
nated outcomes [10].

This paper aims to solve the coordination problems in
autonomous driving using multiagent RL (MARL) tech-
niques [3]. Particularly, we focus on high-level strategic deci-
sion making of following or overtaking in a group of vehicles
on highways. This problem is considered because determining
if and when to make lane changing and overtaking maneu-
vers are the two main strategies for autonomous driving [19].
We cast such coordination problems as factored MDP prob-
lems [6], drawing on Coordination Graph (CG) to explicitly
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model dependency among vehicles and decrease computation
complexity of the overall decision making problem. Howev-
er, directly applying CG in autonomous driving is a tricky
problem, due to the continuously changing topology of the
moving vehicles. In such situations, it is impossible to build a
constant CG for the vehicles. This dynamics can significantly
violate the basic assumption of static topology in traditional
coordinated learning approaches based on CG.

To solve this problem, two basic coordination models are
proposed in this paper to enable effective distributed learning
of cooperative maneuvers in a group of vehicles. The first
one is the identity-based approach that distinguishes each
vehicle’s identification and builds a new CG once the topology
has changed. The other one is the position-based approach
that builds a constant CG based on the relative positions of
the vehicles. Several mechanisms are then proposed to extend
these two basic models in order to make them workable in
more complex and realistic settings with any number of
vehicles. The primary difficulty for this extension is how to
properly tackle the conflicts and coordination among different
subgroups of vehicles, each of which is governed by a basic
coordination model. Experiments verified the benefits of the
proposed learning approach, compared to other approaches
that learn without coordination or rely on some mobility
models and expert driving rules.

2 COORDINATED MARL AND CG

The major difficulty in MARL is that the computation com-
plexity grows exponentially with the number of agents. One
way to alleviate this problem is to exploit certain level of
independence among agents. Coordination Graph (CG) [7] is
one of such effective approaches, which decomposes global
payoff function 𝑄(s,a) into a linear combination of local
payoff functions. This decomposition can be depicted using
an undirected graph 𝐺 = (𝑉,𝐸), in which each node 𝑖 ∈ 𝑉
represents an agent and an edge (𝑖, 𝑗) ∈ 𝐸 indicates that
the corresponding agents have to coordinate their actions.
Allowing payoff functions defined over at most two agents,
the global payoff function 𝑄(s,a) can be given by:

𝑄(s,a) =
∑︁

(𝑖,𝑗)∈𝐸

𝑄𝑖𝑗(𝑠𝑖𝑗 , 𝑎𝑖, 𝑎𝑗) (1)

where s = ⟨𝑠1, ..., 𝑠𝑛⟩ ∈ 𝑆 and a = ⟨𝑎1, ..., 𝑎𝑛⟩ ∈ 𝐴 are the
joint state and joint action of all agents, respectively, and 𝑠𝑖𝑗
represents the relevant state variables for agent 𝑖 and 𝑗.

The main goal of CG is to find a coordination strategy of
actions for the agents to maximize 𝑄(s,a) at state s. The
Variable Elimination (VE) algorithm [7] can be applied for
this purpose. In VE, an agent first collects all payoff functions
related to its edges before it is eliminated. It then computes a
conditional payoff function which returns the maximal value
it is able to contribute to the system for every action com-
bination of its neighbors, and a best-response function (or
conditional strategy) which returns the action corresponding
to the maximizing value. The conditional payoff function is
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(a) Initial graph (b) After elimination of agent1

Figure 1: CG for a 4-agent coordination problem.

then communicated to its neighbors and the agent is elimi-
nated from the graph.

Figure 1 shows the coordination graph for an example of
four agents and its elimination process of agent 1. The overall
value function can be written as follows:

𝑄(a) = 𝑄12(𝑎1, 𝑎2) +𝑄13(𝑎1, 𝑎3) +𝑄34(𝑎3, 𝑎4), (2)

We first eliminate agent 1. This agent does not depend on
the local payoff function 𝑄34. Therefore, the maximization
of 𝑄(a) can be written as:

max
𝑎1,𝑎2,𝑎3,𝑎4

𝑄(a) = max
𝑎2,𝑎3,𝑎4

{𝑄34(𝑎3, 𝑎4) + 𝑓1(𝑎2, 𝑎3)}, (3)

where 𝑓1(𝑎2, 𝑎3) = max𝑎1 [𝑄12(𝑎1, 𝑎2) + 𝑄13(𝑎1, 𝑎3)] is a
conditional payoff function indicating the maximal value that
agent 1 can achieve given the actions of agent 2 and 3. When
there is the last remaining agent, the whole process is reversed
in which each agent computes its optimal (unconditional)
action from its best-response function and fixed actions from
its neighbors. The VE algorithm has been proved to produce
the optimal joint action and the coordination result does not
depend on the elimination order.

Once the optimal joint action for a given CG structure
can be computed, it is then possible to employ coordinat-
ed RL approaches [7] for sequential decision making prob-
lems. The basic idea is to maintain a local value function
for each agent, which can be represented, e.g., by a neu-
ral network, and update it along the gradient of the global
square TD error, resulting the following update rule ∆𝑤𝑖 =
𝛼[𝑟+𝛾maxa 𝑄(s′,a, 𝑤)−𝑄(s,a, 𝑤)]∇𝑤𝑖𝑄𝑖(𝑠𝑖, 𝑎𝑖, 𝑤𝑖), where
the optimal joint action a in the new state s′ can be computed
using VE on the CG. Due to page limit, readers are referred
to [6, 7] for more details of related background information.

3 RL FOR AUTONOMOUS DRIVING

3.1 MDP Formalization

The decision making process of each vehicle is modeled as a
Markov Decision Process (MDP) by a tuple of ⟨𝑆,𝐴, 𝑇,𝑅⟩,
in which 𝑆 is a finite set of states, 𝐴 a finite set of actions,
𝑇 a transition function defined as 𝑇 : 𝑆 ×𝐴× 𝑆 → [0, 1] and
𝑅 a reward function defined as 𝑅 : 𝑆 × 𝐴 × 𝑆 → 𝑅. Each
vehicle’s current state is composed of all the factors that
can impact its decision making: the lane 𝑙 where the vehicle
is currently on (𝑙 = 1 for the driving lane and 𝑙 = 2 the
overtaking lane), the longitudinal speed 𝑣0 of the vehicle, and
the distance 𝑑𝑖 and speed 𝑣𝑖 of its four neighboring vehicles
(𝑖 = 1,= 2 for the lead, lag neighboring vehicles on the
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driving lane, respectively, and 𝑖 = 3,= 4 for the lead, lag
neighboring vehicles on the overtaking lane, respectively).
This consists of a ten tuple of state ⟨𝑙, 𝑣0, 𝑑𝑖, 𝑣𝑖⟩(𝑖 = 1, 2, 3, 4)
for each vehicle. However, since the distance and speed of
neighboring vehicles can be synthesized into the remnant
reaction time (RRT), the state dimension can be reduced
to five as ⟨𝑙, 𝑡𝑖⟩(𝑖 = 1, 2, 3, 4), where 𝑡1 = (𝑑1 − 𝑑𝑠1)/𝑣0 and
𝑡3 = (𝑑3 − 𝑑𝑠3)/𝑣0 are the focal vehicle’s RRT on the driving
and overtaking lane1, respectively, while 𝑡2 = (𝑑2 − 𝑑𝑠2)/𝑣2
and 𝑡4 = (𝑑4 − 𝑑𝑠4)/𝑣4 are the lag vehicle’s RRT on the
driving and overtaking lane, respectively.

To model the local observability of vehicles, two valuables
𝑓𝑣 and 𝑏𝑣 are used to represent the forward and backward
view range of a vehicle, which are set to 160𝑚 in this study.
This means that a vehicle can only receive the speed and
position information from neighboring vehicles within 160𝑚
for the state representation2. As we aim at designing high-
level strategic controllers, two actions are considered here:
driving on the driving lane 𝑎𝑑, which means following in a
limited speed of 𝑣𝑡 = 30𝑚/𝑠 on the driving lane, and driving
on the overtaking lane 𝑎𝑜, which means following in a limited
speed of 𝑣𝑜 = 40𝑚/𝑠 on the overtaking lane3. Finally, the
reward function can be defined as follows:

𝑟𝑠 =

⎧⎪⎨⎪⎩
min(𝑡1, 𝑡2) if 𝑙 = 1 and 𝑑1 > 3 and 𝑑2 > 3

min(𝑡3, 𝑡4) if 𝑙 = 2 and 𝑑3 > 3 and 𝑑4 > 3

−5 else

(4)

Eq. (4) means that when the vehicle is on the driving
lane (𝑙 = 1) and the distance between the vehicle and the
lead/lag vehicle is not too close (𝑑1 > 3 and 𝑑2 > 3), the
reward is the smaller remnant reaction time on the driving
lane. This means that larger 𝑡1 and 𝑡2 indicate more rem-
nant reaction time during emergency, and thus higher safety.
The same explanation applies for the overtaking lane. In
all other situations when any 𝑑𝑖 is less than 3 meters, the
vehicle is heavily penalized by -5 due to being too close to
the lead/lag vehicle. Note that we also implemented other
versions of reward function, e.g., by introducing a gradient
penalty according to relative speed and distance between two
vehicles, but found similar result patterns. As evaluation of
exact value of the penalty is not the main focus of the paper,
this result is omitted here due to page limits.

The reward function is to evaluate the strategic decision
making of following or overtaking, not explicit driving actions
such as acceleration or deceleration. So, if a vehicle is mov-
ing at a low speed and far away from the former vehicle, in
which case the highest forward remnant reaction time might

1𝑑𝑠𝑖
is the shortest safety distance when the lead vehicle decelerates

with −6𝑚/𝑠2 and the lag vehicle decelerates with −4𝑚/𝑠2.
2When a neighboring vehicle is outside of view, to still validate the
state formalization, we imagine a virtual vehicle moving at the same
speed with the focal vehicle at the location of 160𝑚. In this way, the
virtual vehicle would have little impact on the decision making of the
focal vehicle, but still be valid in the state definition.
3Following in a limited speed means that the vehicle takes the smaller
value of planned speed 𝑣𝑝 and 𝑣𝑡 (or 𝑣𝑜 ) as traveling speed. The speed
𝑣𝑝 can be computed using various car-following models.

occur, the vehicle cannot stay in this safe state as it may
keep on choosing following to increase its speed according to
the car-following mobility model, and thus the reward will
be decreased accordingly. Moreover, the reward function is
defined over the minimum of the forward and backward rem-
nant reaction time. Thus, the overall reward can be quite low
if a vehicle is moving slowly at a far distance from the former
vehicle, since this may bring about little backward remnan-
t reaction time. Therefore, a vehicle should learn to make
the best trade-off between the forward and backward safety
situation, which nicely mimics real-life driving behaviors. In
fact, taking into account not only the car ahead, but the car
behind allows information to flow in both directions, thus
reducing the instability problem in traffic flow [8]. Also, many
other criterion are available to evaluate the decision making
of an autonomous vehicle, e.g., the smoothness to evaluate
how fast the speed has been changed to avoid uncomfort-
able drastic acceleration or deceleration, and the number of
lane change to evaluate the effectiveness of decision making.
The RRT is considered here as safety is the ultimate goal
of autonomous driving. However, other criteria can also be
intergraded into the reward function using different weight
parameters, which is left for future investigation.

To validate the above MDP formulation, we apply basic
tubular form of Q learning to solve it, with learning rate
of 0.1, discount factor of 0.95, and initial exploration rate 𝜀
of 0.1 decaying to 0.9𝜀 every 10 episodes. The experiment
involves one decision making (learning) vehicle and its four
environmental vehicles randomly generated at a distance
in-between [100m,160m] far away. The initial speed of all
the vehicles is randomly set in-between [18m/s,27m/s] to
model regular movement on highways. However, the learning
vehicle can adapt its speed based on the chosen overtaking
or following decisions. The RL approach is compared to the
famous mobility model MOBIL [11] and an expert approach
[14] to demonstrate the effectiveness of learning. An episode
ends if two vehicles collide or 400 decision steps have passed.
Each run consists of 1000 episodes and the final results are
averaged over 30 independent runs.

Figure 2 (a) plots the dynamics of average reward using
Q-learning approach with the original 10-dimension state
and the reduced 5-dimension state. It is clear that the RL
approaches can converge to higher rewards than the MOBIL
model and the expert rule-based approach. The vehicle makes
decisions randomly at first, causing frequent lane change. As
learning proceeds, the vehicle can learn to take overtaking
only when necessary, significantly reducing the number of lane
change. On the contrary, the vehicle using MOBIL and the
expert approach is rather conservative, which means that the
vehicle prefers following the front vehicles most of the time
and only overtakes occasionally. That is why the minimum
forward distance using MOBIL and the expert approach is
smaller than that using the RL approaches. As for the average
speed, the RL approaches can bring about more stable speed
than the other two approaches due to the learned overtaking
behaviors. Although MOBIL can achieve a bit higher speed
than RL approaches due to vehicles following in a limited
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Figure 2: Performance comparison of different ap-
proaches with regard to the learning episode.

speed of 𝑣 = 40𝑚/𝑠 on both lanes, it is not as safe as RL
methods as given by Figure 2 (a).

3.2 Two Basic Coordination Models

Autonomous driving is a typical cooperative multiagent do-
main, in which all the vehicles aim at achieving the same goal
of moving fast as a group and at same time keeping safe. In
reality, however, some vehicles might be selfish and only care
about their own short term interests. Extra trust or reputa-
tion mechanisms can be employed to penalize these free riders.
Nevertheless, in this paper, we simply focus on cooperative
settings by assuming the homogeneity of all the vehicles and
their willingness for cooperation. The goal is to compute an
overall policy 𝜋 to maximize the value function 𝑄𝜋(𝑗𝑠, 𝑗𝑎) =
𝐸𝜋

[︀∑︀∞
𝑡=0 𝛾

𝑡𝑅(𝑗𝑠𝑡, 𝑗𝑎𝑡)|𝑗𝑠0 = 𝑗𝑠
]︀
, in which 𝑗𝑠 and 𝑗𝑎 are re-

spectively the joint state and action of all vehicles. To al-
leviate computation complexity, the overall 𝑄𝜋(𝑗𝑠, 𝑗𝑎) can
be decomposed as 𝑄𝜋(𝑗𝑠, 𝑗𝑎) =

∑︀
(𝑖,𝑗)∈𝐸 𝑄𝑖𝑗(𝑠𝑖𝑗 , 𝑎𝑖, 𝑎𝑗), in

which 𝐸 is the set of edges on the CG to indicate dependency
between two vehicles. The definitions of individual actions,
states and rewards are the same as the single vehicle case as
introduced ahead.

We are now interested in how multiple vehicles can achieve
coordinated overtaking policies through their distributed and
concurrent learning behaviors. Although several coordinated
RL approaches on CG have been proposed previously [7],
directly applying these approaches to the multi-vehicle coordi-
nation problem is infeasible due to the continuously changing
dependencies of moving vehicles. This mobility can greatly
change the topology of the CG at each time step, making the
problem into a Dynamic CG (DCG) problem. On a DCG, a
link may disappear from the graph due to the break of link
between two agents or it may connect two distinct agents
at different time steps. Learning for coordinated behaviors
in such a dynamic context is thus a challenging task since
agents not only need to reason about the behaviors of other

Algorithm 1: Basic Coordinated Learning Model

1 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑄 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠;

2 repeat

3 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑠𝑝𝑒𝑒𝑑 𝑎𝑛𝑑 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑉 ;

4 while collision or a time threshold is not met do

5 𝐺← BuildIdCG(V) 𝑜𝑟 BuildPsCG(V);

6 foreach 𝑣𝑖 ∈ 𝑉 do
7 𝑣𝑖.𝑐𝑢𝑟 𝑠𝑡𝑎𝑡𝑒← 𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒(𝑣𝑖);

8 foreach (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 do
9 𝑠𝑖𝑗 ← 𝑔𝑒𝑡𝐽𝑜𝑖𝑛𝑡𝑆𝑡𝑎𝑡𝑒(𝑣𝑖, 𝑣𝑗);

10 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 argmax𝑗𝑎𝑄(𝑗𝑠, 𝑗𝑎, 𝑤) 𝑢𝑠𝑖𝑛𝑔 𝑉 𝐸;

11 𝐸𝑥𝑐𝑢𝑡𝑒 𝑗𝑎 𝑢𝑠𝑖𝑛𝑔 𝑎𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦;

12 𝐺′ ← BuildIdCG(V) 𝑜𝑟 BuildPsCG(V)

13 foreach 𝑣𝑖 ∈ 𝑉 do

14 𝑣𝑖.𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒← 𝑔𝑒𝑡𝑆𝑡𝑎𝑡𝑒(𝑣𝑖);

15 𝑣𝑖.𝑟𝑒𝑤𝑎𝑟𝑑← 𝑔𝑒𝑡𝑅𝑒𝑤𝑎𝑟𝑑(𝑣𝑖);

16 foreach (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 do
17 𝑠′𝑖𝑗 ← 𝑔𝑒𝑡𝐽𝑜𝑖𝑛𝑡𝑆𝑡𝑎𝑡𝑒(𝑣𝑖, 𝑣𝑗);

18 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟 𝑏𝑦 𝑠𝑢𝑚𝑖𝑛𝑔 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒′𝑠
𝑟𝑒𝑤𝑎𝑟𝑑;

19 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 max𝑗𝑎𝑄
′(𝑗𝑠′, 𝑗𝑎, 𝑤) 𝑢𝑠𝑖𝑛𝑔 𝑉 𝐸;

20 𝑈𝑝𝑑𝑎𝑡𝑒 𝑄 𝑣𝑎𝑙𝑢𝑒 𝑜𝑛 𝑒𝑎𝑐ℎ 𝑒𝑑𝑔𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞.(5);

21 until convergence;

agents, but also need to reason about how to adapt to these
behaviors under a continuously changing environment.

However, we can still discover some aspects of latent con-
sistency on a DCG. The agents can keep their identities or
relative spatial positions unchanged on a DCG no matter how
they have moved on the graph. By capturing this consistency,
a CG can then be built at each time step to model dynamic
interactions among agents. We now propose two basic coordi-
nated learning models to realize distributed learning among
multiple vehicles. We call them basic models because only a
focal vehicle and its four neighboring vehicles are involved,
and these five vehicles form the basic coordination unit in
autonomous driving. Algorithm 1 gives the sketch of the
basic coordinated learning model, in which 𝑄(𝑗𝑠, 𝑗𝑎, 𝑤) is
the global Q value for all the vehicles and 𝑄𝑖𝑗(𝑠𝑖𝑗 , 𝑎𝑖, 𝑎𝑗 , 𝑤𝑖𝑗)
is the local Q value for each edge to indicate coordination
between vehicle 𝑖 and 𝑗. Each local 𝑄𝑖𝑗 value is approximated
by a neural network with weights 𝑤𝑖𝑗 .

3.2.1 Identity-based coordinated learning model. Since each
edge in the CG indicates the influence and potential conflicts
between two vehicles, there is a link between any two neigh-
boring vehicles on the same lane, and between the closest
vehicles on different lanes4. At each time step, each vehicle
chooses its optimal action (i.e., following or overtaking) using
the VE algorithm based on the CG (Line 10) and execute

4It should be noted that a link on a CG might link two vehicles
that are out sight of each other (i.e., beyond 160𝑚). This is because
the sight range of 160𝑚 is used as the state definition due to local
observability, while the communication range (usually 400𝑚 − 500𝑚
using the vehicular dedicated short-range communications (DSRC)
techniques) is for coordination between vehicles.
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Algorithm 2: BuildIdCG(𝑉 )

Input: The set of vehicles 𝑉 , 𝐺← ∅;
Output: The identity-based coordination graph 𝐺;

1 for all 𝑣𝑖 ∈ 𝑉 do
2 𝑁 ← 𝑓𝑖𝑛𝑑 𝑎𝑙𝑙 𝑓𝑜𝑢𝑟 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑜𝑓 𝑣𝑖;

3 for all 𝑣𝑗 ∈ 𝑁 do

4 if (𝑣𝑖, 𝑣𝑗) /∈ 𝐺 then

5 𝐺← 𝐺+ (𝑣𝑖, 𝑣𝑗)

6 return 𝐺;

the action using a predefined exploration strategy (Line 11).
After the vehicles moved to new positions, a new CG can
be built (Line 12). A critical problem is then how to update
the Q values on previous CG using the new constructed
CG at this step. In the identity-based learning model, it is
assumed that coordination dependencies between vehicles
are kept unchanged during the learning process, as long as
they still satisfy the coordination constraints on the new CG
(Algorithm 2). This means that link 𝑄𝑖𝑗 on the original
CG will still represent the coordination dependency between
vehicle 𝑖 and 𝑗, if there is still a link between them on the
new CG. Once a CG has been built, each local Q value on
the previous CG can be updated by:

∆𝑤𝑖𝑗 = 𝛼[𝑟 + 𝛾max
𝑗𝑎

𝑄′(𝑗𝑠′, 𝑗𝑎, 𝑤)

−𝑄(𝑗𝑠, 𝑗𝑎, 𝑤)]∇𝑤𝑖𝑗𝑄𝑖𝑗(𝑠𝑖𝑗 , 𝑎𝑖, 𝑎𝑗 , 𝑤𝑖𝑗) (5)

where 𝑟 is the reward for the group (Line 18), 𝑄(𝑗𝑠, 𝑗𝑎, 𝑤) is
the global Q value which can be computed by fixing the action-
s actually executed by the vehicles, and max𝑗𝑎 𝑄

′(𝑗𝑠′, 𝑗𝑎, 𝑤)
indicates the maximum Q values in a new joint state 𝑗𝑠′

(Line 19), under the new constructed CG.

Algorithm 3: BuildPsCG(𝑉 )

Input: The set of vehicles 𝑉 ;
Output: The position-based coordination graph 𝐺;

1 𝐺← ∅, 𝐷𝑖𝑟𝐹 𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒, 𝑣𝑖 ← 𝑇ℎ𝑒𝐹 𝑖𝑟𝑠𝑡𝑉 𝑒ℎ𝑖𝑐𝑙𝑒(𝑉 );

2 while a closed loop is not formed do
3 if 𝐷𝑖𝑟𝐹 𝑙𝑎𝑔 then
4 𝑣𝑗 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑙𝑒𝑎𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑙𝑎𝑛𝑒;

5 𝑣𝑘 ← 𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑙𝑎𝑛𝑒;

6 else

7 𝑣𝑗 ← 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑙𝑎𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑙𝑎𝑛𝑒;

8 𝑣𝑘 ← 𝑓𝑎𝑟𝑡ℎ𝑒𝑠𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑙𝑎𝑛𝑒;

9 if 𝑣𝑗 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑡 then
10 𝐷𝑖𝑟𝐹 𝑙𝑎𝑔 ←∼ 𝐷𝑖𝑟𝐹 𝑙𝑎𝑔;

11 𝑣𝑗 ← 𝑣𝑘;

12 𝐺← 𝐺+ {(𝑣𝑖, 𝑣𝑗)};
13 𝑣𝑖 ← 𝑣𝑗 ;

14 return 𝐺;

3.2.2 Position-based coordinated learning model. Unlike
the identity-based model, which recognizes each vehicle’s
identification during the process of topology change, the

position-based learning model makes simplifications by ignor-
ing this consistency. A CG with five links is built at each
time step to link the vehicles in a sequence. The positions of
the corresponding Q values on these links are kept unchanged
during the learning process, no matter how the physical posi-
tions of vehicles have changed. Algorithm 3 shows the basic
procedure of building a position-based CG, where 𝐷𝑖𝑟𝐹 𝑙𝑎𝑔
is a direction indicator. For example, we first set 𝐷𝑖𝑟𝐹 𝑙𝑎𝑔
as clockwise and choose the leftmost vehicle 𝑣𝑖 on one lane.
The algorithm then searches all the vehicles ahead of 𝑣𝑖 and
builds the links sequentially until the rightmost vehicle. Then,
the algorithm searches all the vehicles on the other lane from
right to left until a closed loop is formed. The principle of
only capturing the relative positions among vehicles and ne-
glecting their identities has also been advocated by previous
studies in mixed-autonomy traffic settings [28]. Eq. (5) is
then applied to update the CG at each step.

Table 1: Parameters for multiple learning vehicles.

Environment Distance. Init Speed. Init Distance. Visible

100𝑚− 160𝑚 18𝑚/𝑠− 27𝑚/𝑠 160𝑚

RL Learning Rate Discount Factor Exploration Rate. Init

0.1 0.95 0.1

BP Network No. Input No. Hidden No. Output

10 12 4

3.2.3 Experimental evaluation. To validate the proposed
two basic models, we compared them to the individual RL ap-
proach, the MOBIL model and the expert rule-based approach.
In the individual RL approach, each vehicle is modeled as
an independent MDP and learns its strategy without coor-
dination. Comparison to this approach thus demonstrates
the effectiveness of coordination in the proposed approaches
since individual learning for an optimal behavior may not
guarantee an optimal group performance. As the topology
of CG is constantly changing, making it impossible to apply
any other existing coordinated learning methods for compar-
ison. The benchmarks of individual learning, existing famous
mobility model MOBIL and an expert rule-based strategy
can fully demonstrate the benefits of our proposed methods
from different perspectives. In the proposed approaches, each
local Q value is defined over the joint states and actions over
two linked vehicles. Thus, we adopted a neural network with
10 input, 12 hidden and 4 output neurons to represent the
Q values. Each output indicates the Q value for each action
combination of the two connected vehicles. Learning rate 𝛼
is 0.1, and the discount factor 𝛾 is 0.95. Exploration rate
𝜀 is 0.1 and decays to 0.9𝜀 every 10 episodes. We choose a
16km long highway to simulate the learning process. Four
environmental vehicles are randomly generated at a distance
in-between [100m,160m] away from the focal vehicle, and
the initial speed of all vehicles is randomly set in-between
[18m/s,27m/s]. A learning episode ends either when a colli-
sion occurs or 400 time steps have passed. One run has 5000
episodes and the final results are averaged over 10 runs. Table
1 summarizes the main parameter settings in the simulation.
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Figure 3: Average reward and microscopic mobility.

Figure 3 (a) shows the learning dynamics with regard to
learning episodes over the five vehicles. I-DCG learning and
P-DCG learning denote the identity-based and position-based
coordinated learning approaches, respectively. It is clear that
the two proposed coordinated learning approaches enable
much higher average rewards than the other two approach-
es, which demonstrates the benefits of coordination among
vehicles. Upon a deeper investigation on the motion dynam-
ics in the vehicle group, we found that vehicles using the
position-based approach were clustered together more closely
and took overtaking actions more often than vehicles using
other approaches. This frequent overtaking enables vehicles
to move at a faster speed. The identity-based approach, how-
ever, mainly learnt a policy that all vehicles were moving at a
safe distance and made overtaking actions occasionally. That
is why the identity-based approach can achieve a safer poli-
cy than the position-based approach. All these phenomena
can be observed in Figure 3 (b)-(d), which respectively plot
the dynamics of lane change, average speed, and minimum
forward distance using different approaches.

4 THREE EXTENSION MECHANISMS

When extending the basic models to any number of vehicles,
several issues need to be carefully resolved. The first is how
to divide the vehicle group into several sub-groups, each
of which can be expressed by a basic coordination model.
The second is how to deal with the conflict between vehicles
belonging to different sub-groups. The last is how to realize
coordinated learning in each sub-group, given the changing
topology of vehicles and influence from other sub-groups.

4.1 The Extension Mechanisms

The sequential coordination mechanism . In order to di-
vide the vehicle group into sub-groups (Algorithm 5), the
lead vehicle on the driving lane is labeled as the focal vehi-
cle and then its four nearest vehicles on both driving and
overtaking lanes can be determined (line 3-5). This makes

Algorithm 4: The Sequential Extension Mechanism

1 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑄 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠;

2 repeat

3 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑉 ;

4 while collision or predefined time threshold is not met

do

5 𝐺𝑠𝑒𝑡, 𝑉𝑓 ← BuildCurCG(V); % 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 5

6 for 𝑎𝑙𝑙 𝐺𝑖 ∈ 𝐺𝑠𝑒𝑡 do

7 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑓𝑖𝑥 𝑖𝑡𝑠 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑖𝑛 𝐺𝑖−1;

8 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 argmax𝑗𝑎𝑄𝑖(𝑗𝑠, 𝑗𝑎, 𝑤) 𝑏𝑦 𝑉 𝐸;

9 𝐸𝑥𝑐𝑢𝑡𝑒 𝑗𝑎 𝑢𝑠𝑖𝑛𝑔 𝑎𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦;

10 𝐺′
𝑠𝑒𝑡 ← BuildNextCG(V, 𝑉𝑓 ); % 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 6

11 𝐸𝑎𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑠 𝑖𝑡𝑠 𝑟𝑒𝑤𝑎𝑟𝑑 𝑟𝑖;

12 for 𝑎𝑙𝑙 𝐺𝑖 ∈ 𝐺′
𝑠𝑒𝑡 do

13 𝑅𝑖 ← 𝑠𝑢𝑚 𝑒𝑎𝑐ℎ 𝑣𝑒ℎ𝑖𝑐𝑙𝑒′𝑠 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝐺𝑖;

14 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑓𝑖𝑥 𝑖𝑡𝑠 𝑎𝑐𝑡𝑖𝑜𝑛 𝑎𝑠 𝑖𝑛 𝐺′
𝑖−1;

15 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 max𝑗𝑎𝑄
′
𝑖(𝑗𝑠

′, 𝑗𝑎, 𝑤) 𝑢𝑠𝑖𝑛𝑔 𝑉 𝐸;

16 for 𝑎𝑙𝑙 𝐺𝑖 ∈ 𝐺𝑠𝑒𝑡 do

17 𝑈𝑝𝑑𝑎𝑡𝑒 𝑄 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑛 𝐺𝑖 𝑏𝑦 𝐸𝑞.(5) 𝑢𝑠𝑖𝑛𝑔 𝑅𝑖;

18 until convergence;

the first basic coordination group (line 6). Then, the next
neighboring vehicle on the driving lane that has not been
included in the previous sub-group is labeled to be the sec-
ond focal vehicle, and its four neighboring vehicles can be
determined. This process continues until all the vehicles on
the driving lane have been covered (line 8). For those vehicles
that have not been included in any group, they will learn
individually. Algorithm 4 gives the sequential coordination
mechanism, in which 𝐺𝑖 denotes sub-group 𝑖, 𝐺𝑠𝑒𝑡 and 𝐺′

𝑠𝑒𝑡

represent the set of sub-groups before and after the change
of CG topology, 𝑉𝑓 is the set of all the focal vehicles, and
𝑅𝑖 is reward for sub-group 𝐺𝑖. After the vehicles have been
divided into several sub-groups (line 5), the vehicles in each
sub-group apply VE algorithm to choose the optimal actions
(Line 6-9). The proposed sequential coordination mechanism
determines the optimal actions in the ordered sub-groups one
by one (thus called sequential). More specifically, it starts
from the first sub-group and determines the optimal actions
for the vehicles in this group. Then, it moves to determine
the optimal actions for the next sub-group. However, some
vehicles might belong to two neighboring sub-groups at the
same time, and the optimal actions of these vehicles have
already been determined in the previous sub-group (Line 7).
In this case, the remaining vehicles in the next sub-group
can determine their optimal actions by using VE that fixes
the actions of those vehicles co-existing in both sub-groups
(line 8-9). After the vehicles moved to new positions, change
of topology makes it difficult to recognize the sub-group at
previous time step. To solve this problem, the focal vehicles
at previous time step are still labeled as the focal vehicles
at current time step (line 10). The new CG is then used to
update the Q values in previous CG using Eq. (5) (Line 17).

Figure 4 gives an illustration of the sequential coordination
mechanism using the identity-based learning model when
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Figure 4: Illustration of the sequential mechanism.

Algorithm 5: BuildCurCG(V)

Input: The set of vehicles 𝑉 ;

Output: Set of subgroups 𝐺𝑠𝑒𝑡, set of focal vehicles 𝑉𝑓 ;

1 𝑉𝑓 ← ∅, 𝐺𝑠𝑒𝑡 ← ∅;
2 repeat
3 𝑣𝑓𝑜𝑐𝑎𝑙 ← 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑙𝑎𝑛𝑒 𝑎𝑛𝑑 𝑛𝑜𝑡

𝑖𝑛 𝑎𝑛𝑦 𝑏𝑎𝑠𝑖𝑐 𝑚𝑜𝑑𝑒𝑙;

4 𝑉𝑓 ← 𝑉𝑓 + {𝑣𝑓𝑜𝑐𝑎𝑙};
5 𝑉 ← 𝑣𝑓𝑜𝑐𝑎𝑙 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑓𝑜𝑢𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠;

6 𝐺← BuildIdCG(V) 𝑜𝑟 BuildPsCG(V);

7 𝐺𝑠𝑒𝑡 ← 𝐺𝑠𝑒𝑡 +𝐺;

8 until each vehicle on driving lane is in a basic model ;

9 return 𝐺𝑠𝑒𝑡, 𝑉𝑓 ;

Algorithm 6: BuildNextCG(𝑉 ,𝑉𝑓 )

Input: The set of vehicles 𝑉 and the set of focal vehicles 𝑉𝑓 ;

Output: The updated 𝐺𝑠𝑒𝑡;

1 𝐺𝑠𝑒𝑡 ← ∅;
2 for 𝑎𝑙𝑙 𝑣𝑖 ∈ 𝑉𝑓 do
3 𝑉 ← 𝑣𝑖 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑓𝑜𝑢𝑟 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠;

4 𝐺← BuildIdCG(V) 𝑜𝑟 BuildPsCG(V);

5 𝐺𝑠𝑒𝑡 ← 𝐺𝑠𝑒𝑡 +𝐺;

6 return 𝐺𝑠𝑒𝑡;

vehicles are moving from the left to the right. At current
step, 𝐴4, 𝐴2 and 𝐴0 are determined as the focal vehicle in
each sub-group. The action of 𝐴3 has been determined in
the group of 𝐴4. When the vehicles in group of 𝐴2 are to
determine their joint optimal actions, the action of 𝐴3 is
fixed as the action determined in previous sub-group, and the
remaining vehicles apply VE to find their optimal actions.

The concurrent coordination mechanism . In this mech-
anism, a vehicle belonging to two neighboring sub-groups
first determines its optimal action in each sub-group, and
then computes the loss of global 𝑄 value for each sub-group
as if it has chosen the opposite action. The vehicle will choose
the action with a lower loss of global 𝑄 value to indicate a
smaller influence on the sub-group if the vehicle has changed
its original optimal action. To be more clear, consider the
situation in Figure 4, in which 𝐴4, 𝐴2 and 𝐴0 are the focal
vehicles, and the corresponding sub-groups are 𝐺1, 𝐺2 and
𝐺3 respectively. For sub-groups 𝐺1 and 𝐺2, assume that op-
timal actions of conflicting vehicle 𝐴3 in 𝐺1 and 𝐺2 be 𝑎1

and 𝑎2, respectively, and the maximum 𝑄 value in 𝐺1 and
𝐺2 be 𝑄1 and 𝑄2, respectively. The vehicle then computes
the maximum 𝑄 value in 𝐺2, denoted as 𝑄′

2, by fixing its
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Figure 5: Performance of different approaches.

action as 𝑎1. The loss of 𝑄 value is then △𝑄2 = 𝑄2 − 𝑄′
2.

Similarly, △𝑄1 can be computed. If △𝑄1 < △𝑄2, 𝐴3 will
choose action 𝑎2 as it will cause a lower loss of value in 𝐺1.
Otherwise, 𝐴3 will choose action 𝑎1. Similarly, if there is a
conflict of 𝐴1 in action selection between 𝐺2 and 𝐺3, the
process of minimizing the loss of 𝑄 value is conducted in the
same way by fixing the action of 𝐴3.

The global coordination mechanism . This mechanism
considers all the vehicles as a single group by connecting
them into a CG in the form of a close loop. The basic coordi-
nation models can then be easily extended to this larger CG.
The only difference is that each edge (Q value) in the CG is
now updated based on the global CG, not on the small unit
of CG as did in the basic models. The global coordination
mechanism is simple and easy to implement. However, since
all the vehicles are considered as a single group and each
two of them should build a link, the computational complex-
ity becomes exponential in the size of vehicle group. The
high computational complexity will definitely cause delay in
message passing and thus reduce the efficiency accordingly.

4.2 Experimental Evaluation

We apply the above mechanisms in coordinating different
numbers of vehicles to model realistic traffic situations. Pa-
rameter settings are the same as in Sec. 3.2.3, except that
now more than five vehicles are randomly generated at the be-
ginning. Due to local interactions and decentralized learning
among vehicles, our coordinated learning approach can have
good scalability, generating quite similar result patterns with
regard to the number of vehicles. The result of 10 vehicles
in Figure 5 shows that the proposed mechanisms can extend
the basic models nicely to more complex situations, resulting
in much higher average rewards (i.e., safer policies) than the
other approaches. It is clear that the concurrent coordination
mechanism is the most effective approach, due to properly
resolving the conflicts between different subgroups, while
the global coordination mechanism is less efficient due to
lack of conflict detection and elimination in the sub-groups.
Microscopic evaluation after convergence (Table 2) indicates
that the coordinated learning approaches can generally learn
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Table 2: Results of microscopic evaluation

Mechanisms Approaches Ave. Speed No. Lane Change Min. Distance

N/A
Individual 31.41 1.85 8.75
Expert 29.24 1.01 111.66
MOBIL 28.74 31.89 21.55

Sequential
I-DCG 34.25 22.41 7.35
P-DCG 32.86 56.21 16.54

Concurrent
I-DCG 33.62 1.31 11.82
P-DCG 35.39 1.08 15.54

Global
I-DCG 33.05 10.28 6.35
P-DCG 33.17 35.47 7.73

faster driving policies by properly coordinating their over-
taking behaviors. Particularly, the concurrent mechanism
enables vehicles to move faster as a whole group by over-
taking occasionally, while the other two mechanisms require
more overtaking to maintain high speed and thus safer poli-
cies as shown by the finial rewards. The diverse microscopic
results demonstrate rich patterns of coordinated behaviors
learned using the proposed approaches.

5 RELATED WORK

RL has been widely applied in autonomous driving domain-
s. Pyeatt and Howe [23] applied neural network version of
Q-learning to learn racing behaviors. Loiacono et al. [15]
used tabular Q-learning to learn overtaking strategies. Lat-
er, a multiple-goal RL method was proposed to consider a
multitude of abilities and criteria for overtaking [18]. More
recently, a number of researchers have resorted to deep RL
for a vehicle’s optimal control. Xia et al. [29] proposed deep
Q-learning with filtered experiences for autonomous vehicles.
Sharifzadeh et al. [26] applied an inverse RL approach to ex-
tract the rewards in autonomous driving. Several studies used
deep RL to realize motion planning at interactions [9, 21].
Other works employed deep RL to realize end-to-end learning
of driving policies in partially observable scenarios [24] or
from raw visual inputs [2]. All these studies only focus on
single vehicle’s strategic decision making and do not consider
interactions among multiple vehicles and their coordination.

Coordination among vehicles under CAV environments has
received an increasing attention for its potential benefits [16].
Moriarty and Langley [17] used RL to solve the intelligent
lane selection problem for a group of vehicles. Pendrith [22]
presented a distributed Q-learning to lane change advisory
system. A function approximation RL technique was used for
the secure longitudinal following of a front vehicle [4]. Kalan-
tari et al. [10] introduced a novel approach to distributed
autonomous navigation through traffic intersections based
on a distributed RL framework. Shalev-Shwartz et al. [25]
applied deep RL approach to the problem of forming long
term driving strategies in multiple vehicles. All these stud-
ies, however, did not model interaction dependencies among
vehicles. Since no explicit coordination mechanisms have
been applied, inefficient and sometimes fatal uncoordinat-
ed outcomes may occur [10]. Although some rule-based or
utility-based approaches have also been proposed for strategic
driving decision making [1, 19, 20], they have limits in terms

of time-consuming parameter tuning and tractability difficul-
ties. Moreover, none of these studies considered interactions
and concurrent decision making among a group of vehicles.

6 CONCLUSIONS

Applying RL in coordinating multiple autonomous vehicles
is a tough problem because of the rule-based nature of au-
tonomous driving as well as the everlastingly changing topol-
ogy of the moving vehicles. This paper makes an initial
contribution in successfully employing CG-based MARL ap-
proaches in coordinating overtaking maneuvers for a group of
vehicles. Simulations verified that the proposed coordination
approaches can guarantee higher levels of safety by properly
coordinating vehicles’ overtaking behaviors.

Our work contributes to the literature from different tech-
nical perspectives. We proposed 1) a dynamic CG formula-
tion of a distributed coordination problem with continuously
changing dependencies, 2) a distributed MARL approach in
dynamic and open environments, and 3) a strategic learning
solution for coordinating multiple vehicles. Each of these
advances is nontrivial considering the inherent complexity in
the original problem. For example, most research in MARL
still focuses on static and close environments [12, 13, 31, 32],
in which agent’s roles, relationships and tasks are fixed before-
hand and kept unchanged during learning. Although learning
in such situations has already posed significant challenges
due to the concurrent learning and co-adaptation of multi-
ple agents, open and dynamic environments can cause extra
burdens on the agents. Our work has demonstrated that, by
carefully manipulating the dynamics using the consistency
principle, effective coordination can be achieved simply via
local and distributed learning among agents in a dynamic
environment, as in the vehicular environment in this paper.

In this paper, we assume the homogeneity of all the ve-
hicles and their willingness to cooperate with each other.
This assumption of full cooperativeness of vehicles might be
a bit strong at current stage (considering the long transi-
tion period of mixed driving to fully connected autonomous
driving), but can be foreseen in the near future traffic scenar-
ios, given the rapid rise of vehicle-to-vehicle communication
mechanisms like DSRC. Actually, this assumption has been
widely adopted in current research of cooperative driving in
platoons or other related studies. Nevertheless, it is still an
interesting topic to investigate cooperative driving in mixed
situations that involve human drivers or heterogamous vehi-
cles. A potential solution can be including the non-learners
or vehicles with fixed behaviors in the built of CG but fixing
their behaviors during the VE process in determining the
joint optimal actions for the whole group. We leave this issue
to our future work.
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