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ABSTRACT
We present a new Q-function operator for temporal difference (TD)

learning methods that explicitly encodes robustness against signifi-

cant rare events (SRE) in critical domains. The operator, which we

call the κ-operator, allows to learn a robust policy in a model-based

fashion without actually observing the SRE. We introduce single-

and multi-agent robust TD methods using the operator κ. We prove

convergence of the operator to the optimal robust Q-function with

respect to the model using the theory of Generalized Markov Deci-

sion Processes. In addition we prove convergence to the optimal

Q-function of the original MDP given that the probability of SREs

vanishes. Empirical evaluations demonstrate the superior perfor-

mance of κ-based TD methods both in the early learning phase as

well as in the final converged stage. In addition we show robust-

ness of the proposed method to small model errors, as well as its

applicability in a multi-agent context.
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1 INTRODUCTION
Many critical systems exhibit global system dynamics that are

highly sensitive to the local performance of individual components.

This holds for example for (air) traffic and transport networks,

communication networks, security systems, and (smart) power

grids [5, 13, 16, 24]. In each case, the failure of or malicious attack on

a small set of nodesmay lead to knock-on effects that can potentially

destabilise the whole system. Innovations in critical systems may

introduce additional vulnerabilities to such attacks: e.g., in smart

grids communication channels are needed for distributed intelligent

energy management strategies, while simultaneously forming a

potential target that could compromise safety [34]. Our research is

motivated precisely by the need for safety in these critical systems,

which can be achieved by building in robustness against rare but
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significant deviations caused by one or more system components

failing or being compromised in an attack.

In this article we present a new approach for learning policies

in such systems that are robust against a chosen scenario of poten-

tial attacks or failures. We accomplish this by introducing a new

Q-function operator, which we call the κ-operator, that encodes
robustness into the bootstrapping update of traditional temporal

difference (TD) learning methods. In particular, we design the op-

erator to encode the possibility of significant rare events (SREs)

without requiring the learning agent to observe such events in

training. Although the κ-operator is model-based with respect to

these SREs, it can be combined with any TD method and can thus

still be model-free with respect to the environment dynamics.

We prove convergence of our methods to the optimal robust Q-

function with respect to the model using the theory of Generalized

Markov Decision Processes. In addition we prove convergence to

the optimal Q-function of the original MDP given that the prob-

ability of SREs vanishes. Empirical evaluations demonstrate the

superior performance of κ-based TD methods both in the early

learning phase as well as in the final converged stage. In addition

we show robustness of the proposed method to small model errors,

as well as its applicability to multi-agent joint-action learning.

This articles proceeds with related work in Section 2 and back-

ground concepts in Section 3. We formally introduce the new TD

operator κ in Section 4 and subsequently prove convergence. Sec-

tion 6 provides empirical results, and Section 7 concludes.

2 RELATEDWORK
The aim to find robust policies is relevant to multiple research areas,

including security games, robust control/learning, safe reinforce-

ment learning and multi-agent reinforcement learning.

The domain of security games has expanded in recent years

with many real-world applications in critical domains [20, 23],

where the main approach has been computing exact solutions and

deriving strong theoretical guarantees, mostly using equilibria con-

cepts such as Nash and Stackelberg equilibria [14, 17]. In contrast,

we base our approach on reinforcement learning from interactions
with the environment, thus we do not need to know the system

model; such an approach to security games has been studied less,

exceptions being for example Ruan et al. [22] and Klima et al. [12]

who use reinforcement learning in the context of patrolling and

illegal rhino poaching problems, respectively. Security games of-

ten assume frequent adversarial attack, whereas our work focuses
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on occasional loss of control over the system, which can repre-

sent e.g. failures or adversarial attack. Moreover, our work adopts

the information asymmetry assumption often used in Stackelberg

Security games [14], providing the model of attack types for the

leader, and allowing leader-strategy-informed best response strate-

gies by attackers. Similar to security games, control theory starts

with a model of the system to be controlled (the plant), and for

the purpose of robust control assumes a set of possible plants as

an explicit model of uncertainty, seeking to design a policy that

stabilises all these plants [35]. A slightly weaker assumption is

made in related work that assumes control over the number of

observations for significant rare events (SREs), performing updates

by sampling from the model [3]. In contrast, our work assumes

that the model of this system is not known a priori, and a pol-

icy needs to be learned by interacting with it. While early work

on robust reinforcement learning focused on learning within

parameterised acceptable policies [26], later work transferred the

objective of maximising tolerable disturbances from control theory

to reinforcement learning [18]. Our work is similar to the therein

defined Actor-disturber-critic, but we replace its model of minimax

simultaneous actions with stochastic transitions between multiple

controllers (one being in control at any time) with arbitrary objec-

tives for each controller. In relation to the taxonomy of safe rein-
forcement learning of Garcıa and Fernández [8] our method falls

in betweenWorst-Case Criterion under Parameter Uncertainty and

Risk-Sensitive Reinforcement Learning Based on the Weighted Sum
of Return and Risk, depending on the chosen alternate controller

objectives. Our Q(κ) method is comparable to the β-pessimistic

Q-learning method of Gaskett [9], however, we propose a more

general κ operator of which Q(κ) is only an example. Finally, our ap-

proach has commonalities with themulti-agent reinforcement
learning algorithm Minimax-Q [15] for zero-sum games, which

assumes minimisation over the opponent action space. However,

in contrast, we define an attack to minimise over our own action

space, and thus learn (but not enact) simultaneously our optimal

policy and the (rare) attacks it is susceptible to. We further cover

not only minimising adversaries but also random failures or any

other policy encoding other adversaries’ agendas (see Section 4.1).

3 BACKGROUND
This work belongs to the field of reinforcement learning (RL) [29],

and makes use of the core concept of a Markov decision process
(MDP). An MDP is formally defined by a tuple (S,A,R, P), where S
is a finite set of states, A is a finite set of actions, R(s,a) → r ∈ R is

the reward function for a given state s ∈ S and an action a ∈ A and

P(s ′ |s,a) is the transition function giving a probability of reaching

state s ′ after taking action a in state s . In this work we also consider

a multi-agent setting, which uses the formalism of the stochastic
game, which generalizes the MDP to multiple agents and is defined

by a tuple (n, S,A1 . . .An ,R1 . . .Rn , P), where n is the number of

agents and Ai is the action space of agent i . The joint action space

is A = A1 ∪ . . . ∪ An , and a joint action is a = (a1,a2, . . . ,an ).1

Ri (s,ai ,a−i ) → ri is the reward function of agent i for given state

s and joint action a, and P(s ′ |s,a) is the state transition function.

1
We use the common shorthand a−i to denote the joint action of all agents except

agent i , i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an ).

The main goal of RL is finding an optimal policy for given MDP.

A common method is temporal difference (TD) learning, which esti-

mates the value of a state by bootstrapping from the value-estimates

of successor states using Bellman-style equations. TDmethodswork

by updating their state-value estimates in order to reduce the TD er-
ror, which describes the difference between the current estimate of

the (state-)value and a new sample obtained from interacting with

the environment. In this work we focus on modifying the update

target of this TD error, which has the standard form of r + γV (s ′),
where γ is the discount factor and V (s ′) is the current estimate

of the next state’s value. In on-policy methods such as SARSA the

target is induced by the actual (behaviour) policy being followed,

while off-policy methods use an alternative operator (e.g., greedy

maximization as in Q-learning). We refer the reader to Sutton and

Barto [29] for an overview of RL.

4 THE ROBUST TD OPERATOR κ
Before we formally define our robust TD operator κ, we give an
intuitive example. Suppose a Q-learning agent needs to learn a

robust policy against a potential malicious adversary who could,

with some probability ϰ, take over control in the next state.
2
The

value of the next state st+1 thus depends on who is in control:

if the agent is in control, she can choose an optimal action that

maximizes expected return; or if the adversary is in control he

might, in the worst case, aim to minimize the expected return. This

can be captured by the following modified TD error

δt = rt+1+γ
(
(1 − ϰ)max

a
Q(st+1,a) + ϰmin

a
Q(st+1,a)

)
−Q(st ,at ),

where we assume that the agent has knowledge of (or can estimate)

the probability ϰ.3

In the following we first present a formal, general model of

the operator κ, by modifying the target in the standard Bellman

style value function. We then present practical implementations of

TD(κ) methods that use this operator, for both single- and multi-

agent settings, based on the classical on- and off-policy TD learning

algorithms (Expected) SARSA and Q-learning.

4.1 Formal Model
We consider a set ofm possible control policiesC = {σ1, . . . ,σm }. At
each time step, one of these policies is in control (and thus decides

on the next action) with some probability p(σi |s) that may depend

on the state s . The setC and probability function p(·) are assumed to

be (approximately) known by the agent. In our new TDmethods, the

value of the next state s ′ then becomes a function of both the state

and the function p(·), which we capture in our proposed operator κ
asV κ (s ′). Note that the setC includes the focal policy π that we seek

to optimise in face of (possibly adversarial) alternative controllers.

Such external control policies can represent for example a malicious

attacker, aiming to minimize the expected return, or any arbitrary

2
We use the symbol κ to denote the proposed TD operator and the symbol ϰ for the

parameter denoting the probability of attack.

3
Note that while a token of control could be included in the state (doubling its size),

our approach instead directly applies model-based bootstrap updates. This makes it

explicit that the robustness target is a chosen parameter of the operator, and allows

to learn robust strategies before observing SREs or when learning during the SREs is

not possible. This also highlights the difference between state transition probabilities,

which are part of the environment and thus external to the agent, and the expected

probability of SREs given by ϰ which are part of the agent’s internal model.
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dynamics, such as random failures (e.g. represented by a uniformly

random policy). Based on a prior assumption about the nature

of σ we want to optimise the focal policy π without necessarily

observing actual attacks or failures. This means learning our robust

policy π right from the start.

We define σ in terms of our own Q-value function, for example

an attacker that is minimising our expected return. Thus we need to

learn only one Q-value function Qπ
. This is similar to the standard

assumption in Stackelberg games that the attacker is able to fully

observe our past actions and thus can enact the informed best

response. We define the Q-value function update for our policy π
based on standard Bellman equation and given the operator κ as

Qπ (s,a) ← Qπ (s,a) + α
[
r + γV κ (s ′)︸        ︷︷        ︸

target

−Qπ (s,a)
]
. (1)

Note that where in the standard Bellman equation we would have

V π (s) =
∑
a π (s,a)Q

π (s,a), in our case we have

V κ (s) =
∑
σ ∈C

p(σ |s)
∑
a

σ (s,a)Qπ (s,a), (2)

computed as a weighted sum over all possible control policies σ ∈
C . Note that we can learn Qπ

without actually experiencing any

attack or malfunction, based only on prior assumptions about the

possible control policies as captured by the operator κ. We refer

to this target modification as the operator κ because it closely

resembles the Bellman optimality operator T⋆
, which is defined as

T⋆V (s) = maxa
[
R(s,a)+

∑
s ′ P(s

′ |s,a)γV (s ′)
]
. Thus, we can then

formally define the κ optimality operator T⋆
κ by substituting the

value function V (·) with V κ (·).

In the following we present several κ-versions of classical TD
methods. For simplicity we assume a scenario in which we have

only a single adversarial external policy σ that aims to minimize

our value, and thus C = {π ,σ }. Note however that our model is

general, and would work for any C and p(·).

4.2 Examples of TD(κ) Methods
We first present single-agent κ-based learning methods by building

on the standard TDmethods Q-learning and Expected SARSA. Then

we present two-agent joint-action learning approaches. Although a

generalization to n agents is relatively straightforward, we choose

to focus solely on the single- and two-agent case in this paper

for clarity of exposition. In each case, we consider the setting in

which either the focal agent, with policy π , is in control, or the

external adversary with policy σ aiming to minimize return. We

further simplify the model by making the control policy probability

function p(·) state-independent, reducing it to a probability vector.

4.2.1 Single-Agent Methods. Before we present the algorithms,

it is important to note that we need to distinguish the target and
behaviour policies. The κ-operator is defined on the target (see

Eq. (1)), while the behaviour policy is used only for selecting actions.

We assume an ϵ-greedy behaviour policy throughout.

In off-policy Q(κ), the target policy is the greedy policy π (s) =
argmaxa Q(s,a) that maximizes expected return. The adversarial

policy on the other hand aims to minimize the return, i.e., σ (s) =
argmina Q(s,a). Assuming a probability of attack of ϰ as before,

we have p(π ) = (1 − ϰ) and p(σ ) = ϰ. Thus, Eq. (2) becomes

V κ (s) = (1 − ϰ)max

a
Q(s,a) + ϰmin

a
Q(s,a).

For on-policy Expected SARSA(κ) the target is the (expecta-
tion over the) focal policy π , while the adversarial policy σ remains

the same as before. Thus, we have

V κ (s) = (1 − ϰ)Ea∼π
[
Q(s,a)

]
+ ϰmin

a
Q(s,a)

= (1 − ϰ)
∑
a

π (a |s)Q(s,a) + ϰmin

a
Q(s,a).

4.2.2 Multi-Agent Methods. We move from a single-agent set-

ting to a scenario in which multiple agents interact. For sake of

exposition we only present a two-agent case with different action

spaces, A1 and A2, but an identical reward function and thus a

shared joint action Q-value function Q : S ×A1 ×A2 → R. More-

over, we assume full communication during the learning phase,

allowing the agents to take each other’s policies into account when

selecting the next action.
4
Our algorithms are therefore based on the

joint-action learning (JAL) paradigm [4]. We further assume that

only one agent can be attacked at each time step.
5
Formulti-agent

Q(κ) we can write Eq. (2) for each individual agent as

V κ (s) = (1 − ϰ)max

A1

max

A2

Q(s, ⟨a1,a2⟩) +
ϰ

2

min

A1

max

A2

Q(s, ⟨a1,a2⟩)

+
ϰ

2

min

A2

max

A1

Q(s, ⟨a1,a2⟩)

with a1 ∈ A1 and a2 ∈ A2, representing the scenario in which no

attack happens with probability (1 − ϰ), and each agent is attacked

individually with probability ϰ/2.6 Analogously, we can define Eq. (2)

for multi-agent Expected SARSA(κ) as

V κ (s) = (1 − ϰ) Ea1∼π1,a2∼π2
[
Q(s, ⟨a1,a2⟩)

]
+

ϰ

2

min

A1

Ea2∼π2
[
Q(s, ⟨a1,a2⟩)

]
+

ϰ

2

min

A2

Ea1∼π1
[
Q(s, ⟨a1,a2⟩)

]
where we now compute an expectation over the actual policy of the

agents that are not attacked, while the attacker is still minimizing.

5 THEORETICAL ANALYSIS
In this section we analyze theoretical properties of the proposed κ-
methods. We start by relating the different algorithms to each other

in the limit of their respective parameters. Then we proceed to show

convergence of both Q(κ) and Expected SARSA(κ) to two different

fixed points: (i) to the optimal value function Q⋆
of the original

MDP in the limit where ϰ→ 0; and (ii) to the optimal robust value

function Q⋆
κ of the MDP that is generalized w.r.t. the operator κ for

constant parameter ϰ. Note that optimality in this sense is purely

induced by the relevant operator. In (i) this is the standard Bellman

optimality which maximizes the expected discounted return of

the MDP. However, in (ii) we derive optimality in the context of

Generalized MDPs [31], where optimal simply means the fixed point

of a given operator, which can take many forms.

4
A common practice in cooperative multi-agent learning settings, see e.g., [7, 28].

5
Although relaxing this assumption is straightforward, we opt to keep it for clarity.

6
Note the order of the minmax, which follows the Stackelberg assumption of an

all-knowing attacker who moves last.
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Q(κ)Expected SARSA(κ)
ϵ → 0

Expected SARSA

ϰ→ 0

Q-learning

ϰ→ 0

ϵ → 0

SARSA

ϵ → 0 ϵ → 0

Figure 1: The relationship between the learning targets of
different algorithms in the limits of their parameters. On-
policy methods are in green, off-policy methods in orange.

Before proceeding with the convergence proofs, Figure 1 summa-

rizes some relationships between the algorithms in terms of their

targets, in the limit of their respective parameters: As is known,

Expected SARSA, SARSA, and Q-learning become identical in the

limit of a greedy policy [29, 33]. Furthermore, the update targets

of our κ-methods approach the update targets of the standard TD

methods on which they are based as ϰ → 0. Finally, Expected

SARSA(κ) and Q(κ) share the same relationship as their original

versions, and thus Expected SARSA(κ) approaches Q(κ) as ϵ → 0.

Note that the algorithms’ equivalence in the limit does not hold in

the transient phase of the learning process, and hence in practice

they may converge on different paths and to different policies that

share the same value function. For a comprehensive understanding

of the algorithms introduced in Section 4.2, the following sections

provide proofs for both convergence of κ methods for ϰ → 0, as

well as their convergence when ϰ stays constant.
7

5.1 Convergence to the Optimal Q⋆

There exist several proofs of convergence for the temporal differ-

ence algorithms Q-learning [11, 32], SARSA [25], and Expected

SARSA [33]. Each of these proofs hinges on linking the studied

algorithm to a stochastic process, and then using convergence re-

sults from stochastic approximation theory [6, 21]. These proofs are

based on the following lemma, presented as Theorem 1 in Jaakkola

et al. [11] and as Lemma 1 in Singh et al. [25]. These differ in the

third condition, which describes the contraction mapping of the op-

erator. The contraction property used for the Q-learning proof [11]

has the form | |E{Ft (·)|Pt }| | ≤ γ | |∆t | |, where γ ∈ [0, 1). We show

the lemma as it was used for the SARSA proof provided by Singh

et al. [25], who show that the contraction property does not need to

be strict; strict contraction is required to hold only asymptotically.

Lemma 5.1. Consider a stochastic process (αt ,∆t , Ft ), t ≥ 0, where
αt ,∆t , Ft : X → R satisfy the equations

∆t+1(x) =
(
1 − αt (x)

)
∆t (x) + αt (x)Ft (x), x ∈ X , t = 0, 1, 2, . . .

Let Pt be a sequence of increasing σ -fields such that α0 and ∆0 are
P0-measurable and αt ,∆t and Ft−1 are Pt -measurable, t = 1, 2, . . . .
Then, ∆t converges to zero with probability one (w.p.1) under the
following assumptions:

(1) the set X is finite,
(2) 0 ≤ αt (xt ) ≤ 1,

∑
t αt (xt ) = ∞,

∑
t α

2

t (xt ) < ∞ w.p.1,

7
While we focus on the adversarial targets considered in Section 4.2, a previous proof

of convergence under persistent exploration [31] can be interpreted as a model of

random failures with fixed kappa.

(3) | |E{Ft (·)|Pt }| | ≤ γ | |∆t | | + ct , where γ ∈ [0, 1) and ct con-
verges to zero w.p.1,

(4) Var {Ft (xt )|Pt } ≤ K(1 + | |∆t | |)
2, where K is some constant,

where | | · | | denotes a maximum norm.

The proof continues by relating Lemma 5.1 to the temporal dif-

ference algorithm, following the same reasoning as Van Seijen et al.

[33] in their convergence proof for Expected SARSA. We define

X = S × A, Pt = {Q0, s0,a0, r0,α0, s1,a1, . . . , st ,at },xt = (st ,at ),
which represents the past at step t and αt (xt ) = αt (st ,at ) is a learn-
ing rate for state st and action at . To show the convergence ofQ to

the optimal fixed point Q⋆
we set ∆t (xt ) = Qt (st ,at ) −Q

⋆(st ,at ),
therefore when ∆t converges to zero, then the Q values converge

to Q⋆
. The maximum norm | | · | | can be expressed as maximizing

over states and actions as | |∆t | | = maxs maxa |Qt (s,a) −Q
⋆(s,a)|.

We follow the reasoning of Theorem 1 from Van Seijen et al.

[33], where we repeat the conditions (1), (2) and (4) and modify the

condition (3) for the κ methods as:

Theorem 5.2. Q(κ) and Expected SARSA(κ) as defined in Section
4.2.1 using the respective value function V κ , defined by

Qt+1(st ,at ) = (1−αt (st ,at ))Qt (st ,at )+αt (st ,at )[rt +γV
κ
t (st+1)]

converge to the optimal Q function Q⋆(s,a) if:
(1) the state space S and action space A are finite,
(2) αt (st ,at ) ∈ (0, 1),

∑
t αt (st ,at ) = ∞ and

∑
t α

2

t (st ,at ) < ∞
w.p.1,

(3) ϰ converges to zero w.p.1,
(3a) for Expected SARSA(κ) the policy is greedy in the limit with

infinite exploration (GLIE assumption),
(4) the reward function is bounded.

Proof. Convergence of Q(κ): To prove convergence of Q(κ) we
have to show that the conditions from Lemma 5.1 hold. Conditions

(1), (2) and (4) of Theorem 5.2 correspond to conditions (1), (2) and

(4) of Lemma 5.1 [33]. We now need to show that the contraction

property holds as well, using condition (3) of Theorem 5.2. Adapting

the proof of Van Seijen et al. [33], we set Ft (x) = Ft (s,a) = rt (s,a)+
γV κ

t (s
′) −Q⋆(s,a) to show that Ft (s,a) is a contraction mapping,

i.e., condition (3) in Lemma 5.1. For Q(κ) we write:

Ft = rt +γ
(
(1−ϰ)max

a
Qt (st+1,a)+ϰmin

a
Qt (st+1,a)

)
−Q⋆(st ,at ).

We want to show that | |E{Ft }| | ≤ γ | |∆t | | + ct to prove the conver-

gence of Q(κ) to the optimal value Q⋆
.

| |E{Ft }| |

= | |E{rt + γ
(
(1 − ϰ)max

a
Qt (st+1,a) + ϰmin

a
Qt (st+1,a)

)
−Q⋆(st ,at )}| |

≤ | |E{rt + γ max

a
Qt (st+1,a) −Q

⋆(st ,at )}| |+

γ | |E{ϰmin

a
Qt (st+1,a) − ϰmax

a
Qt (st+1,a)}| |

≤ γ max

s
|max

a
Qt (s,a) −max

a
Q⋆(s,a)|+

γ max

s
|ϰmin

a
Qt (s,a) − ϰmax

a
Qt (s,a)|

≤ γ | |∆t | | + γϰmax

s
|min

a
Qt (s,a) −max

a
Qt (s,a)|,

where the first inequality follows from standard algebra and the

fact that splitting the maximum norm yields at least as large a

number, the second inequality follows from the definition of Q⋆

and the maximal difference in values over all states being at least
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as large as a difference between values given in state st+1, and the

third inequality follows from the definition of | |∆t | | above.
8
We

can see that if we set ct = γϰmaxs |mina Qt (s,a) −maxa Qt (s,a)|,
then for ϰ → 0 we get ct converging to zero w.p.1, thus proving

convergence of Q(κ). ■

Proof. Convergence of Expected SARSA(κ): Similarly as in the

proof of Q(κ) we need to show that the contraction property holds

as well, this time using conditions (3) and (3a) of Theorem 5.2. We

first define:

Ft = rt + γ
(
(1 − ϰ)

∑
a

πt (a |st+1)Qt (st+1,a) + ϰmin

a
Qt (st+1,a)

)
−Q⋆(st ,at )

and then show the following:

| |E{Ft }| |

= | |E{rt + γ
(
(1 − ϰ)

∑
a

πt (a |st+1)Qt (st+1,a) + ϰmin

a
Qt (st+1,a)

)
−Q⋆(st ,at )}| |

≤ | |E{rt + γ max

a
Qt (st+1,a) −Q

⋆(st ,at )}| |+

γ | |E{(1 − ϰ)
∑
a

πt (a |st+1)Qt (st+1,a) + ϰmin

a
Qt (st+1,a) −max

a
Qt (st+1,a)}| |

≤ γ max

s
|max

a
Qt (s,a) −max

a
Q⋆(s,a)|+

γ max

s
|(1 − ϰ)

∑
a

πt (a |s)Qt (s,a) + ϰmin

a
Qt (s,a) −max

a
Qt (s,a)|,

where the inequalities use the same operations as above in the

proof of Q(κ). If we set ct = γ maxs |(1 − ϰ)
∑
a πt (a |s)Qt (s,a) +

ϰmina Qt (s,a)−maxa Qt (s,a)| and assume that the policy is greedy

in the limit with infinite exploration (GLIE assumption) and pa-

rameter ϰ → 0 w.p.1 (conditions (3) and (3a)), it follows that ct
converges to zero w.p.1, thereby proving that Expected SARSA(κ)
converges to optimal fixed point Q⋆

. ■

5.2 Convergence to the Robust Q⋆
κ

In this section we show convergence to the robust value function

Q⋆
κ which is optimal w.r.t. the operator κ. The main difference with

the proof of Theorem 5.2 is that here we do not require ϰ → 0

but instead assume it remains constant over time. We base our

reasoning on the theory of Generalized MDPs [31]. A Generalized

MDP is defined using operator-based notation as(⊗⊕
(R + γV )

)
(s) = max

a

∑
s ′

P(s ′ |s,a)
(
R(s,a) + γV (s ′)

)
,

where the operator

⊗
defines how an optimal agent chooses her

actions (in the classic Bellman equation this denotes maximiza-

tion) and operator

⊕
defines how the value of the current state

is updated by the value of the next state (in the classic Bellman

equation this denotes a probability weighted average over the tran-

sition function). These operators can be chosen to model various

different scenarios. The generalized Bellman equation can now be

written asV⋆ =
⊗⊕

(R+γV⋆). The main result of Szepesvari and

Littman [31] is that if

⊗
and

⊕
are non-expansions, then there is a

unique optimal solution to which the generalized Bellman equation

converges, given certain assumptions. For 0 ≤ γ < 1 and non-

expansion properties of

⊗
and

⊕
we get a contraction mapping

of the Bellman operator T defined as TV =
⊗⊕

(R + γV ). Then,

8
Recall that we set out in this section to show convergence to the same optimal Q-value

as classical Q-learning Q⋆(st , a) = rt + γ maxa′ Q⋆(st+1, a′), even if we do so by

our new operator.

the operator T has a unique fixed point by the Banach fixed-point

theorem [27].

Building on the stochastic approximation theory results (as we

also used in the Section 5.1), Szepesvari and Littman [31] show the

following:

Lemma 5.3. Generalized Q-learning with operator
⊗

using Bell-
man operator Tt (Q ′,Q)(s,a) ={(

1 − αt (s,a)
)
Q ′(s,a) + αt (s,a)

(
rt + γ (

⊗
Q)(s ′t )

)
if s = st ,a = at

Q ′(s,a) otherwise

converges to the optimal Q function w.p.1, if

(1) s ′t is randomly selected according to the probability distribution
defined by P(st ,at , ·),

(2) αt (st ,at ) ∈ (0, 1),
∑
t αt (st ,at ) = ∞ and

∑
t α

2

t (st ,at ) < ∞
w.p.1,

(3)

⊗
is a non-expansion,

(4) the reward function is bounded.

We base our convergence proofs for Q(κ) and Expected SARSA(κ)
on the insights of Szepesvari and Littman [31] given in Lemma 5.3.

Theorem 5.4. Q(κ) and Expected SARSA(κ) as defined in Section
4.2.1 converge to the robust Q function Q⋆

κ for any fixed ϰ.

Proof. Convergence of Q(κ) to Q⋆
κ : To prove convergence of

Q(κ) we follow the proof of Generalized Q-learning in Lemma 5.3.

The only condition we need to guarantee is the non-expansion

property of the operator in the value function update, which for

Q(κ) is a weighted average of the operators min and max. We write

the operator

⊗
for Q(κ) as

⊗κ
and define it as

(
⊗κQ)(s,a) = (1 − ϰ)maxa Q(s,a) + ϰmina Q(s,a).

In Appendix B of Szepesvari and Littman [31], Theorem 9 states that

any linear combination of non-expansion operators is also a non-

expansion operator. Moreover Theorem 8 states that the summary

operators max and min are also non-expansions. Therefore,

⊗κ
is

a non-expansion as well, thus proving the convergence of Q(κ) to
the robust fixed point Q⋆

κ induced by the operator κ. ■

Proof. Convergence of Expected SARSA(κ) toQ⋆
κ : We base our

convergence proof of Expected SARSA(κ) again on the work of

Szepesvari and Littman [31], this time on their insights regarding

persistent exploration (Section 4.5 in their paper). They show that

Generalized Q-learning with ϵ-greedy action selection converges,

for a fixed ϵ , in the Generalized MDP. Following similar reasoning,

we define the operator

⊗
for Expected SARSA(κ) with fixed ϵ as

(
⊗κ Q)(s,a) = (1 − ϰ)

(
ϵ 1

|A |
∑
a Q(s,a) + (1 − ϵ)maxa Q(s,a)

)
+ ϰmina Q(s,a).

Again, from repeated application of Theorems 8 and 9 in Appendix

B of Szepesvari and Littman [31] it follows that

⊗κ
is a non-

expansion as well. Therefore, by Lemma 5.3, Expected SARSA(κ)
converges to Q⋆

κ for fixed exploration ϵ . ■

It remains an open question whether Expected SARSA(κ) also
converges for decreasing ϵ , e.g., under the GLIE assumption, even

though we conjecture that it might.
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5.3 Convergence in the Multi-Agent Case
We now prove convergence of the cooperative multi-agent variant

of the κ methods presented in Section 4.2.2. This proof builds on

the theory of Generalised MDPs, similar to the proofs presented in

Section 5.2. Therefore this proof also assumes a fixed probability of

attack ϰ. In addition, we make use of the assumption that agents

can communicate freely in the learning phase, and thus receive

identical information and can build a common joint-action Q-table.

Theorem 5.5. Multi-agent Q(κ) and Expected SARSA(κ) as defined
in Section 4.2.2 converge to the robust Q function Q⋆

κ for any fixed ϰ.

Proof. The

⊗κ
operator for our multi-agent versions of Q(κ)

and Expected SARSA(κ) consists of a nested combination of dif-

ferent components, in particular maxa Q(s,a), mina Q(s,a), and∑
a π

ϵ (s,a)Q(s,a) where πϵ is the ϵ-greedy policy. By Theorem 8

of Szepesvari and Littman [31], max and min are non-expansions.

By Theorem 9 of [31], linear combinations of non-expansion oper-

ators are also non-expansion operators. Finally, by Theorem 10 of

[31], products of non-expansion operators are also non-expansion

operators. Therefore, also maxmax, maxmin, and minmax are

non-expansion operators, as are linear combinations of those com-

pounds. Similarly,

∑
a π

ϵ (s,a)Q(s,a) for fixed ϵ can be written as

a linear combination of summary operators, which by Theorems

8 and 9 of Szepesvari and Littman [31] is a non-expansion. There-

fore, the

⊗κ
operator used in both multi-agent Q(κ) and Expected

SARSA(κ) is a non-expansion. Thus, by Lemma 5.3, Q(κ) and Ex-

pected SARSA(κ) converge to Q⋆
κ for fixed κ, and in the case of

Expected SARSA(κ), for fixed ϵ . ■

6 EXPERIMENTS AND RESULTS
In this section we evaluate temporal difference methods with the

proposed operator κ; off-policy type of learning Q(κ) and on-policy
type of learning Expected SARSA(κ). We experiment with a classic

cliff walking scenario for the single-agent case and a multi-agent

puddle world scenario. Both these domains contain some critical

states, a cliff and a puddle respectively, which render very high

negative reward for the agent(s) in case of stepping into them.

These critical states represent the significant rare events (SREs). We

compare our methods to classic temporal difference methods like

SARSA, Q-learning and Expected SARSA. In all the experiments

we consider an undiscounted (γ=1), episodic scenario.

Cliff Walking: single-agent. The Cliff Walking experiment as

shown in Figure 2 is a classic scenario proposed in Sutton and Barto

[29] and used frequently ever since (e.g., [33]). The agent needs to

get from the start state [S] to the goal state [G], while avoiding

stepping into the cliff, otherwise rendering a reward of −100 and

sending him back to the start. For every move which does not lead

into the cliff the agent receives a reward of −1.

Puddle World: multi-agent. The Puddle World environment is

a grid world with puddles which need to be avoided by the joint-

action learning agents. The two agents jointly control themovement

of a single robot in the Puddle World, each controlling either direc-

tion ⟨up, down⟩ or ⟨left, right⟩. Agent 1 can take the actions {stay,
move down, move up} and agent 2 can choose {stay, move left, move
right, move right by 2}, thus their action spaces are different, further

Figure 2: The CliffWalking: The agent needs to get from the
start [S] to the goal [G], avoiding the cliff (grey tiles).
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Figure 3: The Puddle World: Q(κ) learns a safer path with
increasing ϰ. Puddles are dark blue, the arrows show the op-
timal actions on the learned path, and the heatmap shows
the number of visits to each state ( , blue is none).

complicating the learning process compared to the single-agent

scenario. The joint action is the combination of the two selected

actions. We assume a reward of -1 for every move and -100 for step-

ping into a puddle (returning to the start node). The agents have

to move together from the start node at the top left corner to the

goal at the bottom right corner. Figure 3 shows the policy learned

by our proposed algorithm Q(κ) for the two joint-learning agents.

Note how a safer path (longer, avoiding the puddles) is learned with

increasing parameter ϰ (i.e., higher probability of SREs). For ϰ = 0

our algorithm degenerates to Q-learning (left panel).

6.1 Performance
We replicate the experiment of Van Seijen et al. [33] on the Cliff

Walking domain, in which we compare our κ methods with Q-

learning, SARSA and Expected SARSA, and perform a similar ex-

periment on the Puddle World domain. In line with [33] we show

(i) early performance, which is the average return over the first

100 training episodes, and (ii) converged performance, which is the

average return over 100, 000 episodes. Figure 4 shows the results

for three different settings of both scenarios: (i) a deterministic

environment, where each action chosen by the policy is executed

with certainty; (ii) an environment with 10% stochasticity, in which

a random action is taken with 10% of the time; and (iii) an envi-

ronment with 10% probability of attack, in which an adversarial

action is taken 10% of the time. As before, we define an attack as an

action that minimizes the Q-value in the given state. The stochastic

environment can be seen as modelling random failures.

The early performance experiments are averaged over 300 trials

and the converged performance experiments are averaged over 10

trials. We also show the 95% confidence intervals on all results. We

fix the exploration rate to ϵ = 0.1; for the κ methods we set ϰ = 0.1

(later in this section we also experiment with different settings of

ϰ). Note that the y-axis, showing the average return, is the same in

each row for easy comparison. The x-axis shows different learning

rates α . We can see how the average return decreases with more
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Figure 4: The Cliff Walking (single-agent) in first row and the Puddle World (multi-agent) in second row. Deterministic envi-
ronment (first column), 10 % stochastic environment (second column) and 10 % attack while training (third column). ϵ-greedy
policywithfixed ϵ = 0.1. Early performance - dashed lines (100 episodes), converged performance - solid lines (100, 000 episodes).

complex scenarios, from deterministic, over to stochastic, to one

with attacks. The κ methods are superior to the other baselines in

the early performance experiments, especially in the attack case,

which is the scenario the κ methods are designed for. In the con-

verged performance experiments the κ methods beat Q-learning

and SARSA and performs at least as well as Expected SARSA.

6.2 Different Levels of Probability of Attack
In this section we investigate how the methods behave under dif-

ferent levels of attack, defined by the probability of attack per state.

We consider an attack on trained (converged) methods, thus we

first train each method for 100, 000 episodes (in deterministic envi-

ronment) and then we test it on 50, 000 trials with given probability

of attack per state. We average the results over 10 trials and provide

95% confidence intervals. Note, that this is a different methodology

of testing the methods against an adversarial attack compared to

the experiments in Figure 4, where we considered attacks during

training. This experiment shows the strength of the κ methods for

different levels of attacks. We assume the probability of attack to

be known here and thus we set the parameter ϰ to be equal to that

probability, which is the meaning of the parameter ϰ as described

before. In other words, parameter ϰ prescribes how much safely we

want to act. We consider very rare attacks (0.001 probability of at-

tack in each state) to more frequent attacks (0.2 probability of attack

in each state) as shown in Figure 5. For better visualisation we use

logarithmic axes. We train all the methods with fixed exploration

rate ϵ = 0.1 and learning rate α = 0.1, note that the methods (except

SARSA) converge to the same result for different learning rates as

shown in left panel of Figure 4. SARSA is very unstable for different

learning rates (demonstrated by wide confidence intervals), learns

different paths for different α and does not converge fast enough or

not at all, which can be partly explained by its higher variance [33].

We test the different levels of probability of attack on the Cliff Walk-

ing experiment in the left panel of Figure 5, where we can see that

the κ methods compare favourably to the other baselines, however

in some parts they give similar performance as Expected SARSA

or SARSA. The Cliff Walking experiment has a limited expressive-

ness for testing the methods due to a limited number of possible

safe paths with low costs (see Figure 2), which is the reason for

the κ methods to show only similar performance compared to the
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Figure 5: Varying probability of attack: Cliff Walking (left),
Puddle World (right), trained 100k, test 50k, α = 0.1, ϵ = 0.1.
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Figure 6: Robustness analysis: Cliff Walking (left), Puddle
World (right), trained 100k, test 50k, α = 0.1, ϵ = 0.1, ϰ = 0.1.

baselines, not reaching their full potential. However, the Puddle

World is more expressive, because there are several possible paths

differing in level of safety and cost. The bigger solution space of

the Puddle World is also induced by the two cooperating agents,

each having their own action space. Therefore, on the right panel of

Figure 5 we show the Puddle World experiment for different levels

of probability of attack. Here, we can clearly see the κ methods

outperform the baselines, especially Q(κ) is superior over the whole
range of considered probabilities of attack. Note that Q(κ) learns a
safer path even for very rare attacks (0.001), which is also shown

in Figure 3, where Q(κ) learns a path with the same cost (distance)

compared to Q-learning, but further to the puddles.

6.3 Robustness Analysis
We now test the robustness of the proposed algorithms to an incor-

rect attack model, meaning that the value of ϰ in Q(κ) and Expected
SARSA(κ) no longer matches the actual probability of attack (in our

previous experiments ϰ matched the actual probability of attack

precisely). Figure 6 shows the performance of our algorithms for a

range of actual attack probabilities (y-axis) while learning using a

fixed parameter ϰ = 0.1. To better highlight the robustness of our

methods we choose a range of relatively high actual probabilities

of attack around the fixed value of ϰ = 0.1 (note that we no longer

use a logarithmic scale). One can see that even when ϰ is not equal

to the actual probability of attack the proposed κ algorithms still

outperform the baselines in most cases. In the Cliff Walking ex-

periment (Figure 6 left) the κ methods perform similar to SARSA,

however SARSA is quite unstable, as discussed before and as one

can see by the width of the confidence interval. The Puddle World

experiment (Figure 6 right) demonstrates the superior performance

of the κ methods, which beat all the baselines even for the fixed

parameter ϰ. These results show that even when we do not know

the probability of attack accurately we can learn a more robust

strategy using the κ methods.

7 DISCUSSION AND CONCLUSION
We presented a new operator κ for temporal difference learning,

which improves robustness of the learning process against potential

attacks or perturbations in control. We proved convergence of Q(κ)
and Expected SARSA(κ) to (i) the optimal value function Q⋆

of

the original MDP in the limit where ϰ → 0; and (ii) the optimal

robust value functionQ⋆
κ of the MDP that is generalized w.r.t. κ for

constant parameter ϰ, in both single- and multi-agent versions of

the methods. Our complementary empirical results demonstrated

that the proposed κ-methods indeed provide robustness against

a chosen scenario of potential attacks and failures. Although our

method assumes that a model of such attacks and failures is known

to the agent, we further demonstrated that our methods are robust

against small model errors. Moreover, we have shown that even in

absence of attacks or failures, our method learns a policy that is

robust in general against environment stochasticity, in particular

in the early stages of learning.

There are several interesting directions for future work. The

control space can be extended, allowing for more agents being at-

tacked or malfunctioning with different intensity, or with control

transitions depending on additional variables other than the state.

Furthermore, the target of adversarial policies could be learned from

experience using ideas from opponent modelling (e.g. DPIQN [10]).

Our proposed operator κ can potentially be combined with some re-

cent state-of-the-art reinforcement learning methods. For example,

the operator could be combined with the multi-step Retrace(λ) [19]
algorithm, potentially speeding up convergence. Mixed multi-step

updates could be introduced by combination with Q(σ ) [1], where
the parameter σ can also be state-dependent similarly to the control

transitions in our model, allowing to learn robust policies against

e.g. multi-step attacks. Another interesting extension along this

line would be to model the control transition similar to the options

framework [2, 30], in which case the alternate control policies could

be seen as “malicious” options over which the agent has no control,

with potentially complex initiation sets and termination conditions.

Such extensions would further increase the flexibility of our pro-

posed operator and narrow the reality gap, making it applicable to

a wide range of real-world scenarios.
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