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ABSTRACT
Many real-world systems such as taxi systems, traffic networks

and smart grids involve self-interested actors that perform individ-

ual tasks in a shared environment. However, in such systems, the

self-interested behaviour of agents produces welfare inefficient and

globally suboptimal outcomes that are detrimental to all — common

examples are congestion in traffic networks, demand

spikes for resources in electricity grids and over-extraction of en-

vironmental resources such as fisheries. We propose an incentive-
design method which modifies agents’ rewards in non-cooperative

multi-agent systems that results in independent, self-interested

agents choosing actions that produce optimal system outcomes

in strategic settings. Our framework combines multi-agent rein-

forcement learning to simulate (real-world) agent behaviour and

black-box optimisation to determine the optimal modifications to

the agents’ rewards or incentives given some fixed budget that re-

sults in optimal system performance. By modifying the reward func-

tions and generating agents’ equilibrium responses in a sequence

of offline Markov games, our method enables optimal incentive

structures to be determined offline through iterative updates of the

reward functions of a simulated game. Our theoretical results show

that our method converges to reward modifications that induce

system optimality. We demonstrate the applications of our frame-

work by tackling a challenging problem in economics that involves

thousands of selfish agents and a traffic congestion problem.
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1 INTRODUCTION
Complex systems such as traffic networks, smart grids and fleet net-

works involve autonomous agents that seek to perform individual

tasks. One such example is a ride-sharing network such as an Uber

fleet which involves many self-interested (freelance) drivers that

use the same road network and have access to a common supply

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
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of customers. Other examples are road traffic networks used by

commuters, electricity grids with households drawing from the

network and smart grids. In each of these settings, agents utilise a

shared resource to maximise their individual objectives.

Multi-agent systems (MASs) in which the set of agents act non-

cooperatively to maximise their own interests are modelled by

Markov games (MGs). In MGs, although each agent acts rationally

i.e. to maximise its own interests, the lack of coordination produces

stable outcomes or Nash equilibria (NE) that are vastly suboptimal

from a system perspective and undermine firm efficiency [7].

In ride-sharing networks, drivers’ self-interested behaviour and

preference to locate at certain regions results in inefficient clus-

tering that produces a distribution of taxis that does not match

customer locations [16]. This results in a market inefficiency and

prevents firms from maximising output. In electricity networks,

excessive demand at specific periods leads to demand spikes that

overwhelm supply; in traffic networks the actions of self-interested

commuters leads to congestion resulting in poor network outcomes.

To alleviate these problems, network designers can employ in-

centives to modify the strategic behaviour of the self-interested

agents. However, in an MAS, these incentives must be carefully

calibrated to induce desirable outcomes from the joint behaviour of
selfish actors in dynamic environments and often, with (budgetary)

constraints on the size of incentives or penalties. Additionally, in

settings such as smart grids and traffic networks, the design of in-

centives must also account for adjustments in the system state such

as changes in customer demand for taxis; consequently, designing

incentives is a formidable challenge [22].

Although in many MAS, the agents’ reward functions are known

(e.g. minimising commute time, firm profit maximisation) or a suf-

ficiently accurate proxy can be constructed from data, designing

incentives remains a challenge. This is due to the fact that changes

to the agents’ joint behaviour (and the resulting system outcomes)

after modifications to their rewards is generally difficult to predict.

It is known that in many real-world MASs, human strategic

interaction approximates NE strategies. Multi-agent reinforcement

learning (MARL) is a powerful tool that enables computerised

agents to learn strategic behaviour after repeated interactions in

unknown systems - this enables MARL to serve as a useful tool to

generate a proxy of outcomes in systems with human participants

and simulate the behaviour of other computerised agents [9]. As

with algorithmic methods in game theory, MARL does not offer
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a method of promoting efficient outcomes that maximise social

welfare (e.g. minimise travel time in traffic networks) or optimise

external objectives (e.g. firm profit) and frequently converges to

poor system outcomes [25].

We propose a new technique to tackle the issue of undesirable

outcomes in MASs. In our framework, an incentive designer (ID)

modifies agents’ reward functions in such a way that ensures con-

vergence to efficient outcomes. This modification, as shown in one

of our experiments, can represent a toll charge on a traffic network

that induces even traffic flow leading to reduced congestion.

Using the known agents’ intrinsic goals, our framework firstly

uses MARL to learn the NE of simulated MAS and thus generate a

proxy for real-world outcomes. This then allows us to model the

induced changes in agents’ behaviour given modifications to their

rewards through incentives. The ID uses Bayesian optimisation in

the simulated environment to determine the optimal modifications

to the agents’ rewards to be implemented in the real-world settings.

The ID is not required to have a priori knowledge of the system

performance metric but requires only the goal of the agents (e.g.

arriving at work in the quickest time possible).

We concern ourselves with Markov potential games (MPGs) —

a class of MGs that model settings in which agents compete for

a common resource such as selfish routing games (transportation

networks) [22], spectrum sharing (wireless communications) [32],

oligopoly [26], electric power grids [12] and cloud computing [3].

We prove theoretical results that demonstrate that within MPGs,

the ID’s modifications to the game produces a continuous family

of NE. Crucially, this allows the ID to use black-box optimisation
techniques to find the reward modifications that induce desirable

behaviour in the agents. Since the reward modifier influences the

potential function - a function that is maximised by all agents’

NE strategies, the method can be used to induce the desired be-

haviour in any number of agents. This is exemplified in one of our

experiments in which we modify the rewards of 2,000 agents.

Contributions. i)We propose an algorithmic framework that

determines how to modify the rewards (i.e. find incentives) in an

MPG environment that lead to optimal system performance. ii)We

show that the set of MGs with modified rewards are MPGs, and

that the equilibrium set is continuous on the reward modifications.

As we show, this allows us to prove existence of an optimal reward

modifier. We prove convergence to the reward modifier that in-

duces efficient NE and provide an approximation bound when the

optimal reward modifier is estimated with a method that has low

computational complexity. iii) We illustrate the framework in a set

of experiments that tackle a logistic problem involving a system

with 2,000 agents and a traffic network problem.

Related Work. Our work relates to mechanism design (MD)

[19] and its dynamic and learning variants [27]. These incomplete

information models analyse the problem of constructing a mecha-
nism - a system of rewards and transfers among self-interested

agents that have private information about their reward func-

tions. MD seeks to incentivise truth-revealing announcements from

the agents. In general, mechanisms that induce the desired agent

behaviour for general reward functions cannot be achieved [23].

Therefore, in MD, agents’ reward functions are (typically) limited to

quasi-linear functions that are known up-front [19]. Our framework

permits reward functions beyond quasi-linear functions.

This work relates to leader-follower games - sequential games

in which a leader moves in advance of other agent(s) or follower(s),
who each select a best response strategy [28]. However, in leader-

follower games, the leader cannot induce efficient outcomes i.e.

maximise its own objective (e.g. ex. 98.1 in [20]) since the leader’s

reward is a function over a fixed joint action set.

Our work relates to reward shaping through which a reward is

added with the aim of inducing convergence to a more desirable

equilibrium [2]. The majority of the reward shaping literature is

concerned with potential based reward shaping. Potential based

reward shaping leaves the NE set unaltered and does not guarantee

convergence to more efficient equilibria [6]. A number of papers

handle non-potential based rewards shaping e.g. [21], however,

such papers are limited to empirical analyses of specific normal

form games e.g. the stag hunt game [21]. We tackle the MG case

which adds considerable complexity as it requires amethod of incen-

tivising sequences of state-action pairs (trajectories) in a stochastic

setting.

2 PRELIMINARIES
Let N ≜ {1, . . . ,N } denote the (possibly infinite) set of agents

where N ∈ N × {∞}. An MG is a tuple:

G= ⟨N, (γi )i ∈N ,S, (U
i)i ∈N, P , (Ri )i ∈N⟩ which can be described

as follows: at each time step t = 1, 2, . . .T ∈ N × {∞}, the state of
the system is given by s ∈ S ⊆ Rp for some p ∈ N. The game is

equipped with an action set U= ×i ∈NUi
– a Cartesian product of

each agent’s action set Ui
. Each set Ui

is a compact, non-empty

action set for each agent i ∈ N. We define by U−i = ×j ∈N\{i }U
j

- the Cartesian product of all agents’ action sets except agent i .
At each time step, the next state of the game is determined by a

probability distribution P : S× U× S so that P (·|s,u) gives the
probability distribution over next states given a current state s when
the agents take a joint action u ∈ U. When the environment is at

state s and the agents take action u, each agent i receives a reward
computed by a Lipschitz function Ri : S× Ui × U−i → R. The
term γi ∈ [0, 1[ is each agent i’s discount factor. Each agent has a

stochastic policy π i : S×Ui → R+ - a conditional distribution over
the action set given the current state. Let Πi

be a non-empty set of

stochastic policies over S× Ui
such that π i ∈ Πi

. We denote by Π
the set of policies for all agents i.e.Π ≜ ×i ∈NΠi

, where each π i , and
by Π−i ≜ ×j ∈N\{i }Π

j
. For simplicity, we assume Πj = Πi ,∀i , j.

The joint policy of all agents is denoted by π =
(
π i
)
i ∈N

∈ Π,

while the joint policy of all but the i-th agent is denoted π−i =(
π j
)
j ∈N\{i }

. We will sometimes write π =
(
π i ,π−i

)
for any i ∈ N.

Each agent i ∈ Nuses a value function, vπi : S× Π → R, as its
objective function:

v
(πi ,π−i )
i (s )

= E
[ T∑
t=0

γ ti Ri (st ,ui,t ,u−i,t )
����ut ∼ π (·|st ), st+1 ∼ P (·|st ,ut ), s0 = s

]
,

where ut = (ui,t ,u−i,t ) is the joint action at time t .
We now give some essential definitions:

Definition 2.1. The policy π i ∈ Πi
is a best-response policy

against π−i ∈ Π−i if: π i ∈ argmax

π̃ i ∈Πi
v
(π̃ i ,π −i )
i .
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A Markov-Nash equilibrium (M-NE) is the solution concept for

MGs in which every agent plays a best-response against other

agents. A M-NE is defined by the following:

Definition 2.2. A strategy π =
(
π i
)
i ∈N
∈ Π is an M-NE if:

v
(π i ,π −i )
i (s ) ≥ v

(π ′i ,π −i )
i (s ), (1)

∀π ′i ∈ Π,∀π−i ∈ Π−i ,∀s ∈ S,∀i ∈ N.

The M-NE condition ensures no agent can improve their rewards

by deviating unilaterally from their current strategy. We define

NE{G} as the set of M-NE for the game G.

Definition 2.3. An MG is called an exact MPG or an MPG for

short, if there exists a function Φ : S×Π→ R such that:

v
(π i ,π −i )
i (s ) −v

(π ′i ,π −i )
i (s ) = Φ(π

i ,π −i ) (s ) − Φ(π
′i ,π −i ) (s )

∀π ′i ∈ Πi , ∀π−i ∈ Π−i ,∀s ∈ S, ∀i ∈ N (2)

Note that Φπ (s ) gives the same value for all agents. We use G(w )
to denote an MPG. In this paper, we focus exclusively on MPGs.

3 THE FRAMEWORK
We now describe how the ID modifies the MG played by the agents.

The problem is arranged into a hierarchy in which the ID chooses

the reward function of the game and a simulated subgame which

models the joint behaviour of the agents. The goal of the ID is

to modify the set of agent reward functions for the subgame that

induces behaviour that maximises the ID’s payoff. Crucially, in the

MAS model, the agents are required to behave rationally and hence

produce the responses of self-interested agents in an environment

with the given reward functions. Using feedback from the simulated

subgame in response to changes to the agents’ reward functions, the

ID can compute precisely the modifications to the agents’ rewards

that produce desirable equilibria among self-interested agents. The

simulated environment avoids the need for costly acquisition of

feedback data from real-world environments whilst ensuring the

generated agent behaviour is consistent with real-world outcomes.

The MAS model consists of solving the Markov game G(w ) =
⟨N, (γi )i ∈N ,S, (U

i )i ∈N, P , (Ri,w )i ∈N⟩ i.e. finding π ∈ NE{ G(w )}
where the parameterw is chosen by the ID. Now each agent i ∈ N
has a value function vπ ,wi : S× Π ×W → R given by:

vπ ,wi (s ) = E
[ T∑
t=0

γ ti Ri,w (st ,ui,t ,u−i,t )
����

ut ∼ π (·|st ), st+1 ∼ P (·|st ,ut ), s0 = s
]

The most natural alteration to an agent’s reward function is for it to

be modified additively by amodifier function Θ : S× Ui × U−i ×

W → R such that the agents’ modified reward function becomes:

Ri,w (st ,ui,t ,u−i,t ) ≜ Ri (st ,ui,t ,u−i,t ) + Θ(st ,ui,t ,u−i,t ,w )

where Ri : S×U
i ×U−i → R is an ‘intrinsic reward’ that cannot

be modified by the ID. This function describes the agents’ goals e.g.

minimising travel time in their commute. We assume a sufficiently

good proxy is available or the function is known to the ID. The

function Θ is a modification to each agent’s reward function and

represents an incentive - for example, it may represent a toll charge

in a traffic network or a surcharge in a smart grid which depends

on factors such as time of day and the predicted available supply.

Note the modifier function includes cases for which Θ(·,u−i,t , )
= Θ(·,u ′

−i,t ), ∀u−i,t , u ′
−i,t ∈ U−i in which case the modifier

function adds rewards that do not depend on actions other than

those taken by agent i . We denote the cumulative sum of incen-
tives by Ψ(w,π ) :=

∑
i ∈N
∑T
t=0 Θ(st ,ui,t ,u−i,t ,w ). The incen-

tive designer’s problem consists of a tuple PID ≜ ⟨w,RID⟩ where
w ∈W ⊂ Rl (l ∈ N) is a set of vector of real-valued parameters

over a space of parametric uniformly continuous functions and RID
is the reward function for the ID. The ID’s problem is to find Θ (i.e.

the vector of parametersw ) that maximises the following:

J (w,π ) := E
[
RID (w,π ) − λΨ(w,π )

]
, λ ∈ R (3)

whilst satisfying the M-NE condition which ensures that the agents

play best-response policies. Thus the ID’s problem is:

maximise

w ∈W
J (w,π ) s.t. v

(π i ,π −i ),w
i (s ) ≥ v

(π ′i ,π −i ),w
i (s ),

∀i ∈ N ,∀π ′i ∈ Π
i ,∀π−i ∈ Π−i ,∀s ∈ S. (4)

where J is a Lipschitz continuous function. The formulation de-

scribes numerous problems within economics and logistics includ-

ing revenue management (e.g. ticket pricing), congestion manage-

ment, and network design (e.g. tolling) [5]. The function Ψ can be

interpreted as a system of wealth transfers for example, in the case

of freelance taxis, Ψ represents rewards given to drivers for taking

jobs at specific times and locations or surcharges to customers, and

similarly for smart grid users at peak times. The following condition

constrains the transfer of wealth to the set of agents:

Definition 3.1. The choicew ∈W is weakly budget balanced
if there is no net transfer from the ID to the agents: Ψ(w,π ) ≤ 0.

We consider two main types of reward function for the ID, de-

pending on the ID’s goal:

1. Trajectory targeted: The ID’s payoff is a function of the state

trajectories produced by the agents’ policies in the MG; i.e. is,

J (w,π ) ≜ E
[
RID (w,X

π , ζ )
]
, where Xπ

is Markov chain induced

by the policy profile π ∈ Π in G(w ) and ζ is an i.i.d. random

variable which captures outcome noise. An example is taxi firm

seeking to match the location of a set of freelance taxi drivers with

(predicted) customer locations in some region. Here, the ID’s ob-

jective could be given by a KL divergence between the distribution

of taxis at every timestep, Da
t (w,π ), and the target distribution of

demand, D⋆
t : R

(tra)
ID
=
∑T
t=0 KL(D

a
t (w,π )∥D

⋆
t ). Other applications

of trajectory targeted objectives are firms seeking to smoothen

electricity consumption in smart grids through dynamic pricing [5]

and modification of firm activity through taxation [17].

2. Welfare targeted: The ID’s payoff is a function of the agents’

joint rewards, that is, J (w,π ) ≜ E
[
RID (w,h(v

π ,w
u ), ζ )

]
, for some

uniformly continuous function h and vπ ,wa ≜
(
vπ ,wi

)
i ∈N

. One

example a traffic network manager that seeks to minimise travel

time of all agents. In this cases, the ID is the sum of agents’ negative

costs (travel times) i.e.: R
(soc)
ID

=
∑
i ∈Nvπ ,wi , which results in the

ID maximising social welfare. Similar examples are resource extrac-

tion and oligopoly intervention e.g. fishery problems using optimal

taxation [26] in which the ID seeks to maximise firm welfare whilst
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seeking to sustain a minimum amount of the resource and worst-

case optimisation (maxmin) problems (i.e. by setting h = −1).
The ID problem (4) is a bilevel optimisation problem (mathe-

matical program with equilibrium constraints). Such problems are

generally highly non-convex with unconnected feasible regions.

For this reason, the problem is generally highly intractable using

analytic methods but for simple cases (e.g. linear rewards) [4].

In the next section, we overcome these issues by expressing the

NE constraint in terms of the potential function, and show that

MARL methods can be applied to compute the set of NE for the

MAS model, so that we can ensure feasibility for the ID problem

without requiring closed analytic solutions. Crucially, this, as we

show, allows us to compute the agents equilibrium policies to an

MG the reward function of which, is chosen by the ID. We prove

continuity properties of the MPG with respect to the ID’s changes

to the reward function which allows the ID to produce an iterative

sequence of reward functions. We then give a constructive formula-

tion that allows to prove convergence to such an optimal solution

for the ID. Finally, we provide an approximation bound when the

optimal reward modifier is approximated with a truncated power

series. We proceed to explain the details.

4 THEORETICAL ANALYSIS
We now show that G(w ) is an MPG, which enables NE{G(w )} to
be described in terms of local maxima of function (not fixed points).

Proposition 4.1. There exists a function Φ : S× Π → R such
that each agent’s best-response strategy in G(w ) maximises Φ.

Prop. 4.1 reduces the problem of finding the M-NE for G(w ) to
a single optimal control problem as opposed to finding a fixed

point solution which is considerably more difficult. However, it is

necessary to show that the game produced after the ID alters the

agents’ rewards is still potential. Lemma 4.2 establishes that fact:

Lemma 4.2. The game G(w ) is an MPG.

Proof. To prove the assertion we need to show that the trans-

formation Ri → Ri,w preserves the potential game property.

For any function Ξ : S× Ui × U−i define

∆Ξ ≜ Ξi,w (st ,ui,t ,u−i,t ) − Ξi,w (st ,ui,t ,u−i,t ). We claim that

there exists a functionΦπ ,w (s ) s.th.∆Ri,w (st ,ui,t ,u−i,t ) = Φπ ,w (s ).
This follows directly from the additive form of the reward function

modification. Indeed, consider the function Φπ ,w (s ) ≜ Φπ (s ) +
Θ(s,ui ,u−i ,w ) (s ). Since G0 is potential, by (3) and (4) we have that:

∆Ri,w (st ,ui,t ,u−i,t ) = ∆Ri (st ,ui,t ,u−i,t ) + ∆Θ(st ,ui,t ,u−i,t ,w )

= ∆Φπ ,w (s ). (5)

which completes the proof. □

Proposition 4.3. S.2 RID is uniformly continuous inw .

The proof of the proposition is deferred to the appendix.

Corollary 4.4. The following expression holds{
argmax

π ∈Π
Φπ ,w (s ),∀s ∈ S

}
⊆ NE{G(w )}. (6)

Cor. 4.4 expresses that in playing their best-response strategies

G(w ), each agent inadvertently maximises Φπ ,w , so the function

Φπ ,w is a potential of G(w ).

Having reduced the problem of finding NE{G(w } to an opti-

mal control problem, we now establish that the ID’s problem is a

constrained optimisation problem:

Theorem 4.5. ID’s problem is equivalent to:

maximise

w ∈W ,π ∈Π
J (w,π ) s.t. ∇πΦ

π ,w = 0, ∇2Φπ ,w ⪯ 0. (7)

Sketch. The proof consists of the following components; prov-

ing that Φ ∈ C1
and that ID’s problem can be rewritten as a con-

strained optimisation problem and the set of constraints of the

problem are expressed by (7). By Rademacher’s lemma we have that
if Φ is Lipschitz continuous on some open subset of its domain

then Φ is differentiable almost everywhere (in that set). Since Φ is

defined over S⊆ Rp , we can construct an open subset for which

Rademacher’s lemma holds. To deduce the remainder, we note that

by Corollary 4.4, NE{G(w )} coincide with the set of the local max-

ima of Φ. The result then follows by noting that conditions (7) are

first and second order conditions for local maxima of Φ. □

Theorem 4.5 establishes that the ID’s problem reduces to a con-

strained optimisation problem where the feasibility set is given by

the set of points that are local maxima of Φ. In the next section, we

show that we can apply MARL to constrain the set of points inW
to lie within the feasibility set.

We now prove that NE{G(w )} is continuous onw — this enables

the ID to generate an iterative sequence of games and permits

use of black-box optimisation to solve the ID’s problem. We firstly

study the effect of modifyingw on NE{G(w )}. To establish a formal

notion of continuity of NE{G(w )} w.r.tw , we introduce essentiality:

Definition 4.6. Given metric space X, let Bα (x ) ≜ {y ∈ X :

∥x −y∥ < α } denote the open ball with radius α > 0 around x ∈ X.

Then x ∈ NE{G(w )} is essential in w if for any ϵ > 0, ∃δ > 0 :

w ′ ∈ Bϵ (w ) =⇒ x ′ ∈ Bδ (x ), for any x
′ ∈ NE{G(w ′)}.

The following results establish the continuity in ID’s reward

under changes inw which underpin the existence of a solution for

ID’s problem and a method for computing the solution. We begin

by demonstrating that small changes in ID’s action lead to small

changes in the game, that is, the game itself is continuous inw .

Proposition 4.7. NE{G(w )} is an essential set inw .

Proof. We begin the proof by proving that the value function

for each agent i ∈ N is Lipschitz continuous w.r.t.w :

����v
(π⋆
i ,π

⋆
−i ),w

i (st ) −v
(π⋆
i ,π

⋆
−i ),w

′

i (st )
���� =

���E
[
max

π ∈Π
[Ri (st ,ui,t ,u−i,t ,w )

+ γ
∑
s ′∈S

p (s ′ |s,a)v
(π⋆
i ,π

⋆
−i )

i (s ′,ui,t ,u−i,t ,w )���ut ∼ π (·|st )
] ���

−
���E
[
max

π ∈Π
[Ri (st ,ui,t ,u−i,t ,w

′)

+ γ
∑
s ′∈S

P (s ′ |s,a)v
(π⋆
i ,π

⋆
−i )

i (s ′,ui,t ,u−i,t ,w
′)���ut ∼ π (·|st )

] ���

≤max

π ∈Π

���E
[
Ri (st ,ui,t ,u−i,t ,w ) − Ri (st ,ui,t ,u−i,t ,w

′)���ut ∼ π (·|st )
] ���

+ γ
∑
s ′∈S

P (s ′ |s,u)���Eπ
[
v
(π⋆
i ,π

⋆
−i )

i (s ′,ui,t ,u−i,t ,w )

− v
(π⋆
i ,π

⋆
−i )

i (s ′,ui,t ,u−i,t ,w )���ut ∼ π (·|st )
] ���. (8)
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Recall that γ < 1, we therefore find that

����v
(π⋆
i ,π

⋆
−i ),w

i (st ) −v
(π⋆
i ,π

⋆
−i ),w

′

i (st )
����

≤ (1 − γ )−1max

π ∈Π

���Eπ
[
Ri (st ,ui,t ,u−i,t ,w )

− Ri (st ,ui,t ,u−i,t ,w
′)���ut ∼ π (·|st )

] ��� ≤ c ∥w −w ′∥,

where c ≜ LRi (1 + γ )
−1

and LRi > 0 is the Lipschitz constant for

the function Ri , which proves that the function v ·,wi is Lipschitzian

inw . Hence, a fortiori, the function v ·,wi is uniformly continuous

w.r.t.w hence we have that ∀ϵ > 0∃δ > 0 s.th ∥w −w ′∥ < ϵ =⇒

|v
(π⋆
i ,π

⋆
−i ),w

i (·) −v
(π⋆
i ,π

⋆
−i ),w

′

i (·) | < δ . The remainder of the proof

follows using the potential property (Definition 2) and Lemma

A.1. □

To solve the ID’s problem, it is necessary to establish the ex-

istence of an optimal reward modifier w⋆ ∈ W that solves ID’s

problem, i.e. aw⋆∈ argmaxJ (w,π ) which induces an efficient NE.

Theorem 4.8. For G(w ) there exists a valuew⋆ ∈W that max-
imises ID’s reward function RID.

Sketch. First we note that by Prop. 4.3, we note that the function

J is Lipschitz continuous w.r.t. the variablew . The proof then fol-

lows from the compactness of Π,W and the continuity of J , indeed
since J is a continuous map from compact sets by the properties

of continuous maps we can deduce that the image of J is compact.

Moreover, by extreme value theorem we deduce the existence of a

maximum value ofw within the setW . □

Previous results hold for an arbitrarily expressive modifier function

Θ. In practice, it is computationally efficient to express Θ using a

representation with few parameters. The following bounds ID’s

loss when Θ is approximated by a truncated power series:

Theorem 4.9. Letwϵ (n) ∈W approximate solution to ID’s prob-
lem for G(w ) which is generated by an n−order series expansion,
define ID’s approximation loss by L ≜ J (w⋆,π ) − J (wϵ (n),π ) ,
then L has the following bound: L ≤ max

���D
N+1 J (w ′,π (w ′))���.

The solution w⋆
is closely approximated by a truncated series

expansion (other expansions e.g. neural networks are possible)

reducing the number of parameters to be computed.

5 PRESERVING THE NASH EQUILIBRIA.
We can modify the framework to tackle the case in which the ID

modifies the rewards to maximise some efficiency criterion subject

to the condition that M-NE set of the game is preserved. Inducing

convergence to the highest welfare equilibria within a fixed M-NE

set is known as equilibrium selection (ES) and represents a major

challenge in GT and MARL [10].The ID framework can be used to

address ES within the context of MPGs.

Let µk (W ) ≜ {w ∈W : Ψ(·,w ) = k |k ∈ R}. Since G(µk (W )) is
just the MG in which the agents’ rewards are modified by at most a

constant, it is straightforward to deduce that the NE set is preserved.

A particular case of this is potential-based reward shaping in which

each agent’s value function is given by the following:

vπ ,wi (s ) = E


T∑
t=0

γ t−1i

{
γRi (st ,ui,t ,u−i,t ) + F (st ,ui,t ,u−i,t ,w )

}

where F (st ,ui,t ,u−i,t ,w ) := γiΘ(st ,ui,t ,u−i,t ,w )
− Θ(st−1,ui,t−1,u−i,t−1,w ). When T = ∞, since 0 ≤ γi < 1 the

potential-based modifier produces the telescoping sum:∑
t ≥0 ∆Θ(st ,ui,t ,u−i,t ,w ) = Θ(s0,ui,0,u−i,0,w ) ≡ c where c is

some constant independent of the agents’ policies. We therefore see

that NE{G(w )} is preserved since from Definition 2, we can see that

the addition of constants to the agents’ reward functions preserves

the M-NE condition. The general case does not restrict to potential

based reward shaping. Moreover, unlike current potential-based

shaping methods for which the function F is fixed and may lead to
convergence to less desirable equilibria [6], now the function F (·,w )
is determined as a solution to the ID’s problem inw .

By similar reasoning as previous, we deduce the following:

maximise

w ∈W ,π ∈Π
J (w,π ) s.t. ∇πΦ

π ,µ0 (W ) = 0, ∇2πΦ
π ,µ0 (W ) ⪯ 0.

(9)

Hence, the M-NE constraint is defined over the M-NE set before

the ID alters the game. The formulation ensures that the agents’

rewards are modified in a way that the agents play efficient policies,

the constraint ensures the joint policy remains in the original NE

set. We now formalise the description of efficiency.

Definition 5.1. The strategy profile π ∈ Π is a welfare optimal
strategy profile of G(w ) if:

∑
i ∈Nvπ

i ,π −i ,w
i ≥

∑
i ∈Nvπ

′i ,π −i ,w
i .

Definition 5.2. For a givenw ∈W , π ∈ Π is a Pareto efficient
(PE) strategy profile of G(w ) if: i ) vπ

i ,π −i ,w
i ≥ vπ

′i ,π ′−i ,w
i ,∀i ∈

N, ii ) vπ
i ,π −i ,w

i > vπ
′i ,π −i ,w

i for some i ∈ N.

PE implies that no agent increases their reward whenever some

other strategy profile π ′ ∈ Π is played and, at least one agent is

strictly best off under π so that all agents prefer the PE outcome.

PE is a criterion for a welfare maximising ID. We say that strategy

profile π is payoff dominant if π ∈ NE{G(w )} and π is PE.

Proposition 5.3. Let w ∈ W be a solution to ID’s ES problem,
then ∃ π ∈ NE{G0} which is a payoff dominant policy profile of G0.

The issue of how to compute w⋆
remains; we now describe its

computation using black-box optimisation and MARL.

6 SOLUTION METHOD
The method uses MARL to generate a model of the strategic (equi-

librium) behaviour among the agents for a given value ofwk that

determines the modification of the agents’ rewards. The value of

value ofwk is then updated. The specifics are as follows: the func-

tion RID, its gradient, the functionh and eachvπ ,wi are all unknown

to the ID (however a suitable proxy for the intrinsic reward, Ri is
known), who solely observes its realised rewards for each candidate

w which suggests a black-box optimisation method. The unknown

payoff, J , is treated as a random function with some prior belief over

the space of functions. After observing the value of J (wk ,π ) for
somewk ∈W , the belief is updated to form a posterior distribution

which is used to construct an acquisition function (e.g., expected

improvement) that indicates which parameterwk+1 should be eval-

uated next, guiding exploration overW . We use MARL to solve

the game G(w ) allowing the agents (of the simulated game) to

observe only their individual (modified) rewards after their joint

policy π is played. The agents sample trajectories of experience
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tuples (st ,ut , (Ri,w k (st ,ut ))i ∈N, st+1), which are used to estimate

the joint value function, vπ ,wi . Then, they update their policies by

performing stochastic gradient ascent.

The optimisation objective in (7) is nested; the ID choosesw of

G(w ) and the agents select a joint policy which generates a reward

signal for the ID. Simultaneous updates of both the ID parameters

and the agents’ policies, in general, lack converge guarantees due

to non-stationarity. Therefore, in order to compute the solution

iteratively, after an initial choice by the ID, we let the MARL al-

gorithm run until convergence which fulfils the M-NE constraint

for the ID’s problem (c.f. Prop. 6.1); the ID receives feedback from

the outcome of the game G(w ), then updates its choice ofw . This

results in an inner-outer loop method. Each step performed by the

ID is computationally costly. As such, gradient-based algorithms

require a substantial number of iterations to converge to a solution.

We therefore use a sample-efficient optimisation algorithm, namely

Bayesian optimisation which also allows scaling of the framework.

BO also has strong theoretical guarantees for non-convex problems

[24] and can handle large dimensional problems [8, 30]. Inner-outer

loop methods are widely used in single agent problems to tune

hyperparameters of learning algorithms [14].

Inputs: Maximum number of BO evaluations K , and maximum

number of MARL iterations M .

1: Initialise ID’s dataset D0 = { } and reward modifier parameter w 0.

2: for k = 0, . . . , K do
3: Initialise agents’ strategy profile π 0.

4: form = 0, . . . , M do
5: Agents sample data from the environment following strategy

profile πm .

6: Estimate joint value function (critic) vπm ,wk
i .

7: Update joint policy (actor) πm+1.

8: end for
9: Estimate ID’s payoff function J (wk , πM ).
10: Select new wk+1 guided by current data Dk using BO with

expected improvement criterion.

11: Augment dataset Dk+1 = {Dk , (wk , J (wk , πM )) }.
12: end for
13: Return wT .

Algorithm 1: The ID framework

6.1 Discussion on the method
Convergence. In order to ensure the algorithm converges to an opti-

mal solution for the ID both the inner and outer loop are required

to converge. Theorem 4.8 guarantees the existence of a solution for

w⋆
. Convergence of the inner loop is required to obtain the equi-

libria of the simulated MPG. Consequently, the method is subject

to conditions under which MARL methods converge. Hence, the

method is subject to conditions under which MARL methods con-

verge. MARL methods have been shown in general, to have strong

convergence guarantees to M-NE solutions for MPGs [11, 13, 29].

The following proposition provides this guarantee:

Proposition 6.1 (Convergence). Algorithm 1 converges to a
stable point, moreover the set of stable points of algorithm 1 correspond
to M-NE for the MPG.

Another consideration is the growth in decision complexity of

the ID’s problem with the number of parameters over which the BO

is performed. This depends on the size of the state space of the MAS

model. Theorem 3, however proves that approximate solutions are

computable with fewer parameters for a given error bound.

7 EXPERIMENTS
7.1 Optimising a Traffic Network
The following experiment illustrates the application of the method

to a traffic network problem. We consider road traffic network

examples, one of which is a subsection of the city of London. In

this setting, each agent seeks to traverse the graph from a source

node (labelled 1) to a goal node (labelled 8) - this, for example can

represent agents performing a commute. The agents incur costs

which represent the travel time. When traversing an edge, each

agent incurs a unit cost plus an additional cost which is a convex

function of the number of agents traversing the edge at that time

- the latter cost represents additional time delays due to traffic

congestion.

The goal of each agent is to minimise its own costs. It is well-

known that in such systems (e.g. Braess’ Paradox, Pigou example),

the agents’ selfish behaviour of leads to congestion on ‘more desir-

able’ paths leading poor system efficiency [22].

The problem is modelled as a selfish routing game (SRG) - a

widely studied potential game [22] that models traffic networks. In

this setting, agents pursuing their individual objectives produce

outcomes that result in high travel times for all [31]. In this problem,

a set of N self-interested agents direct its commodity flow through a

networkG = (V ,E) whereV is the set of nodes and E ⊆ V ×V is the

set of edges ofG . Each agent seeks to direct a single commodity e.g.,

a taxi firm directing only its fleet. When traversing an edge their

commodity produces congestion incurring a negative externality

(cost) on all agents. Each agent’s commodity is infinitely divisible

so that at each node the agents may split their commodity flow over

each outgoing edge. Each agent’s goal is to direct its commodity

through paths that minimise its own costs.

A central planner (CP) seeks to minimise delays due to conges-

tion by devising a dynamic system of toll charges that induces

an even commodity flow over a given subset of edges of the net-

work Ê ⊆ E at all times. The CP’s problem is to maximise RID (w ) =

−
∑T
t=1[
∑
l ∈Ê ( f

⋆(t )− fl (t ))
2
]
1/2

where fl (t ,w ) is the flow on edge

l ∈ E at time t and f ⋆(t ) ≜ ( |Ê |)−1
∑
l ∈Ê fl (t ). To induce changes

in the agents’ commodity flows, the CP adds to Ri,e the function
Θ( fe ) which is a power series of order 5.

We consider two cases, we firstly provide an intuitive example

known as Braess’ example, a widely studied problem that clearly

demonstrates the inefficiencies of traffic networks [22]. We then

apply the method to a subsection of the traffic network in the city of

London, UK. We show that our framework finds an optimal system

of tolls that leads to maximal system efficiency.

7.1.1 Braess’ Example: Fig. 1 shows a diagrammatic illustration

of the Nash equilibrium agent flow (the size of the flow of agents

through an edge is represented by the edge width) through the net-

work after convergence without ID. As is shown in Fig. 1a), selfish
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Figure 1: (Top) Braess’ example — all agents direct their com-
modity flow through the middle edge (3→ 2). (Bottom) The
(distributed) commodity flows with the ID’s toll added.

agents play an M-NE strategy in which they route all their com-

modity through the middle edge (3→ 2) leading to high congestion

costs. As is shown in Figs. 1a) and 1b), when an ID is included, it

learns how to set tolls (costs) on the middle edge that induce equal

flow over the graph which maximises social welfare.

7.1.2 Extended City Case: We test our method in a complex

network consisting of 8 nodes and 13 edges which represents a

subsection of the London road network. We show that our method

produces socially optimal (M-NE) outcomes. The ID is able to isolate

the 3 roads edges to apply tolls in only 150 outer loop iterations.

Our method shows that the ID was able to isolate three nodes

to apply a toll which led to a reduction in congestion (indicated

in Fig. 2) through the network in only 150 iterations of BO (outer

loop). Fig. 2 c) shows the social welfare function (which is the sum

of all agents’ returns) after 6,000 iterations of the MARL algorithm

(inner loop) without the ID (orange curve) and with the ID (blue

curve), and demonstrates a significant increase in social welfare.

This technique is a first example of reinforcement learning in an

SRG that handles large networks and populations of users. This

is in contrast to current methods in which agents choose paths
resulting in exponential scaling in decision complexity with graph

size [18].

7.2 Supply & demand matching with thousands
of agents

Consider 2,000 agents each seeking to locate themselves at desir-

able points in space over some time horizon. The desirability of a

region changes with time and decreases with the number of agents

located in their neighbourhood. The resulting NE distribution is

in general, highly inefficient (and may not conform to external

objectives) due to agent clustering [15]. The problem is a dynamic

generalisation of the El Faro bar problem and encapsulates spectrum
sharing problems in wireless communications [1]. The problem mod-

els spatio-economics problems such as firms locating their supply

with dynamic demand e.g. freelance taxis. To handle large strategic

populations, we use a mean field game framework [15].

A formal description is as follows: the game has a finite set

of agents N ≜ {1, . . . ,N }, where N ∈ N. At time t < T , the
state of the system is xt = (xi,t )i ∈N ∈ Swhere xi,t denotes the
location of agent i at time t and S⊆ R2. Each agent i selects action
ui,t ∈ R

2
- a vector movement towards some location xi,t+1 ∈ S .

The transition dynamics are given by xi,t+1 = αxi,t + βui,t + ϵi,t ,

a) b)

0 1,000 2,000 3,000 4,000 5,000 6,000

−3.5

−3

−2.5

−2

c) Inner loop (MARL) iterations

R
I
D
(
s
o
c
i
a
l
w
e
l
f
a
r
e
)

with ID

without ID

Figure 2: a) Network flow without ID. b) Network flow with
ID. Width of the edges represent the size of the flow pro-
duced by the agents after converging to an NE with their
rewards modified by the ID. c) Comparison of social wel-
fare (SW) with iterations of agents’ MARL algorithm (inner
loop of Algorithm 1) without ID (red curve) and with ID
(blue curve) after K = 150 iterations of Bayesian optimisa-
tion. Without incentive, the agents converge to an NE that
is mindless of the SW, while the inclusion of the incentives
leads to a significant increase in SW.

where α , β are scalars, and ϵi,t ∼ N(0, Σ), for some covariance

matrix Σ. The agents’ joint action produces a distributionMa
t+1 of

agents over S. Letma
xt ∈ P(H) be the density of agents at some

location xt ∈ Sat time t ∈ [0,T ], where P(H) denotes the space of
probability measures. Each point in Shas some level of desirability
Γ : S× P(H) → R which is determined by the agent’s location

and the density of agents at that point. Each agent’s reward, Ri is

given by:Ri (xt ,ma
x ,ui ) = E

[∑T
t=0 Γ(xt ,m

a
x t )−

1

2
u⊤i,tKui,t

]
, where

Γ(xt ,ma
x t ) := (xt − x̃t )2 − α (ma

x t )
2,, the expectation is taken over

the state-action trajectory induced by the system dynamics and

joint policyπ ∈ Π. The termΨ, rewards the agent for locating closer
to x̃t ∈ Sat time t ≤ T whilst penalising the agent for remaining in

areas highly concentrated with agents. The quadratic term levies a

movement penalty control cost. A principalP aims to incentivise the

self-interested agents to adopt a target distributionM⋆
t at each time

step t ≤ T . P’s objective J is given by a KL divergence betweenMa
t

andM⋆
t i.e. J (w,π ) = E[

∑T
t=0 KL(M

a
t (w,π )∥M

⋆
t )]. To incentivise

the agents to adopt its desired distribution, P adds a reward modifier

function Θ which is parameterised byw ∈W . We test our method

both one-shot and dynamic scenarios.
In the one-shot game the ID seeks to induce an agent distribu-

tion (shown by the left heat map in Fig. 3) - this differs from the
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Figure 3: One shot case. (Top) Heat maps of the ID’s pre-
ferred distributionM⋆, the default agent behaviour, and the
agents’ distribution with modified rewards. (Bottom) Aver-
age KL divergences per evaluation of the ID’s BO outer loop
(averaged over 100 independent tests per evaluation for 4 in-
dependent runs).

distribution obtained when agents’ maximise only their intrinsic

reward function (central heat map in Fig. 3). When the modifier

function Θ is added to the agents’ rewards, the average KL diver-

gence converges almost to zero which demonstrating a close match

of the agents’ distribution (right heat-map in Fig. 3) with the desired

one.
1

In the dynamic game the ID’s desired distribution changes over
time. In our experiment,M⋆

t for t = 0, 1, 2 are as shown by the heat

maps in the top row of Fig. 4 (left), while the bottom row presents

the agents’ distributions achieved with the ID framework.

8 CONCLUSION
In this paper, we introduce an incentive designer (ID) framework - a

technique that enables self-interested adaptive learners to converge

to efficient Nash equilibria in Markov games. By adding a modi-

fier function to the agents’ rewards, our method learns to modify

the rewards of self-interested agents to induce efficient, desirable

equilibrium outcomes. We prove a continuity property in the ID’s

modifications to the game which permits a broad range of black-box

optimisation techniques to be applied.

9 APPENDIX
Lemma A.1. Let A and B be sets and let f : A × B → R and

h : A×B→ R be two real-valued maps s.th. the following expression
holds ∀a ∈ A,b ∈ B and for some constant c : | f (a,b) − h(a,b) | <
c, =⇒ | max

a∈A,b ∈B
f (a,b) − max

a∈A,b ∈B
h(a,b) | < c

Proof. By (A.1) we have thatf (a,b) < c +h(a,b). Applying the
max operator and taking absolute values yields: max

a∈A,b ∈B
f (a,b) <

c + max

a∈A,b ∈B
h(a,b) =⇒ | max

a∈A,b ∈B
f (a,b) − max

a∈A,b ∈B
h(a,b) | < c □

1
The small discrepancy from 0 is due to Gaussian approximation of the agent density.

t = 0 t = 1 t = 2

0 100 200 300 400
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40

# Evaluations

C
u
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.
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Figure 4: Dynamic case. (Top) Heat maps represent (first
row) the ID’s preferred distributionM⋆

t , (second row) the in-
duced agent distributionMa

t at time-steps t = 0, 1, 2. (Bottom)
Average episodic cumulative KL divergences per evaluation
of the ID’s BO outer loop (averaged over 100 independent
tests per evaluation for 4 independent runs).Without ID, the
agents behave similar to the default behaviour displayed in
Fig. 3-Top middle.

Proof of Proposition 4.3:
To prove the proposition, we consider the two cases (trajectory

targeted and welfare targeted) of the ID’s goal separately.

Case I: Welfare Targeted
The agents’ reward functions Ri,w are Lipschitz continuous inw .

This follows from the fact that the composite function д1 ◦ (д2 ◦
(. . . ◦ (дn (·) . . .)) of n < ∞ Lipschitzian functions д1,д2, . . . ,дn
is itself Lipschitzian (moreover we can then apply Rademacher’s

lemma to ascertain differentiability almost everywhere).

Specifically, we have that RID (w,h(v
·,w )) −RID (w

′,h(v ·,w
′

)) ≤

LRID
∥w − w ′∥ +

(
h(v ·,w ) − (v ·,w

′

)
)
≤ L′∥w − w ′∥ where L′ ≜

LRID
+ Lh and LRID

and Lh are the Lipschitz constants of RID and h

(resp.). Since J (w,π ) ≜ E
[
RID (w,h(v

π ,w
a ), ζ )

]
and h is uniformly

continuous, it follows J is expressible as a composite function of

uniformly continuous functions and hence is itself uniformly con-

tinuous (since it is in fact Lipschitz continuous). To complete the

proof it remains only to consider the trajectory targeted case.

Case II: Trajectory Targeted
Consider a sequence {wn } s.th.wn → w as n → ∞, then ∃c,d > 0:

E
[
|J (w,Xπ (w ) ) − J (wn ,X

π (wn ) ) |
]
≤ c |w −wn | + d |X

π (w ) − Xπ (wn ) |,

using the Lipschitzianity of J . Since Xπ (wn ) → Xπ (w )
as n → ∞,

then by (10) and by the dominated convergence theorem we deduce

that ∃M ∈ N s.th. for n ≥ M :

E
[
J (w,Xπ (w ) ) − J (wn ,X

π (wn ) )
]
< cδ

for some constants c > 0 and δ > 0 s.th δ → 0 as n → ∞.
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