Session 2C: Knowledge Representation and Reasoning

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Multiagent Disjunctive Temporal Networks

Nikhil Bhargava
Massachusetts Institute of Technology
Cambridge, MA
nkb@mit.edu

ABSTRACT

Temporal network formalisms allow us to encode a set of con-
straints relating distinct events in time, and by deploying algo-
rithms over these networks, we can determine whether schedules
for these networks exist that satisfy all constraints. By augment-
ing simple temporal networks, we can consider the effects that
disjunctive constraints, temporal uncertainty, and coordinating
agents have on modeling fidelity and the algorithmic efficiency of
schedule construction. In this paper, we introduce Partially Observ-
able Disjunctive Temporal Networks with Uncertainty (PODTNUs)
and Multiagent Disjunctive Temporal Networks with Uncertainty
(MaDTNUs), generalizing previously studied multi-agent variants
of temporal networks. We provide the first theoretical complete-
ness results for the controllability of multiagent temporal network
structures and discuss the importance of these results for modelers.

KEYWORDS

Single and multiagent planning and scheduling; Coordination and
control models for multiagent systems

ACM Reference Format:

Nikhil Bhargava and Brian Williams. 2019. Multiagent Disjunctive Temporal
Networks. In Proc. of the 18th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2019), Montreal, Canada, May 13-17, 2019,
IFAAMAS, 9 pages.

1 INTRODUCTION

In temporal planning problems, agents are tasked with finding
schedules for a series of events that are jointly constrained. The
problem of constructing a valid schedule becomes more difficult
as temporal planning models admit more features. In this paper,
we examine the difficulty of constructing schedules in a multia-
gent context with disjunctive constraints and temporal uncertainty.
These features are important for faithfully capturing the semantics
of real-world situations and for planning over them.

Disjunctive constraints are important for modeling common phe-
nomena like resource constraints and mutual exclusion (i.e. I can
eat 30 minutes before swimming or after, but cannot eat while in
the pool). These types of networks have been studied extensively in
the forms of Temporal Constraint Satisfaction Problems (TCSPs) [6]
and Disjunctive Temporal Networks (DTNs) [11]. Another impor-
tant feature that is needed to faithfully model non-determinism in
temporal events, such as the effect of traffic on a drive across town,
is temporal uncertainty. Temporal uncertainty and disjunction have

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13-17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

458

Brian Williams
Massachusetts Institute of Technology
Cambridge, MA
williams@mit.edu

been studied together in Temporal Constraint Satisfaction Prob-
lems with Uncertainty (TCSPUs) [13] and Disjunctive Temporal
Networks with Uncertainty (DTNUs) [14].

These networks, however, focus exclusively on single-agent plan-
ning and scheduling without capturing the richness of multiagent
scenarios. It is of course possible to model multi-agent problems us-
ing these formalisms, but such approaches have their shortcomings.
Such models either assume that all agents can be jointly controlled,
which is too strong of an assumption in practice, or more conser-
vatively, that the actions of other agents are themselves modeled
as temporally uncertain processes and cannot be strategically rea-
soned about. While such approaches provide some correctness
guarantees, they require agents to act in a way that is robust to all
possible actions that other agents might take rather than reason-
ing over joint strategies that permit coordination without absolute
control of all other agents.

The main contribution of this paper is the introduction of multia-
gent temporal networks with disjunctions and uncertainty and pro-
viding completeness results for their complexity. We demonstrate
that the addition of temporal uncertainty to multi-agent disjunc-
tive temporal network problems raises the complexity to PSPACE-
completeness in the case of PODTNUs and to NEXP-completeness
in the case of MaDTNUs. These results represent the first complete-
ness results for multiagent temporal networks. We conclude with
a discussion of these results in the context of the complexity of
evaluating other temporal networks.

2 MOTIVATION

The example we use to motivate our investigation of these new
temporal networks involves a series of humans and robots in a
warehouse working collaboratively to fill orders. Two dexterous
(potentially heterogeneous) picker robots are tasked with retrieving
individual items from bins across the warehouse and a third delivery
robot is tasked with taking bins of objects that compose orders to
a group of human packers who will inspect the items for defects
before placing them in a box with appropriate packing materials.

We have two new orders come in each with two different objects,
and the two picker robots are tasked with retrieving one item from
each order as matches their skill sets. Retrieving a single item takes
20-30 minutes, and each picker locally has the flexibility to choose
the order in which it undertakes tasks. Once a bin of objects is
assembled, it takes 15 minutes for the delivery robot to bring it to
the human packer. It takes a human packer 15 minutes to inspect
and assemble a package once the items are delivered.

In this problem, warehouses must maintain a high level of through-
put, imposing temporal deadlines, and traffic within the warehouse
and the variable difficulties of grasping tasks implies that there is
temporal variability in the execution of actions. It’s clear that there
needs to exist some capability of representing choices (i.e. choose

Session 2C: Knowledge Representation and Reasoning

which object to grab first) and disjunctive constraints give us a pow-
erful way to do that (i.e. we require that either the pickup of object
1 ends before pickup of object 2 starts or vice versa). The remain-
ing question is whether it suffices to use a series of single-agent
simplifications, such as DTNs or DTNUs, to model this problem.

Unfortunately, the answer is no. A single-agent projection of our
problem allows a robot to freely choose the ordering of their actions
but the actions of others are then abstracted to entirely stochastic,
uncorrelated and uncontrollable actions. If the two packages must
be fully prepared within 90 minutes, we know the task is impossible.
The first picker robot cannot know a priori which object the second
one will grab first and so the two may choose objects from different
orders. If it took both robots the full 30 minutes to grab the orders,
then the delivery robot could only deliver the packages after an
hour; the packer would get the deliveries after 75 minutes and
would need at least 30 to finish with both.

In contrast, modeling the system using multi-agent temporal net-
works, as is done with POSTNUs and MaSTNUs, would allow us to
correctly determine that all constraints can be satisfied. Though the
pickers may not know what the other is doing in real-time, they can
adopt contingency and coordination strategies that eliminate much
of the network’s cross-agent uncertainty. PODTNUs and MaDTNUs
allow for the encoding of multi-agent coordination strategies that
is are common across many other game-playing formalisms.

3 BACKGROUND

The Simple Temporal Network (STN) is an effective formalism for
modeling temporal constraints and the construction of schedules
around those constraints [6], but as modelers, we often find that
they lack the expressivity commonly found in the types of scenarios
we encounter in our daily lives. STNs allow us to schedule a series
of timepoints and enforce simple temporal constraints between them
(i.e. event A must happen at least 20 minutes after event B), and
while these networks are able to richly model temporal flexibility,
they fail to capture the semantics of more expressive constraints.

Adding disjunctive constraints can significantly expand the types
of problems we can model. TCSPs add simple disjunctions, which
admit a series of allowed temporal distances between events (i.e. I
either want a quick workout that takes at most 25 minutes, or I want
an hour-long workout, with nothing in between) [6]. DTNs allow
full disjunctions, meaning disjunctions across sets of timepoints
are allowed [11]. With DTNs, we can express novel behaviors, like
resource constraints, by imposing ordering (i.e. only one truck can
use the loading dock at a time, so either truck A finishes unloading
before truck B starts or vice versa).

What these models lack is the ability to construct a schedule
when information is unavailable during both planning and exe-
cution phases, or, in other words, to construct schedules when
the values of certain timepoints cannot be fully controlled and are
subject to temporal uncertainty.

Simple Temporal Networks with Uncertainty (STNUs) [15] and
DTNUs provide a way to model events that are outside of the control
of any individual agent (i.e. a person can choose when to start their
morning commute but when it ends is dependent on factors outside
of their control, like traffic and the weather); the constraints that
model this uncertainty are called contingent constraints in contrast

459

AAMAS 2019, May 13-17, 2019, Montréal, Canada

to constraints like the ones in STNs, which we call requirement con-
straints. With the distinction between contingent and requirement
constraints, we also split our timepoints into contingent ones and
executable ones. Contingent timepoints are one whose values are
determined by nature in accordance with the contingent constraints.
Executable timepoints are timepoints that are scheduled directly
by the agent. It is worth noting that requirement constraints are
the responsibility of the executing agent and are free to constraint
any timepoints.

STNUs can be used to model multiagent problems from the
perspective of a single agent by interpreting the actions of all other
agents as highly uncertain. While modeling these behaviors with
an STNU provides us with efficient, polynomial time algorithms
[9], they preclude us from reasoning about joint strategies that may
guarantee valid schedules in a world of temporal uncertainty.

Taking this approach oversimplifies and is overly conservative
because it ignores shared sources of uncertainty [14]. For example,
an office colleague might send over a copy of their report between
9am and 10am and separately send a budget between 9:30am and
10:30am, but the uncertainty across both events might be entirely
determined by whether their commute that day took 30 or 90 min-
utes. To account for the correlation in these uncertainties, we can
extend DTNUs to consider Partial Observability just like we do
with STNUs and Partially Observable Simple Temporal Networks
with Uncertainty (POSTNUs) [7]

4 MULTIAGENT DISJUNCTIVE DEFINITIONS

Extending DTNUs to include partial observability yields Partially
Observable Disjunctive Temporal Networks with Uncertainty (PODT-
NUs). PODTNUs make a distinction between contingent timepoints
that are observable and unobservable, allowing the modeler to
chain together contingent constraints to model shared causes of
stochasticity.

Definition 1. PODTNU
A PODTNU is a 5-tuple (X¢, X, Xu, Rr, Rc) where:
o X, is the set of executable timepoint variables
e X, is the set of observable contingent timepoint variables
e X, is the set of unobservable contingent timepoint variables
® R, is the set of full disjunctive temporal constraints indexed
by k, called requirement constraints, of the form
\k/ (lr.k < Xk = Yr.k < Uy k), Where X, .y, k. € Xe UX U

Xyandl, j,u, €R
e R, is the set of simple disjunctive contingent constraints
indexed by k, of the form x, — yr € Ull, k,u,], where
k

yr € Xe UXc UXy, xr € Xe UXy,and I, g, u, €R

PODTNUSs are powerful because they allow us to model shared
dependencies between different events, but they still make the as-
sumption that external agents act without regard to the ego agent’s
goals and constraints. To truly take advantage of multi-agent coordi-
nation that we see in multiagent interaction, we should not assume
randomness from an agent’s collaborators. Instead, we should rec-
ognize that we can at least partially coordinate joint approaches to
guarantee constraint satisfaction. With POSTNUs, we accomplish
this by extending our model to Multiagent Simple Temporal Net-
works with Uncertainty (MaSTNUs) [4], and for PODTNUs, we can

Session 2C: Knowledge Representation and Reasoning

similarly extend our formalism to that of Multiagent Disjunctive
Temporal Networks with Uncertainty (MaDTNUs).

Definition 2. MaDTNU
An MaDTNU is a 5-tuple (A, X¢, X¢, Ry, R¢c) where:

e Ais a (non-empty) set of agents

o X, is the set of executable timepoint variables

o X, is the set of contingent timepoint variables

® R, is the set of full disjunctive temporal constraints indexed
by k, called requirement constraints, of the form
\k/ (lr,k SXrk—Yrk = ur,k)s where Xr,ksYr,k € Xe U X

and [, g, u, €R
® R, is the set of simple disjunctive contingent constraints
indexed by k, of the form x, — y, € Ull, k,u, k], where
k

yr € Xe UXe, xr € Xe,and I, g, u, €R

The set of timepoints X = X, U X, is partitioned across all
agents in A, such that each timepoint is assigned to exactly one
agent. We generally carve out an exemption for a single anchor
timepoint Z, visible to all agents, that represents the start of all
execution. MaDTNUs require us to specify the observability of each
timepoint during execution, as the observation of events by specific
agents can significantly aid in the eventual success of the scheduling
process. With MaDTNUs, we assume that each timepoint, whether
executable or contingent, can only be observed by the agent the
timepoint is assigned to. In order to make a timepoint observable
to another agent, it suffices to add a new contingent link from
the original timepoint to a new contingent timepoint with zero
duration that is observable by the second agent. The second agent
should be able to infer the timing of the original timepoint from
the contingent timepoint they can observe.

When we consider the feasibility of temporal networks with un-
certainty, like PODTNUs and MaDTNUs, we cannot just validate a
statically provided solution. The actual outputted schedule depends
heavily on the conditions under which we observe the temporally
uncertain events. As such, we often consider a temporal network’s
controllability in determining whether or not it is possible to con-
struct a schedule. We traditionally care about the strong, dynamic,
or weak controllability of a network, concepts that are adapted from
the evaluation of STNUs [15].

Informally, strong controllability evaluates whether a single
schedule can be constructed for all executable timepoints such that
for any possible realization of contingent link durations, all con-
straints are enforced. Dynamic controllability considers whether a
schedule can be constructed in a just-in-time manner given each
agent’s observation of existing temporal uncertainty. Finally, we
say a temporal network is weakly controllable if for any realization
of temporal uncertainty, there exists some schedule that satisfies
all constraints for that particular realization.

Dynamic controllability tends to be the most interesting of the
three forms of controllability as it provides the agents the power
to react to the actual situations that manifest themselves during
execution. As such, the remainder of this paper will focus on under-
standing the complexity of determining the dynamic controllability
of these networks; we will call these problems DC-PODTNU and
DC-MaDTNU for short.

460

AAMAS 2019, May 13-17, 2019, Montréal, Canada

In practice, we find it useful to refer to temporal networks using
their graphical structures, where timepoints are represented by
nodes and constraints by edges. We say that an edge exists from
node A to node B if there is a constraint, or a disjunct of a constraint,

R
that involves the difference B — A. We use A — B to represent

R
a requirement constraint from A to B and A = B to represent
a contingent constraint from A to B and use R to represent the
interval that the difference is constrained to belong to.

5 PODTNU CONTROLLABILITY

In the case of partially observable temporal networks, determining
strong and weak controllability reduces to computing the same
type of controllability over a fully observable version of the same
network. This follows naturally from the definitional differences
between the two different types of networks. Strong controllability
assesses whether a schedule can be obstructed in absence of any
observations, in essence making all contingent timepoints unob-
servable, whereas weak controllability assesses whether a schedule
can always be constructed when given perfect foresight, adding
a condition even stronger than making all contingent timepoints
observable.

The same reasoning cannot be applied to dynamic controllability
in PODTNUs. When dynamically executing a PODTNU, certain val-
ues remain hidden while others are readily exposed upon execution.
What is quite noteworthy, however, is that the revealed value of
certain observable contingent timepoints may reveal information
about other unobservable ones.

This makes the question of determining DC-PODTNU more in-
volved than that of determining dynamic controllability for ordinary
DTNUs. In this section, we will show that despite this difference,
DC-PODTNU complexity matches that of dynamic controllability
for DTNUs, which is PSPACE-complete [2]. In order to prove that
DC-PODTNU is PSPACE-complete, we must show that it is both
PSPACE-hard and that it is solvable in PSPACE. We know that
PODTNUSs generalize DTNUs, as a DTNU is a PODTNU without
unobservable contingent timepoints. Because we know checking
the dynamic controllability of a DTNU is PSPACE-hard [2], we thus
know that DC-PODTNU is PSPACE-hard. What remains is to show
that DC-PODTNU is solvable in PSPACE.

THEOREM 5.1. DC-PODTNU € PSPACE.

PRroOF. In order to demonstrate this, we will provide an algo-
rithm that checks the dynamic controllability of a PODTNU (Algo-
rithm 1) and show that it runs in PSPACE. Our algorithm is adapted
heavily from the algorithm for checking dynamic controllability of
Conditional Disjunctive Temporal Networks with Uncertainty [2]
and as such relies on the fact that at most a polynomial number of
bits are being used to represent timepoint values. Our algorithm,
however, makes no assumptions about how specifically numbers
are represented and only relies on the ability of a computer to
iterate through all representable numbers.

Our algorithm operates on our original PODTNU P and makes
use of a DTNU D derived from it. D is constructed by removing all
unobservable timepoints and modifying the related set of temporal
constraints. We start with requirement constraints that involve

Session 2C: Knowledge Representation and Reasoning

Input: A list of timepoints with assigned values, T;
A list of active contingent links, A;
A set of yet-to-be-executed timepoints E;
The input PODTNU P;
P’s projection to a DTNU, D;
The current time, 7
Output: Whether the PODTNU is dynamically controllable.
CHECKDC:
1 if E.empty() then

2 for realization € D.realizationsFrom(A, 7) do
3 T’ « T.extend(realization);
4 for unobsRealiz € P.unobsRealizFrom(T’) do
5 if contingentMismatch(unobsRealiz, T”) then
6 | continue;
7 if 'P.isConsistent(T’) then
8 ‘ return false;
9 return frue;
10 fort € E do
1 for r’ € [r,P.tMax] do
12 allSatisfied « true;
13 for realization € D.realizationsFrom(A, t) do
14 earliest < realization.earliest();
15 if earliest.time < 7’ then
16 if !CHECKDC(T U {earliest},
17 A.nextContingents(earliest),
18 E,P,D,earliest.time) then
19 allSatisfied < false;
20 break;
21 else
22 if !CHECKDC(T U
{ TiIMEPOINTASSIGNMENT(t, 7)},
23 A.nextContingents(TIMEPOINTASSIGNMENT(t, °)),
24 E\t,P,D,7’) then
25 allSatisfied < false;
26 break;
27 if allSatisfied then
28 ‘ return true;

29 return false;
Algorithm 1: PSPACE algorithm for checking DC-PODTNU.

unobservable contingent timepoints. For a given unobservable con-
tingent timepoint B, we eliminate all disjuncts of requirement con-
straints that involve B. Note that if a fully disjunctive temporal
constraint involves B in every disjunct, then the entire constraint is
eliminated. Next, we consider all contingent constraints that involve
B. If B is involved in more than one contingent constraint then it

R R
must be in the form A = B => C since each contingent constraint

has a unique endpoint. We can eliminate B in D by replacing each
Ri+R;
such chain of contingent links with a new single link A ==,

where the new constraint bounds are given using standard inter-
val arithmetic [12]. After recursively applying this procedure, we
have eliminated all constraints involving unobservable contingent
timepoints and thus can safely remove those timepoints to turn our

461

AAMAS 2019, May 13-17, 2019, Montréal, Canada

PODTNU into a DTNU. We then feed in the original PODTNU P
and the derived DTNU D into our algorithm, CHECKDC.

CHECkDC works by recursively enumerating all possible strate-
gies for assignments to executable timepoints and accurately sim-
ulating all possible observable timepoints of the inputted DTNU.
At any given call to CHECKDC, some timepoint values have been
fixed, which we denote by T, and some contingent constraints have
their starting timepoint executed but their ending timepoint still
unexecuted, which we denote by A. We start by picking an unex-
ecuted timepoint (line 10) and a time at which to execute it (line
11). We then look over all possible values of the ending contingent
links of A (line 13) and check whether it comes before our stated
execution time. If it does, we check whether our strategy still holds
after we observe the ending contingent timepoint (lines 16-20), and
if not, we execute our chosen timepoint and continue onwards
(lines 22-26). We use allSatis fied to keep track of whether for any
particular choice of timepoint to execute, every possible scenario
still guarantees success.

It is important to note that during this part of the algorithm, we
are not considering the effect of our requirement constraints and
that the contingent constraints that we are considering to inform
our search come from D and not P. It is possible then that our
choice of values for received contingent timepoints differs from
what is possible in P. For example if we originally had contingent

[0,10] [0,1] [0,1]
links A == B, B = C, and B = (' in P, where only B

was unobservable, our transformation to D would give us edges

0,11 0,11
A g C,and A g}: C’. This would suggest that we might be

able to have A = 0,C = 0, and C’ = 11, but this is inconsistent with
P. We will remedy this problem shortly.

Eventually, we will reach a point where E is empty because in
each recursive step, we either assign a contingent timepoint (line
18) or assign an executable timepoint (line 22). When E is empty, we
then check for feasibility. At this point, we consider the constraints
of P. We first assign any unassigned observable timepoints (line 2)
and then iterate through all possible values for the unobservable
contingent values that were unassigned during execution (line 4).
If we discover a scenario where the choice of observable timepoints
does not match the contingent constraints of the POSTNU, we skip
that particular choice (lines 5-6). If it is a valid configuration, we
then check whether the POSTNU constraints are satisfied. If the
POSTNU constraints are satisfied across all possible valid choices
of unobservable contingent timepoints, we return true, and if not,
we return false. Thus, our procedure returns the correct answer
because it considers execution strategies operating over a superset
of all possible situations of POSTNU P and returns true if there
exists an execution strategy that satisfies all valid realizations of
uncertain values.

What remains is to show that we use at most polynomial space
when executing the procedure. If n is the number of timepoints in
our graph, we know that there are at most n recursive calls at any
one given time since each call assigns a new value to a variable.
Within the algorithm, we iterate over each timepoint (line 10), each
potential time (line 11), and each realization of contingent values
(line 13). While there are exponentially many values each of these
can take on, writing them down requires only polynomially many
bits. Finally checking for valid contingent timepoint values when

Session 2C: Knowledge Representation and Reasoning

Available Tiles: {1, 2, 3}
n=4

L] D] 2]

R EEE
1GIGI
1 2

2 3

H{
v
0

o 1 2 (3] 2

f2f13f(2]1

21211211

313121312

Figure 1: Example TILING problem with accompanying so-
lution.

adding observable values and checking overall PODTNU consis-
tency takes linear time (and thus at most linear space) and can be
done simply by iterating through each constraint and checking cor-
rectness. Thus, the procedure determining dynamic controllability
requires at most polynomial space.

]

Because DC-PODTNU is PSPACE-hard and can be determined
with polynomial space, we know that DC-PODTNU is PSPACE-
complete.

6 MADTNU CONTROLLABILITY

When we expand multiagent disjunctive reasoning to consider
agents that can coordinate their strategies, the task of determining
controllability becomes much more difficult.

To show that DC-MaDTNU is NEXP-hard, we first introduce
the TILING problem which is itself NEXP-complete [1, 10]. The
TILING problem asks whether it is possible to number a n x n board
according to the following rules (see Figure 1 for reference). Each
tile on the board can be filled in with a number from 1 to m, and
there are a set of horizontal and vertical pairwise rules, respectively
H and V, that indicate how numbers can adjoin each other on
the board. We say that f : {0,1,..,n -1} X {0,1,..,n — 1} —
{1,2,...,m} is a tiling function mapping from each of the row and
column indices to the number on that tile. In order to ensure that the
horizontal and vertical pairwise rules are respected, we require that
Vie{0,1,...n—1},Vj € {0,1,...n—2} : (f(i.j), f,j+ 1)) € H
and (f(j,i), f(j + 1,i)) € V. We say that a solution for the TILING
problem exists if there exists an f satisfying the pairwise rules with
f(0,0) = 1. Note that since it takes u = [logn] bits to represent
n, enumerating a tiling function to serve as a certificate may take
exponential time.

In order to prove hardness, we simply show that TILING is
reducible to DC-MaDTNU.

LEMMA 6.1. DC-MaDTNU is NEXP-hard.

462

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Proor. To show that DC-MaDTNU is NEXP-hard, we demon-
strate how to construct an MaDTNU that is dynamically control-
lable if and only if a corresponding TILING problem has a valid
solution.

Our strategy for the reduction is to give each of two agents a
location on the TILING grid and have them report back a tile value
to put at that spot without knowing which location was provided to
the other agent. As such, our MaDTNU construction must first sim-
ulate the hidden random TILING grid location selection and must
also enforce adjacency rules if the two agents are given locations
that adjoin one another.

We construct our two-agent MaDTNU as follows (see Figure
2). The MaDTNU has a single timepoint Z that is observable by
all (which for convenience we will assume is always assigned at
time ¢ = 0), and all other timepoints will be visible to exactly one
of the agents. Each agent will have 2u contingent links that the
other cannot see, and we say that each contingent link is made

, ‘ [0.0]v[2},27] , ,
up of timepoints A; » Ci,p, where i is the index of the

contingent link (from 0 to 2u — 1) and p represents the player it

0,0
corresponds to. We add a requirement link Z Q Ay,p for each

. . [0,0])
agent as well as requirement links C; , — Aj1,p for each i and

p. We finally add new timepoints X1, Xy with requirement links

. {1,2,....,m}
enforcing Coy—1,p ————— Xp.

With the given structure, we have a way to implicitly select a spot
on the original TILING grid for each agent. The first u contingent
links represent the selection of the row index and the second u
contingent links represent the column index. Specifically, we can
represent row index r and column index c by assigning contingent
links in a way that ensures Czy-1,p occurs at time r + ¢ - 2%. It
is worth noting that in instances where n is not a power of two,
there will be some assignments of contingent links that do not
correspond to valid positions on the TILING grid; we will handle
these situations when we consider how to enforce adjacency rules.

Before we add any of the tiling adjacency constraints, it is clear
that our MaDTNU is dynamically controllable. Each A;.1,p is as-
signed immediately when C; , is assigned and any valid tile value
can be picked to satisfy the requirement links associated with X
and X,. We now add constraints to enforce that adjacent tiles re-
spect the pairwise tiling rules and show how those new constraints
are sufficient to complete the reduction.

First, we consider how to handle contingent link values that are
not valid tiling locations. In these cases, we should assume that any
tiling choices are valid and ensure that all constraints are satisfied
in those instances. To accommodate this for each of the constraints
¢y we introduce, we amend the constraint to instead be @,,p V ¥,
where:

Doob = (Cu—l,l -7Z > n) \Y (Cu—l,z -Z > n) \Y
(Cou1,1 = Cu—1,1 = 2% - n) V (Cau—1,2 — Cu-1,2 > 2% - n)
In the instance that the contingent links are realized such that the
corresponding tiling location is outside the established bounds,
all constraints vacuously hold, and the network is dynamically
controllable.

Now, we can move on to encoding the pairwise rules. For conve-
nience, we will use the shorthand Tp to represent Xp — Cay—1,p. We

Session 2C: Knowledge Representation and Reasoning

Agent | Timepoints

Agent 2 Timepoints

=)

e g
=
2

Requirement Link ——

Disjunctive Link ——
Figure 2: The two-agent MaDTNU produced by a reduction
from an input TILING problem. There are O(logn) time-
points in total and O(|H| + |V| + logn) constraints in total,
each of which are O(|H| + |V|) in size.

can write the horizontal rules as follows, starting with the instance
where agent 1 must pick a tile to the left that of agent 2:

dgoob A (C2u—1,2 - Coy-1,1= 2u) = (T1,T») eH

To simplify our exposition, we will split this constraint into several
constraints that vary based on agent 1’s choice for Tj. In other
words, for each j € {1, 2, ..., m}, we now consider the constraint:

$oob A (Cau-1,2 = Cou-1,1 = 2") A (T1 =)
= (,T2)€H
We can rewrite our equation to eliminate the implication and since
all of our values are guaranteed to be integers by construction,

we can rewrite any statements involving # with inequalities on
both sides. Finally, we know that (j,T;) € H is equivalent to

463

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Vie{i,2,...m):(,lyerr T2 = L, and substituting those values in we
get:
Poob V (Cou-1,2 — Cou-1,1 = 2% +1) V
(Cou—1,2 = Cou—1,1 2% = 1) V(Ty 2 j+1)
VT <j-1)V T =1
l1e{1,2,...,m}:(j,l)eH
It is worth noting that this approach adds O(|H|) constraints each
of which is O(|H|) in size, meaning that our reduction still requires
at most polynomial time. For completeness, we also must consider
the case where agent 1 picks a tile to the right of agent 2. This
requires switching the roles of agents 1 and 2 in the rules:
Poob A (Cau-1,1 = Cau-1,2 =2%) = (T, T1) € H

and again, this can be expanded for each j € {1,2,...,m} into a
simple disjunctive constraint of the form:
¢00b \Y (CZu—l,l — C2u_1’2 > 2% 4+ l) \Y
(Cou-1,1-Cou—12 <2 -1 V(T 2 j+1)
V(T <j-1)V Ty =1
le{1,2,...,m}:(j,IyeH
We can take a similar approach for satisfying the vertical rules,

seeing if the final contingent link values of the two agents differ by
exactly one, but in this case, we now need to make sure that the two
values are still in the same column instead of being wrapped around
to a new one. To accommodate this, we now have to additionally
verify that the larger of the two tile indices is not in the 0th row.
This yields constraints of the form:

éoob A (CZu—l,Z - C2u—1,1 = 1) A (Cu—l,z * 0)
- <T1,T2> ev
and:
Poob A (C2u-1,1 = Cau—1,2 = 1) A (Cu=1,1 £ 0)
= (I, i) eV
By applying the same approach as with the horizontal rules, we
again create distinct constraints for each j € {1,2,...,m} and can
rewrite our rules to get simple disjunctive constraints:
Poob V (Cau-1,2 — Cau-1,1 2 2) V
(Cou-1,1 = Cau—1,2 < 0) V (Cy—1,2 = 0)
Vi 2j+1)Vv(Ti <j-1)
\Y% \/ T, =1
le{1,2,....,m}:(j,1)eV
and:
Poob V (Cau-1,1 — Cau-1,2 2 2) V
(Cou-1,1 = Cau—1,2 < 0) V (Cy—1,1 = 0)
V(I 2j+1) V(T2 <j-1)
\Y% \/ T, =1
le{1,2,....,m}:(j,1)eV
Finally, for the sake of simplicity, we will also require that if the
two agents receive the same value from their contingent links, then
they must report the same T,. This adds the constraint:
boob V (Cou-1,1 = Cou-1,1) = T1 =T
which can be rewritten as:

Poob V (C2u—l,1 > Coy—1,1+ 1)

Session 2C: Knowledge Representation and Reasoning

V (Cau-1,1 € Cou—1,1 = 1) V(X1 — X2 = 0)

It is clear by construction that if a solutions exists for a TILING
grid then the MaDTNU we constructed is dynamically controllable.
An acceptable strategy is for both agents to precompute a shared
valid tiling and to use that tiling to pick Xi, X2 based on the values
of the contingent links each can observe. What remains is to demon-
strate that knowing that our constructed MaDTNU is dynamically
controllable implies that the corresponding TILING problem has a
valid solution.

Our decision to add a constraint requiring that both agents re-
port the same value when queried for the same tile simplifies our
analysis, as it requires the two agents to have the same, determinis-
tic strategy. Thus, our problem reduces to being able to prove that a
solution to the TILING problem exists if the agents have a strategy
that renders the network controllable.

We start with the observation that each agent really has only
one decision point, namely when to schedule Xp. Each of the inter-
mediate A; s are scheduled immediately after the corresponding
preceding contingent timepoints, so there are no real decisions
to be made in scheduling A; ;. There are 22% possible values that
timepoint Cz-1,p can be assigned to, but thanks to ¢,,p, we only
care about n® of them. If we take the agent’s strategy for those
n? time points that correspond to a row-column indexing into the
original grid, we can immediately translate that into a valid tiling.
We prove this by contradiction.

Assume momentarily that translating the first agent’s strategy
does not yield a viable tiling. If the agent’s strategy were stochastic,
we can take any possible grounded strategy and use that as our
main one, as controllability implies that all constraints are satisfied
across all possible agent strategy realizations. This means that for
the tiling to be invalid, there must be a pair of tiles that adjoin one
another that violate the original tiling rules. Let’s call these indices
i and j and the corresponding tiles assigned by agent 1 for these
indices T; and Tj.

We know that in order for the system to be controllable, agent
2’s strategies for i and j must also be to assign T; and T because of
the rule that requires reporting the same values when the contin-
gent link values are all the same. Because our original MaDTNU
was known to be dynamically controllable, this means that for all
possible uncertain values all constraints are satisfied, including
when agent 1 must assign a value for index i and when agent 2
must assign a value for index j. In this situation, they must produce
values T; and Tj, respectively, but because indexes i and j adjoin one
another and all constraints are known to be satisfied, then T; and
T; must satisfy the appropriate adjacency relation. This means that
the tiling derived from the strategy cannot have a pair of indices
that adjoin one another and violate a rule, concluding the proof
that TILING is reducible to DC-MaDTNU and that DC-MaDTNU is
NEXP-hard.

|

Our reduction demonstrates that DC-MaDTNU is NEXP-hard.
Now, we show that DC-MaDTNU can be solved by a non-deterministic
Turing machine in exponential time.

LEmMMA 6.2. DC-MaDTNU € NEXP.

464

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Proor. To show that DC-MaDTNU € NEXP, we will generate
strategies for each agent and show that the joint execution of these
strategies guarantees success.

First, we need to generate strategies for each agent. We know
that it is possible to describe a dynamic execution strategy for
an agent in a DTNU that can be efficiently executed [5]. Even
though these strategies when enumerated can be exponential in
the size of the input, this will suffice for our purposes. Note that
an important part of this approach is that we assume that it takes
a fixed number of bits (though possibly polynomially many) to
represent individual numbers but is agnostic as to how specifically
numbers are represented.

In order to construct a strategy for the overall MaDTNU, we will
start by guessing a strategy for each agent with respect to their
locally projected timepoints. We define the locally projected time-
points of an agent in an MaDTNU as the collection of timepoints
that are directly observable by that agent. Whereas timepoints in
the MaDTNU were subdivided into timepoints assigned by the
ego agent, timepoints assigned by nature, and timepoints assigned
by each of the other agents, the locally projected timepoints will
only be subdivided into timepoint assigned by the ego agent and
timepoints assigned by others.

Given a set of locally projected timepoints, we guess a DTNU
strategy non-deterministically over that set of timepoints. Note that
we are guessing this strategy without explicit knowledge of any
dependencies between timepoints or decisions strategically made
by other agents; at this moment, we are leaning on non-determinism
to generate local strategies for each agent that are together globally
consistent.

The strategies we generated can each be exponentially large,
but, importantly, it takes at most exponential time to guess an
exponentially large string. Through the strategy generation step,
we are still well within our established time bounds.

Now, we must validate that the strategies we guessed ensure
dynamic controllability. Or that for any possible realization of the
uncertain duration of links, we can still guaranteeably satisfy all
links. We can do so by brute force iteration (see Algorithm 2).

Our brute force enumeration relies on the fact that the bits re-
quired to encode any particular uncertain state are polynomial in
the problem input size. In other words, writing down a realization of
contingent link values takes at most polynomial space even though
there are exponentially many such realizations.

For any given eventual realization of contingent link durations, a
fixed strategy will yield a deterministic output. Our algorithm gives
a straightforward simulation operating on behalf of each individual
agent. We build out our simulation by iteratively grounding the
values of individual timepoints based on agent strategies and the
different realized durations of contingent links; these values are
stored in the assigned variable (line 3).

Each agent’s strategy only allows them to observe a subset of
timepoints and make decisions off of those timepoints, and those de-
cisions reduce to unconditionally executing a timepoint at a certain
point in time or conditionally waiting to observe an uncontrolled
timepoint before making a decision. In the event that an agent’s
action is to conditionally wait for another timepoint, we instead

Session 2C: Knowledge Representation and Reasoning

Input: An MaDTNU G
Output: Whether G is dynamically controllable.
Initialization:

1 strategies < guessed local strategies for each agent;
DC-MaDTNU:

2 for w € G.uncertainRealizations() do

3 assigned «— 0;

4 time <« 0;

5 while len(assigned) < G.numTimepoints() do

6 possibleActions <« {s.nextAction(assigned, time) |
s € strategies};

7 nextAction < possibleActions.earliest();

8 possibleConts «— {(y,t) | y & assigned A Ix €

assigned : (x,y, t) € G.contingents()};

9 nextCont < possibleConts.earliest();

if nextAction.be fore(nextCont) then

assigned.add({nextAction.timepoint(),
nextAction.time()));

time < nextAction.time();

10
11

12

13 else

assigned.add({nextCont.timepoint(),
nextCont.time()));

time < nextCont.time();

14

15

16 if G.constraintsViolated(assigned) then

‘ return false;

17

=

8 return true;
Algorithm 2: NEXP algorithm for checking DC-MaDTNU.

record the agent that action would take if that uncontrolled time-
point took on its latest allowable value; these actions are chosen at
line 6 from the nondeterministically guessed agent strategy.

While some uncontrollable actions are chosen by other agents,
some are controlled by nature through contingent links. Though
the durations of these contingent links are determined when we
grounded them (line 2), their values are not yet visible to the agents
and so must be learned iteratively. We can imagine that nature
behaves like a non-cooperative (or for the sake of controllability
checking, even adversarial) agent in the way that it picks its time-
points, and so similarly consider the next contingent values to be
realized (line 8). We update the assigned variable one timepoint at
a time, selecting the earliest values from the derived agent actions
and contingent link values (lines 7, 9, 10) to ensure that strategies
can be adjusted based on new information.

Now we show that the process as a whole takes at most expo-
nential time on a non-deterministic Turing machine.

We have already demonstrated that it takes exponential time to
generate the strategies at line 1 of Algorithm 2, and since there are
exponentially many realizations of contingent link uncertainties,
we turn our focus to the runtime of the body of the for loop at
line 2. The while loop goes through O(n) iterations in total since
assigned grows by one after each iteration (lines 11 and 14). The
generation of possibleConts at line 8 takes at most O(n) time since
there are at most n contingent links, but the most expensive part of
the process is the generation of possibleActions at line 6. Since each
strategy is exponentially large, and it takes time linear in strategy

465

AAMAS 2019, May 13-17, 2019, Montréal, Canada

size to determine what action to take next, the strategy generation
at line 6 takes exponential time. However, that this exponential time
operation happens an exponential number of times still guarantees
that the overall runtime of the algorithm is exponential. Thus,
Algorithm 2 runs in NEXP time, and DC-MaDTNU € NEXP.

[m]

By Lemma 6.1, we know that DC-MaDTNU is NEXP-hard, and
by Lemma 6.2, we know that DC-MaDTNU € NEXP. Thus, DC-
MaDTNU is NEXP-complete.

7 DISCUSSION

In this paper, we took a deep look at multiagent disjunctive temporal
networks in order to better understand the feasibility of construct-
ing schedules with such models. While constructing a schedule
for PODTNUs is a PSPACE-complete problem, guaranteeing the
existence of a schedule for MaDTNUs in a dynamically controllable
setting is NEXP-complete.

Modelers have many options when investigating a problem,
including simplifying their models in order to guarantee faster
runtimes. While MaDTNUs provide a high degree of fidelity for
modelers, the extreme complexity of deriving a solution makes it
an undesirable framework to use in practice.

Taking a pragmatic approach, we have two axes against which
we can select our model. The first axis considers whether we ad-
mit disjunctive constraints and the latter considers the fidelity of
multiagent interactions. If we assume a fully observable model of
multiagent uncertainty, our two options are DTNUs and STNUs.
While dynamic controllability can be computed for the former is
PSPACE-complete [2], the latter can be determined in O(n?) time
[8]. When we expand our views to include partial observability, we
see that while DC-PODTNU has the same computational complex-
ity as dynamic controllability checking for DTNUs, we do not yet
know the computational complexity of checking the controllability
of POSTNUs or even MaSTNUs. While we do have polynomial time
algorithms for checking the dynamic controllability of POSTNUs
[3] and MaSTNUs [4], these algorithms are not complete.

Here, we seek to highlight the future importance of investigat-
ing the theoretical complexity of dynamic controllability checking
for POSTNUSs and MaSTNUs. Our work demonstrates that adding
partial observability to DTNUs has no impact on the computational
complexity of solving the problem, but it is not immediately clear
whether the same can be said for STNUs and if they can, whether
those benefits continue to hold for full multiagent networks. While
current work has established that certain POSTNUs and MaSTNUs
can be checked for controllability in polynomial time, proving a
result analogous to the one we present here would significantly
expand the set of situations that can be modeled and evaluated effi-
ciently. We believe addressing this question represents an important
avenue for future research.

ACKNOWLEDGMENTS

This work was partially supported by the Toyota Research Insti-
tute (TRI). However, this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota entity.

Session 2C: Knowledge Representation and Reasoning

REFERENCES

[1] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. 2002.

[2

=

The complexity of decentralized control of Markov decision processes. Mathe-
matics of operations research 27, 4 (2002), 819-840.

Nikhil Bhargava and Brian Williams. 2019. Complexity Bounds for the Control-
lability of Temporal Networks with Conditions, Disjunctions, and Uncertainty.
Artificial Intelligence 271 (2019), 1-17.

Arthur Bit-Monnot, Malik Ghallab, and Félix Ingrand. 2016. Which contingent
events to observe for the dynamic controllability of a plan. In International Joint
Conference on Artificial Intelligence (IJCAI-16).

Guillaume Casanova, Cédric Pralet, Charles Lesire, and Thierry Vidal. 2016.
Solving Dynamic Controllability Problem of Multi-Agent Plans with Uncertainty
Using Mixed Integer Linear Programming.. In ECAL 930-938.

Alessandro Cimatti, Andrea Micheli, and Marco Roveri. 2016. Dynamic Controlla-
bility of Disjunctive Temporal Networks: Validation and Synthesis of Executable
Strategies.. In AAAI 3116-3122.

Rina Dechter, Itay Meiri, and Judea Pearl. 1991. Temporal constraint networks.
Artificial intelligence 49, 1-3 (1991), 61-95.

Michael D Moffitt. 2007. On the partial observability of temporal uncertainty. In
Proceedings of the National Conference on Artificial Intelligence, Vol. 22. Menlo

466

[14

[15

AAMAS 2019, May 13-17, 2019, Montréal, Canada

Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 1031.

Paul Morris. 2014. Dynamic controllability and dispatchability relationships. In
International Conference on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems. Springer, 464-479.

Paul H Morris and Nicola Muscettola. 2005. Temporal dynamic controllability
revisited. In AAAIL 1193-1198.

C.H. Papadimitriou. 1994. Computational Complexity. Addison-Wesley Reading
(1994).

Kostas Stergiou and Manolis Koubarakis. 2000. Backtracking algorithms for
disjunctions of temporal constraints. Artificial Intelligence 120, 1 (2000), 81-117.

Teruo Sunaga. 1958. Theory of interval algebra and its application to numerical
analysis. RAAG memoirs 2, 29-46 (1958), 209.

Kristen Brent Venable, Michele Volpato, Bart Peintner, and Neil Yorke-Smith.
2010. Weak and dynamic controllability of temporal problems with disjunctions
and uncertainty. In Workshop on constraint satisfaction techniques for planning &
scheduling. 50-59.

Kristen Brent Venable and Neil Yorke-Smith. 2005. Disjunctive Temporal Planning
with Uncertainty.. In IJCAL 1721-1722.

Thierry Vidal and Helene Fargier. 1999. Handling contingency in temporal
constraint networks: from consistency to controllabilities. Journal of Experimental
& Theoretical Artificial Intelligence 11, 1 (1999), 23-45.

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Multiagent Disjunctive Definitions
	5 PODTNU Controllability
	6 MaDTNU Controllability
	7 Discussion
	Acknowledgments
	References

