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ABSTRACT
In this paper we study several monotonicity axioms in approval-

based multi-winner voting rules. We consider monotonicity with

respect to the support received by the winners and also mono-

tonicity in the size of the committee. Monotonicity with respect to

the support is studied when the set of voters does not change and

when new voters enter the election. For each of these two cases

we consider a strong and a weak version of the axiom. We observe

certain incompatibilities between the monotonicity axioms and

well-known representation axioms (extended/proportional justified

representation) for the voting rules that we analyze, and provide for-

mal proofs of incompatibility between some monotonicity axioms

and perfect representation.
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1 INTRODUCTION
There are many situations in which it is necessary to aggregate the

preferences of a group of agents to select a finite set of alternatives.

Typical examples are the election of representatives in indirect

democracy, shortlisting candidates for a position [6, 12], selection

by a company of the group of products that it is going to offer to its

customers [19], selection of the web pages that should be shown to

a user in response to a given query [11, 32], peer grading in Massive

Open Online Courses (MOOCs) [8] or recommender systems [12,

22]. The typical mechanism for such preference aggregations is the

use of multi-winner voting rules.

The use of axioms for analyzing voting rules is well established

in social choice and dates back to the work of Arrow [1]. How-

ever, multi-winner voting rules have not been studied much so

far from an axiomatic perspective. In particular, we can cite the

work of Dummet [10], Elkind et al. [12], Faliszewski et al. [14], and

Woodall [34] for multi-winner elections that use ranked ballots. For

approval-based multi-winner elections the concept of representa-

tion has been recently axiomatized by Aziz et al. [2], who proposed
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two axioms called justified representation and extended justified

representation, and Sánchez-Fernández et al. [29], who proposed

a weakening of extended justified representation that they called

proportional justified representation.

In this paper we complement these previous works with the

study of monotonicity axioms for approval-based multi-winner

voting rules. First of all, we consider monotonicity in the support

received by the winners. Informally, the idea of monotonicity in

the support is that if a subset of the winners in an election sees

their support increased and the support of all the other candidates

remains the same, then it seems reasonable that such candidates

should remain in the set of winners. Monotonicity with respect

to the support is studied when the set of voters does not change

and when new voters enter the election. Our first contribution is to

propose an axiom for each of these two cases and, for each of these

two axioms, to define a strong and a weak version of the axiom. We

also consider monotonicity in the size of the committee, although

in this case we will reuse an axiom that has already been proposed

by Elkind et al. [12].

Following the work of Elkind et al. [12] and Faliszewski et al. [13]

we will discuss the relevance of these axioms in three different types

of scenarios:

• Excellence. The goal is to select the best k candidates for a

given purpose. It is supposed that in a second step (out of the

scope of the multi-winner election) one of the selected can-

didates is finally selected. Examples of this type of elections

are choosing the finalists of a competition or shortlisting of

candidates for a position.

• Diversity. In this case the goal is that as many voters as

possible have one of their preferred candidates in the com-

mittee. Several examples of this type are discussed by Elkind

et al. [12] and Faliszewski et al. [13]. One such example is

to select the set of movies that are going to be offered to

the passengers during an air flight (the airline company is

interested in that all passengers find something that they

like).

• Proportional representation. In this case the goal is to

select a committee that represents as precisely as possible the

opinions of the society. The typical example of this scenario

are parliamentary elections.

Then, we analyze several well-known voting rules with these

axioms. We observe certain incompatibilities between the mono-

tonicity axioms and extended/proportional justified representation

for the voting rules that we analyze and provide formal proofs of

incompatibility between some of these axioms and perfect represen-

tation (another axiom proposed by Sánchez-Fernández et al. [29]).

At the end of this paper we review briefly some previous works

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

485



that study monotonicity axioms in approval-based multi-winner

elections, draw some conclusions and outline some lines of contin-

uation of this work.

2 PRELIMINARIES
We consider elections in which a fixed number k of candidates or

alternatives must be chosen from a set of candidates C . We assume

that |C | ≥ k ≥ 1. The set of voters is represented as N = {1, . . . ,n}.
Each voter i that participates in the election casts a ballot Ai that
consists of the subset of the candidates that the voter approves of

(that is, Ai ⊆ C). We refer to the ballots cast by the voters that

participate in the election as the ballot profile A = (A1, . . . ,An ).
An approval-based multi-winner election E is therefore represented

by E = (N ,C,A,k). The set of voters N and the set of candidates

C will be omitted when they are clear from the context.

Given a voting rule R, for each election E = (A,k), we say that

R(E) is the output of the voting rule R for such election. Ties may

happen in the voting rules that we are going to consider. To take

this into account, given an election E and a voting rule R we say

that the value of R(E) is the set of size at least one composed of

all the possible sets of winners outputted by rule R for election

E. We say that a candidates subsetW of size k is a set of winners

for election E and rule R ifW belongs to R(E). We stress that our

results are to a large extent independent of how ties are broken.

Given an election E = (N ,C,A,k) and a non-empty candidates

subsetG ofC , we define E∆G , as the election obtained by adding to

election E one voter that approves of only the candidates inG . That
is, E∆G = (N∆G = {1, . . . ,n,n + 1},C,A∆G = (A1, . . . ,An ,G),k).
Given a non-empty candidates subset G and a voter i ∈ N such

that she does not approve of any of the candidates in G we define

Ei+G , as the election obtained if voter i decides to approve of all

the candidates in G in addition to the candidates in Ai . That is,
Ei+G = (N ,C,Ai+G = (A1, . . . ,Ai−1,Ai ∪G,Ai+1, . . . ,An ),k).

We recall now the notions of justified representation and ex-

tended justified representation due to Aziz et al. [2], and of propor-

tional justified representation due to Sánchez-Fernández et al. [29].

Definition 2.1. Consider an election E = (N ,C,A,k). Given a

positive integer ℓ ∈ {1, . . . ,k}, we say that a set of voters N ∗ ⊆ N
is ℓ-cohesive if |N ∗ | ≥ ℓ nk and |

⋂
i ∈N ∗ Ai | ≥ ℓ. We say that a set

of candidatesW , |W | = k , provides justified representation (JR) for

E if for every 1-cohesive set of voters N ∗ ⊆ N it holds that there

exists a voter i in N ∗
such that Ai ∩W , ∅. We say that a set of

candidatesW , |W | = k , provides extended justified representation
(EJR) (respectively, proportional justified representation (PJR)) for E if

for every ℓ ∈ {1, . . . ,k} and every ℓ-cohesive set of voters N ∗ ⊆ N
it holds that there exists a voter i in N ∗

such that |Ai ∩W | ≥ ℓ

(respectively, |W ∩(
⋃
i ∈N ∗ Ai )| ≥ ℓ). We say that an approval-based

voting rule satisfies justified representation (JR), extended justified
representation (EJR), or proportional justified representation (PJR)

if for every election E = (N ,C,A,k) it outputs a committee that

provides JR, EJR, or PJR, respectively, for E.

Aziz et al. [2], and Sánchez-Fernández et al. [29] prove that

EJR implies PJR and that PJR implies JR, both for rules and for

committees.

Belowwe introduce the voting rules that we are going to consider

in this study. First of all, we present the following voting rules,

surveyed by Kilgour [16].

Approval Voting (AV). Under AV, the winners are the k candi-

dates that receive the largest number of votes. Formally, for each

approval-based multi-winner election (A,k), the approval score of
a candidate c is |{i : c ∈ Ai }|. The k candidates with the highest

approval scores are chosen.

Satisfaction Approval Voting (SAV). A voter’s satisfaction
score is the fraction of her approved candidates that are elected.

SAV maximizes the sum of the voters’ satisfaction scores. Formally,

for each approval-based multi-winner election E = (A,k):

SAV(E) = argmax

W ⊆C : |W |=k

∑
i ∈N

|Ai ∩W |

|Ai |
. (1)

Since we are interested in the compatibility between representa-

tion axioms and monotonicity axioms we are also going to study

several rules that satisfy some of the above mentioned representa-

tion axioms.

Chamberlin and Courant rule andMonroe rule. The voting
rules proposed by Chamberlin and Courant [9] and Monroe [20]

select sets of winners that minimize the misrepresentation of the

voters (the number of voters represented by a candidate that they do

not approve of). The difference between the rule of Chamberlin and

Courant (CC) and the rule of Monroe is that in CC each candidate

may represent an arbitrary number of voters while in the Monroe

rule each candidate must represent at least ⌊ nk ⌋ and at most ⌈nk ⌉

voters. For each approval-based multi-winner election E = (A,k):

CC(E) = argmin

W ⊆C : |W |=k
|{i : Ai ∩W = ∅}|. (2)

Given an election E = (A,k) and a candidates subsetW of size

k let MN ,W be the set of all mappings π : N →W such that for

each candidate c inW it holds that ⌊ nk ⌋ ≤ |{i : π (i) = c}| ≤ ⌈nk ⌉.

Then,

Monroe(E) = argmin

W ⊆C : |W |=k
min

π ∈MN ,W
|{i : π (i) < Ai }|. (3)

Proportional Approval Voting (PAV) was proposed by the

Danish mathematician Thiele [33] in the late 19th century. Given

an election E = (A,k) and a candidates subsetW of size k , the
PAV-score of a voter i is 0 if such voter does not approve of any of

the candidates inW and

∑ |Ai∩W |

j=1
1

j if the voter approves of some of

the candidates inW . PAV selects the sets of winners that maximize

the sum of the PAV-scores of the voters.

PAV(E) = argmax

W ⊆C : |W |=k

∑
i :Ai∩W ,∅

|Ai∩W |∑
j=1

1

j
. (4)

Phragmén rules Phragmén rules were proposed by the Swedish

mathematician Phragmén [24–27] in the late 19th century. In this

paper we will focus mainly in one of these rules that we will refer

to as max-Phragmén. We refer to the survey by Janson [15] for an

extensive discussion of Phragmén rules.

Phragmén voting rules are based on the concept of load. Each
candidate in the set of winners incurs in one unit of load, that should
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be distributed among the voters that approve of such candidate.

The goal is to choose the set of winners such that the total load is

distributed as evenly as possible between the voters.

Formally, given an election E = (A,k) and a candidates subset

W ⊆ C , |W | = k , a load distribution is a two dimensional array

x = (xi,c )i ∈N ,c ∈W , that satisfies the following three conditions:

0 ≤ xi,c ≤ 1 for all i ∈ N and c ∈W , (5)

xi,c = 0 if c < Ai , and (6)∑
i ∈N

xi,c = 1 for all c ∈W . (7)

Given a load distribution x, the load of each voter i is defined as

xi =
∑
c ∈W xi,c . Then, given an election E, the rule max-Phragmén

outputs the set of winnersW that minimizes the maximum voter

load.

3 SUPPORT MONOTONICITY
Some previous work (see Section 6) make use of the following

idea of support monotonicity: if a candidate that was already in

the set of winners is added to the ballot of some voter (without

changing anything else in the election), then such candidate must

still belong to the set of winners. We will refer to this axiom as

candidate monotonicity.

Definition 3.1. We say that a rule R satisfies candidate mono-
tonicity if for each election E = (N ,C,A,k), for each candidate

c ∈ C , and for each voter i that does not approve of c , the following
conditions hold: (i) if c belongs to some winning committee in R(E),
then c must also belong to some winning committee in R(Ei+{c });
and (ii) if c belongs to all winning committees in R(E), then c must

also belong to all winning committees in R(Ei+{c }).

Candidate monotonicity can be seen as the equivalent of the ax-

iom with the same name proposed by Elkind et al. [12] for ranked

ballots
1
. They require that, if a winning candidate c is moved for-

ward in some vote, then c must still belong to some winning com-

mittee.

Elkind et al. [12] justified this axiom with the following idea:

“If c belongs to a winning committeeW then, gener-

ally speaking, we cannot expectW to remain winning

when c is moved forward in some vote, as this shift

may hurt other members ofW .”

In this paper we propose to extend the notion of candidate mono-

tonicity for approval-based multi-winner voting rules in several

directions. First of all, we study what happens when a subset G of

the candidates that was already in the set of winnersW is added

to the ballot of some voter. Following the idea of Elkind et al. [12]

that we have quoted before, we believe that we cannot expectW
to remain winning, but we can expect that all the candidates in

G (strong version) or, at least, some of the candidates in G (weak

version) remain winning.

Secondly, we consider monotonicity when a new voter enters

the election and approves of a subset of the candidates that were

already in the set of winners. Again, we define a strong and a weak

1
Elkind et al. [12] also proposed another axiom called non-crossing monotonicity that

will not be considered in this paper.

version of this axiom. A similar idea of monotonicity when new

voters enter the election has been proposed by Woodall [34] for

ranked ballots.

Definition 3.2. We say that a rule R satisfies strong support mono-
tonicity with population increase (respectively, weak support mono-
tonicity with population increase) if for each election E = (N ,C,A,k),
and for each non-empty subset G of C , such that |G | ≤ k , the fol-
lowing conditions hold: (i) if G ⊆ W for someW ∈ R(E), then
G ⊆W ′

for someW ′ ∈ R(E∆G ) (respectively,G ∩W ′ , ∅ for some

W ′ ∈ R(E∆G )); and (ii) ifG ⊆W for allW ∈ R(E), thenG ⊆W ′
for

allW ′ ∈ R(E∆G ) (respectively, G ∩W ′ , ∅ for allW ′ ∈ R(E∆G )).

We say that a rule R satisfies strong support monotonicity without
population increase (respectively, weak support monotonicity without
population increase) if for each election E = (N ,C,A,k), for each
non-empty subset G of C , such that |G | ≤ k , and for each voter i
such thatAi ∩G = ∅, the following conditions hold: (i) ifG ⊆W for

someW ∈ R(E), thenG ⊆W ′
for someW ′ ∈ R(Ei+G ) (respectively,

G ∩W ′ , ∅ for some W ′ ∈ R(Ei+G )); and (ii) if G ⊆ W for

allW ∈ R(E), then G ⊆ W ′
for allW ′ ∈ R(Ei+G ) (respectively,

G ∩W ′ , ∅ for allW ′ ∈ R(Ei+G )).

We believe that it is important to know what happens when

the support of several of the candidates in the set of winners is

incremented simultaneously. Moreover, our results show that for

each of the rules that we consider that satisfies any of the support

monotonicity axioms (with or without population increase) for

|G | = 1, such rule also satisfies the corresponding weak support

monotonicity axiom (for all values of |G |), which is slightly stronger,

and therefore provides more information about the behaviour of

the rule. Because of this, we do not study candidate monotonicity

in this paper. We note, however, that we have been able to build

(weird) rules that satisfy support monotonicity with or without

population increase for |G | = 1 but fail the corresponding weak

axiom (examples can be found in the full version of this paper [30]).

We now discuss briefly the relevance of these axioms for the

three types of scenarios considered in the Introduction. First of all

we note that it is a general property of elections to desire to select

winners that receive a high support, and therefore we believe that

our weak axioms are generally desirable.

In the case of excellence, we believe that the strong axioms are

highly preferable to the weak ones. Since we are looking for the

best candidates, adding support to a subset of the candidates that

were already considered to be among the best should make all of

them stay in the set of winners.

In contrast, in the case of diversity we believe that satisfying

the strong axioms is not important for the rule used in the election.

We recall that the goal of the election is that every voter has one

of her preferred candidates in the set of winners. If the support

of a subset G of the winners was increased and at least one of

them remained in the set of winners, then the voters that approve

of the candidates in G would be satisfied. Removing some of the

candidates in G from the set of winners may allow to add other

candidates approved by other voters that did not have previously

any of their approved candidates in the set of winners. Therefore,

for an election of the diversity type, we believe that it would be

enough if the rule satisfies the weak axioms.
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Sánchez-Fernández et al. [29] distinguish two types of propor-

tional representation. In the first type of proportional representation

the aim is that each voter is represented by a candidate that she

approves of and that each candidate represents the same number of

voters. The typical example of this type of scenario are parliamen-

tary elections. As in the case of diversity, in this type of scenario

we believe that it is enough to satisfy the weak axioms. Regard-

ing the second type of proportional representation considered by

Sánchez-Fernández et al. [29], the goal is that, for each ℓ-cohesive

group of voters (see Definition 2.1), as most voters of the group as

possible approve of at least ℓ of the candidates in the set of winners.

Sánchez-Fernández et al. [29] present as an example of this type

of elections the selection of researchers invited to give a seminar

in an academic department. We believe that the situation in this

case is less clear. It seems that the weak axioms are not enough for

this situation because a voter may not be satisfied with having only

one of her preferred candidates in the set of winners. However, the

strong axioms are maybe too strong if a voter that belongs to an

ℓ-cohesive group of voters decides to approve of a subset of the set

of winners G of size greater than ℓ.

From now on, we will refer to support monotonicity with pop-

ulation increase as SMWPI and to support monotonicity without

population increase as SMWOPI. Table 1 summarizes the results we

have obtained in this paper. With respect to the support monotonic-

ity axioms (columns entitled “SMWPI” and “SMWOPI”) we use the

keys “Str.” when the rule satisfies the strong version of the axiom,

“Wk.” when the rule satisfies the weak version of the axiom and “No”

when the rule does not satisfy any of them. The column entitled

“Com. Mon.” contains the results related to committee monotonicity,

which is discussed in Section 4.

For completeness, we also include previous results related to

the computational complexity of the rules and the representation

axioms that they satisfy, including pointers to the appropriate ref-

erences. The column entitled “JR/PJR/EJR” shows for each rule the

strongest of these axioms satisfied by the rule. The next column

says which rules satisfy the perfect representation axiom (PR), that

will be discussed in Section 5.

An important type of rules in approval-based multi-winner elec-

tions are approval-based multi-winner counting rules, which, as
discussed by Lackner and Skowron [17, 18], can be seen as analo-

gous to the class of committee scoring rules introduced by Elkind

et al. [12] for ranked-based multi-winner elections.

Definition 3.3. A counting function f : {1, . . . ,k}×{1, . . . , |C |} →
R is a function that satisfies that f (x ,y) ≥ f (x ′,y)whenever x > x ′.
Intuitively, a counting function f defines the score f (x ,y) that a
certain counting rule rf assigns to a voter i that approves of x
candidates in the set of winnersW and y candidates in total. Given

a counting function f , and an election E = (A,k), the total score
of a candidates subsetW for counting function f is

sf (W , E) =
∑
i ∈N

f (|Ai ∩W |, |Ai |),

and the counting rule rf associated to counting function f is

defined as follows:

rf (E) = argmax

W ⊆C : |W |=k
sf (W , E).

As discussed by Lackner and Skowron [17, 18] several of the vot-

ing rules that we have presented in the previous section are count-

ing rules. In particular, we have fAV(x ,y) = x for AV, fSAV(x ,y) =
x
y

for SAV, fCC(x ,y) = 1 if x > 0 and fCC(0,y) = 0 for CC, and

fPAV(x ,y) =
∑x
j=1

1

j if x > 0 and fPAV(0,y) = 0 for PAV.

For counting rules we have the following results with respect to

support monotonicity.

Theorem 3.4. Every counting rule satisfies strong SMWPI.

Proof. Consider an election E = (A,k), a counting function f
and its associated rule rf , a set of winnersW outputted by rf for

election E and a non-empty subset G ofW . We are going to prove

thatW also belongs to rf (E∆G ). The theorem follows from that

immediately.

Consider any other candidates subsetW ′
of size k . We simply

have to observe that the total score ofW for election E∆G under rule

rf is

∑
i ∈N f (|Ai ∩W |, |Ai |) + f (|G ∩W |, |G |), that

∑
i ∈N f (|Ai ∩

W |, |Ai |) ≥
∑
i ∈N f (|Ai ∩W

′ |, |Ai |) (becauseW is a set of winners

for rule rf and election E), and that f (|G ∩W |, |G |) = f (|G |, |G |) ≥

f (|G ∩W ′ |, |G |) (by the definition of counting function). �

We can also prove weak SMWOPI by introducing a slight restric-

tion to the counting functions that is satisfied by all the counting

rules that we consider in this paper.

Theorem 3.5. Consider a counting function f . If f satisfies that
f (x ,y) ≥ f (x ,y′) whenevery ≤ y′, and that for each positive integer
z it holds that f (x + z,y + z) ≥ f (x ,y), then its associated rule rf
satisfies weak SMWOPI.

Proof. Consider an election E = (A,k), a counting function f
and its associated rule rf , a set of winnersW outputted by rf for

election E, a non-empty subset G ofW , and a voter i such that she

does not approve of the candidates in G.
We observe first that becauseAi andG are disjoint, for each can-

didates subsetW ′
it holds that f (|(Ai∪G)∩W

′ |, |Ai∪G |) = f (|Ai∩
W ′ | + |G ∩W ′ |, |Ai | + |G |) and that sf (W

′, Ei+G ) − sf (W
′, E) =

f (|Ai ∩W ′ | + |G ∩W ′ |, |Ai | + |G |) − f (|Ai ∩W ′ |, |Ai |).
Suppose that f satisfies that f (x ,y) ≥ f (x ,y′) whenever y ≤ y′,

and that for each positive integer z it holds that f (x + z,y + z) ≥
f (x ,y), and consider any candidates subsetW ′

of size k such that

W ′ ∩G = ∅. Then,

sf (W , Ei+G ) − sf (W
′, Ei+G ) =

(sf (W , E) + f (|Ai ∩W | + |G ∩W |, |Ai | + |G |)

−f (|Ai ∩W |, |Ai |))
−(sf (W

′, E) + f (|Ai ∩W ′ | + |G ∩W ′ |, |Ai | + |G |)

−f (|Ai ∩W ′ |, |Ai |))
= sf (W , E) − sf (W

′, E)

+f (|(Ai ∩W | + |G |, |Ai | + |G |) − f (|(Ai ∩W |, |Ai |)
−(f (|Ai ∩W ′ |, |Ai | + |G |) − f (|Ai ∩W ′ |, |Ai |)) ≥ 0.

This proves part (i) of the definition of weak SMWOPI. The proof

of part (ii) of the definition of weak SMWOPI follows from the fact

that if G ⊆ W for allW ∈ rf (E), then sf (W , E) − sf (W
′, E) > 0,

and therefore, the inequality in the equation above is strict.

�
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Rule Complexity JR/PJR/EJR PR SMWPI SMWOPI Com. Mon.
AV P

a
No

d
No

k
Str.

Thm. 3.4
Str.

Thm. 3.6
Yes

SAV P
a

No
d

No
k

Str.
Thm. 3.4

Str.
Thm. 3.6

Yes

CC NP-comp.
b

JR
d

Yes
g, k

Str.
Thm. 3.4

Wk.
Thm. 3.5

No
Ex. 4.2

Monroe NP-comp.
b

JR
d,e

Yes
h

No
Ex. 3.10

Wk.
Thm. 3.9

No
Ex. 4.2

PAV NP-comp.
a

EJR
d

No
h

Str.
Thm. 3.4

Wk.
Thm. 3.5

No
j

max-Phragmén NP-comp.
c

PJR
c,f

Yes
c

Wk.
i, Thm. 3.12

Wk.
i, Thm. 3.12

No
i

a
Results by Aziz et al. [4] and Skowron et al. [31].

b
Results by Procaccia et al. [28].

c
Results by Brill et al. [7].

d
Results by Aziz et al. [2].

e
Monroe satisfies PJR if k divides n [29].

f
max-Phragmén satisfies PJR when combined with certain tie-breaking rule [7].

g
CC satisfies PR if ties are broken always in favour of the candidates subsets that provide PR.

h
Results by Sánchez-Fernández et al. [29].

i
Results by Janson [15], Mora and Oliver [21], and Phragmén [26].

j
Results by Thiele [33].

k
Results by Sánchez-Fernández and Fisteus [30].

Table 1: Properties of approval-based multi-winner voting rules

However, of the counting rules that we consider in this paper

only AV and SAV satisfy strong SMWOPI.

Theorem 3.6. AV and SAV satisfy strong SMWOPI.

Proof. The counting functions of AV and SAVhold that f (x ,y) =
x f (1,y). This makes it possible to assign each candidate c a score
sf (c, E) =

∑
i :c ∈Ai f (1, |Ai |) irrespective of which other candidates

are in the set of winners W so that sf (W , E) =
∑
c ∈W sf (c, E).

Therefore, the winners in AV and SAV are the k candidates with

the highest candidate score. It is now enough to observe that each

candidate that belongs to G increases her score in election Ei+G in

f (1, |Ai | + |G |) with respect to her score in election E, and that the

scores of the candidates that are not in G do not increase. �

The following examples prove that PAV and CC fail strong SM-

WOPI.

Example 3.7. Let k = 4 and C = {c1, . . . , c7}. 131 voters cast the
following ballots: for i, j = 1 to 3, 3 voters approve of {ci , c j+4}, 100
voters approve of {c4}, 1 voter approves of {c1, c2}, 1 voter approves
of {c1, c2, c3}, and 2 voters approve of {c5, c6}. For this election
PAV outputs one set of winners: {c1, c2, c3, c4}, with a PAV score

of 391/3. However, if the voter that approves of {c1, c2} decides
to approve of {c1, c2, c3, c4}, then PAV outputs only {c4, c5, c6, c7},
with a PAV score of 131. Intuitively, this example works as follows.

First, the 100 voters that approve of {c4} force that c4 has to be

in the set of winners. Second, the first 27 votes force that either

{c1, c2, c3} or {c5, c6, c7} are in the set of winners. The last 4 votes

break the tie between {c1, c2, c3, c4} and {c4, c5, c6, c7} in the two

cases considered.

Example 3.8. Let k = 3 and C = {a,b, c,d, e}. 13 voters cast the
following ballots: 2 voters approve of {a,d}, 2 voters approve of
{a, e}, 2 voters approve of {c,d}, 2 voters approve of {c, e}, 2 voters
approve of {b}, 2 voters approve of {a}, and 1 voter approves of

{d}. For this election CC outputs one set of winners: {a,b, c} (one
voter misrepresented). Now, we consider two consecutive increases

of support of {b, c}, where, in each increase one of the voters that

approve of {a} decides to approve of {a,b, c}. Then, after the first
increase of support of {b, c}, CC outputs {a,b, c} and {b,d, e} (one
voter misrepresented), and after the second increase of support of

{b, c} CC outputs only {b,d, e} (0 voters misrepresented). Observe

that this example proves that CC fails strong SMWOPI even when

it is combined with any tie breaking rule, because if the tie breaking

rule selects {a,b, c} after the first increase of support, then strong

SMWOPI is violated in the second increase of support, and if the

tie breaking rule selects {b,d, e} after the first increase of support,
then strong SMWOPI is violated in the first increase of support.

Let us now turn to analyze the remaining voting rules.

Theorem 3.9. The Monroe rule satisfies weak SMWOPI.

Proof. Consider an election E = (A,k), a set of winnersW
outputted by Monroe for election E, a non-empty subset G ofW ,

and a voter i that does not approve of any of the candidates in G.
Let πW be a mapping that minimizes the misrepresentation ofW
for election E. Clearly the misrepresentation ofW with mapping

πW for election Ei+G is the same as for election E if the candidate

πW (i) assigned by πW to voter i does not belong to G and is equal

to the misrepresentation ofW with mapping πW for election E

minus one if πW (i) belongs to G . Furthermore, for each candidates

setV such thatV ∩G = ∅, and for each mapping πV of the voters in

N to the candidates in V it holds that the candidate πV (i) assigned
by πV to voter i belongs to Ai ∪ G if and only if such candidate

belongs to Ai and, therefore, the misrepresentation values of V
with mapping πV are the same for election Ei+G and for election

E. �

Examples 3.10 and 3.11 prove that Monroe fails weak SMWPI and

strong SMWOPI, respectively. As in the case of CC, these examples

prove that Monroe fails weak SMWPI and strong SMWOPI even if

combined with any tie breaking rule.

Example 3.10. Let k = 4 and C = {a,b, c,d, e, f ,д,h}. 33 vot-

ers cast the following ballots: 5 voters approve of {a, e}, 4 voters
approve of {a,д}, 5 voters approve of {b, e}, 4 voters approve of
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{b,h}, 5 voters approve of {c, f }, 4 voters approve of {c,д}, 3 voters
approve of {d, f }, and 3 voters approve of {d,h}. For this election
Monroe outputs only {e, f ,д,h} (misrepresentation 1 due to one

of the voters that approve of e being represented by h). We now

consider two consecutive voters that enter the election, such that

each of the new voters approves of {e}. Then, after the first new
voter enters the election, Monroe outputs {a,b, c,d} and {e, f ,д,h}
(misrepresentation 2) and, after the second new voter enters the

election, Monroe outputs only {a,b, c,d} (misrepresentation 2: the

new voters would be represented by candidate d).

Example 3.11. Let k = 3 and C = {a,b, c,d, e}. 18 voters cast the
following ballots: 2 voters approve of {a}, 2 voters approve of {a,d},
2 voters approve of {a, e}, 4 voters approve of {b}, 1 voter approves
of {b, e}, 4 voters approve of {c,d}, and 3 voters approve of {c, e}.
For this election Monroe outputs only {a,b, c} (misrepresentation

1 due to one of the voters that approve of c being represented

by candidate b). Now, we consider two consecutive increases of

support of {b, c}, where, in each increase one of the voters that

approve of {a} decides to approve of {a,b, c}. Then, after the first
increase of support of {b, c}, Monroe outputs {a,b, c} and {b,d, e}
(misrepresentation 1), and after the second increase of support of

{b, c} Monroe outputs only {b,d, e} (misrepresentation 0).

We study now support monotonicity for max-Phragmén. Phrag-

mén [26] proved that max-Phragmén satisfies support monotonicity

when |G | = 1. That proof could be easily extended to prove that

max-Phragmén satisfies weak SMWPI and weak SMWOPI.

Theorem 3.12. max-Phragmén satisfies weak SMWPI and weak
SMWOPI.

Proof. We first prove weak SMWOPI. Consider an election E =

(A,k), a set of winnersW output by max-Phragmén for election

E, a non-empty subset G ofW , and a voter i that does not approve

of any of the candidates in G. Let xopt = (x
opt

i′,c )i′∈N ,c ∈W be a load

distribution that minimizes the maximum voter load for election E

and candidates subsetW , and letmE be the maximum voter load

for load distribution xopt, that is,mE = maxi′∈N x
opt

i′ .

Observe that xopt is a valid, possibly non-optimal, load distribu-

tion for election Ei+G and candidates subsetW . In particular, for

each candidate c that belongs to G, since voter i does not approve

of c in election E, it holds that x
opt

i,c = 0.

Consider now any candidates subset W ′
of size k such that

W ′ ∩G = ∅. Observe that for the candidates subsetW ′
the set of

valid load distributions for election Ei+G are the same as the set

of valid load distributions for election E. In particular, for voter i ,
the candidates for which xi,c can be greater than 0 are Ai ∩W ′

both in election E and in election Ei+G . It follows immediately that

the minimum maximum voter load for candidates subsetW ′
is the

same in elections E and Ei+G .

Since the minimum maximum voter load for the candidates

subsetW does not increase in election Ei+G with respect to election

E and, for each candidates subsetW ′
such thatW ′ ∩ G = ∅ the

minimum maximum voter load for the candidates subsetW ′
is the

same in elections Ei+G and E, it follows thatW or some candidates

subset that contains some of the candidates in G must be output

by max-Phragmén for election Ei+G . Further, if for all the set of

winnersW output by max-Phragmén for election E it holds that

G ⊆W , then for each candidates subsetW ′
such thatW ′ ∩G = ∅

the minimum maximum voter load for the candidates subsetW ′
is

strictly greater thanmE , and therefore, it cannot be a set of winners

for election Ei+G .

The proof for weak SMWPI follows from the facts that max-

Phragmén satisfies weak SMWOPI, and that for any election E the

sets of winners output by max-Phragmén do not change if we add

a voter to the election that does not approve of any candidate. �

However, the following example proves that max-Phragmén fails

both strong SMWPI and strong SMWOPI.

Example 3.13. Let k = 6 andC = {a,b, c1, . . . , c5}. 18 voters cast
the following ballots: 13 voters approve of {c1, . . . , c5}, 2 voters

approve of {a,b}, 2 voters approve of {a}, and 1 voter approves of

{b}. For this election max-Phragmén outputs only one set of win-

ners: {a, c1, . . . , c5}. The minimum maximum load for this election

is achieved as follows: for each voter i that approves of {c1, . . . , c5}
and each candidate c in {c1, . . . , c5} we have xi,c =

1

13
, and for each

voter i ′ that approves of a we have xi′,a =
1

4
. Then, the load of the

voters that approve of {c1, . . . , c5} is
5

13
and the load of the voters

that approve of a is
1

4
. The maximal voter load for this example is

therefore
5

13
. Now, if a new voter enters the election and approves

of precisely {a, c1, . . . , c5}, then the sets of winners outputted by

max-Phragmén consist of {a,b} plus 4 candidates from {c1, . . . , c5}.
In this case theminimummaximum voter load is achieved by assign-

ing again xi,c =
1

13
for each voter i that approves of {c1, . . . , c5}

and each candidate c in {c1, . . . , c5}, assigning xi,a =
1

3
to the new

voter and the voters that approve of {a}, and assigning xi,b =
1

3
to

all the voters that approve of candidate b. This leads to a maximum

voter load of
1

3
. Observe that in this case the minimum maximum

voter load for the set {a, c1, . . . , c5} would be obtained by xi,c =
1

14

for each voter i that approves of {c1, . . . , c5}, and also for the new

voter, which leads to a maximum voter load of
5

14
, greater than

1

3
. This example proves that max-Phragmén fails strong support

monotonicity with population increase.

To prove that max-Phragmén fails strong support monotonicity

without population increase we simply add an additional candi-

date d to the original election and a voter that approves of {d}.
This does not make any difference and the set of winners will be

again {a, c1, . . . , c5}. Now, if this new voter decides to approve

of {a, c1, . . . , c5,d}, then the sets of winners outputted by max-

Phragmén consist of {a,b} plus 4 candidates from {c1, . . . , c5}.

4 COMMITTEE MONOTONICITY
We turn now to discuss briefly committee monotonicity. The fol-

lowing definition, due to Elkind et al. [12], was given in the context

of multi-winner voting rules that make use of ranked ballots, but it

can also be directly used for approval-based multi-winner voting

rules.

Definition 4.1. We say that a voting rule R satisfies commit-

tee monotonicity if for every election E = (N ,C,A,k), with k ∈

{1, . . . , |C | − 1}, the following conditions hold:

(1) for each W in R(E = (N ,C,A,k)) there exists a W ′
in

R(N ,C,A,k + 1) such thatW ⊆W ′
, and
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(2) for eachW in R(N ,C,A,k + 1) there exists aW ′
in R(E =

(N ,C,A,k)) such thatW ′ ⊆W .

It is generally believed that committeemonotonicity is a desirable

axiom for scenarios of type excellence [6, 12, 13].

It is easy to see that committee monotonicity is satisfied by the

rules that consist of an iterative algorithm such that at each iteration

the candidate that is added to the set of winners does not depend

on the target committee size. This holds for AV, and SAV.

Thiele [33] and Mora and Oliver [21] have already proved that

PAV and max-Phragmén, respectively, fail committee monotonicity.

We give here an example that shows that both CC and Monroe fail

committee monotonicity.

Example 4.2. Let C = {a,b, c}. 10 voters cast the following bal-
lots: 3 voters approve of {a,b}, 3 voters approve of {a, c}, 2 voters
approve of {b} and 2 voters approve of {c}. For this set of candi-
dates and this ballot profile, for k = 1 both CC and Monroe output

only {a}. For k = 2, both CC and Monroe output only {b, c}.

5 COMPATIBILITY OF AXIOMS
In many applications it would be interesting to use voting rules

that satisfy both support monotonicity and representation axioms.

While all the voting rules that we have analyzed that satisfy PJR

(or EJR) also satisfy the weak support monotonicity axioms, the

situation changes when we require the strong axioms. In particular,

none of the rules analyzed that satisfy PJR also satisfy strong SM-

WOPI, and only PAV (which has the additional difficulty of being

NP-hard to compute) satisfies strong SMWPI. Whether it is possible

to develop a voting rule that satisfies strong SMWOPI and PJR at

the same time is left open.

In contrast, we can formally prove that perfect representation

(PR) is incompatible both with strong SMWPI and with committee

monotonicity. We review first the definition of PR due to Sánchez-

Fernández et al. [29].

Definition 5.1. Perfect representation (PR) Consider a ballot

profileA over a candidate setC , and a target committee size k , k ≤

|C |, such thatk dividesn. We say that a set of candidatesW , |W | = k ,
provides perfect representation (PR) for (A,k) if it is possible to
partition the set of voters in k pairwise disjoint subsets N1, . . . ,Nk
of size

n
k each, such that each candidatew inW can be assigned to

one (and only one) different subset Ni so that for all pairs (w,Ni )

all the voters in Ni approve of their assigned candidatew . We say

that an approval-based voting rule satisfies perfect representation

(PR) if for every election (A,k) it does not output any winning set

of candidatesW that does not provide PR for (A,k) if at least one
set of candidatesW ′

that provides PR for (A,k) exists.

Theorem 5.2. No rule can satisfy PR and strong SMWPI at the
same time.

Proof. Consider the following election. Let k = 3 and C =
{c1, . . . , c5}. 12 voters cast the following ballots: 2 voters approve
of {c1, c4}, 2 voters approve of {c1, c5}, 3 voters approve of {c2, c4},
one voter approves of {c2, c5}, 2 voters approve of {c3, c5}, and 2

voters approve of {c3}. For this election any voting rule that satisfies
PR has to output {c1, c2, c3}. Now, suppose that 3 new voters enter

the election, and that all these new voters approve of {c1, c3}. For

this extended election a voting rule that satisfies PR has to output

only {c3, c4, c5}. �

There is an apparent contradiction between this theorem and

Table 1 because Table 1 says that CC satisfies both PR and strong

SMWPI. The reason for this apparent contradiction is that, as ex-

plained in Footnote g, CC satisfies PR only if ties are broken in

favour of the sets of candidates that provide PR. The example of

Theorem 5.2 illustrates this. For the initial election CC outputs

{c1, c2, c3} and {c3, c4, c5}. However, if ties are broken in favour

of the sets of candidates that provide PR, then CC (with this tie-

breaking rule) will output only {c1, c2, c3}. Now, after adding 3 new
voters that approve of {c1, c3}, strong SMWPI requires that both c1
and c3 are in the set of winners while PR requires that the set of

winners is {c3, c4, c5}.

Theorem 5.3. No rule can satisfy PR and committee monotonicity
at the same time.

Proof. Consider the following election. Let C = {c1, . . . , c5}. 6
voters cast the following ballots. For i = 1 to 3, and for j = 1 to

2, one voter approves of {ci , c3+j }. If the target committee size is

2, a voting rule that satisfies PR has to output only {c4, c5}, but if
the target committee size is 3, a voting rule that satisfies PR has to

output only {c1, c2, c3}. �

SMWPI SMWOPI Com. Mon.
JR Str. Wk.(Str.?) Yes

PJR Str. Wk.(Str.?) Yes

EJR Str. Wk.(Str.?) ?

PR Wk. Wk.(Str.?) No

Table 2: Summary of results on compatibility between rep-
resentation and monotonicity axioms

Table 2 summarises the results that we have found in this paper

with respect to the compatibility between representation and mono-

tonicity axioms. Of course, the rules that we have found before that

satisfy a certain monotonicity axiom and a certain representation

axiom at the same time prove that such axioms are compatible. In

the table, “Str.” means that the strong version of the support mono-

tonicity axiom is compatible with the corresponding representation

axiom, “Wk.” means that the weak version of the support mono-

tonicity axiom is compatible with the corresponding representation

axiom but that the strong version of the support monotonicity

axiom and the corresponding representation axiom are incompati-

ble, and “Wk.(Str.?)” means that the weak version of the support

monotonicity axiom is compatible with the corresponding repre-

sentation axiom but that we do not know whether the the strong

version of the support monotonicity axiom and the corresponding

representation axiom are compatible.

6 RELATEDWORK
There exists some previous work that consider support monotonic-

ity in the context of approval-based multi-winner elections. Aziz

and Lee [5] propose several notions ofmonotonicity for weak prefer-

ences (ties between candidates are allowed), and then they consider
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the restriction of such notions to approval ballots. The strongest

monotonicity axiom that they propose when restricted to approval

ballots corresponds essentially to the candidate monotonicity axiom

that we have presented before (they also call this axiom candidate

monotonicity).

Lackner and Skowron [17] consider a different (and much more

stronger) notion of support monotonicity, defined for a subclass of

the approval-based multi-winner voting rules called ABC ranking

rules. They use this axiom to characterize a subset of the ABC

ranking rules that they call Dissatisfaction Counting Rules (AV

belongs to this class of rules). In particular, a necessary (but not

sufficient) condition to satisfy such axiom is that if a voter i that is
already in the election adds a candidatew that was already in the

set of winnersW , thenW must still be a set of winners (possibly

tied with other sets of winners). It follows that this axiom is strictly

stronger than strong SMWOPI.

According to Janson [15], Phragmén also studied support mono-

tonicity in the approval-based rules that he proposed. In particular,

Phragmén proved that max-Phragmén satisfies support monotonic-

ity when only one candidate increases her support, either because

a voter already in the election adds such candidate to her ballot

(candidate monotonicity) or because a new voter enters the election

and approves only of such candidate.

Phragmén also proposed another voting rule that we refer to as

seq-Phragmén, that can be computed iteratively. Phragmén also

proved that seq-Phragmén satisfies support monotonicity when

only one candidate increases her support.

Mora and Oliver [21] and Janson [15] have recently extended the

study of the monotonicity properties of seq-Phragmén. In particular,

they give examples that prove that seq-Phragmén fails both strong

SMWPI and strong SMWOPI. We stress the following differences

between the works of Mora and Oliver [21] and Janson [15] and

ours: 1) they do not consider weak SMWPI and weak SMWOPI; and

2) they do not formalize the strong axioms (they only give examples

that show that seq-Phragmén fails them).

There is also some relation between our work and the work

of Peters [23]. Peters [23] defines an axiom that they call strate-

gyproofness. For a rule f that satisfies this axiom it cannot happen

that W ′ ∩ (Ai ∪ G) ( W ∩ (Ai ∪ G), were W is the output of

rule f for election E = (A,k) andW ′
is the output of rule f for

election Ei+G (they assume that the rules are resolute). Although

this axiom is similar to SMWOPI neither strong SMWOPI implies

strategyproofness nor strategyproofness implies weak SMWOPI.

Peters [23] prove that strategyproofness is not compatible with a

representation axiom that is even weaker than JR using SAT solvers.

7 CONCLUSIONS AND FUTUREWORK
In this paper we have complemented previous work on the ax-

iomatic study of multi-winner voting rules with the study of mono-

tonicity axioms for rules that use approval ballots. Our results show

that support monotonicity in approval-based multi-winner voting

rules is trickier than it may seem at first glance. While the weak

support monotonicity axioms are satisfied in almost all the cases

analyzed in this study (only Monroe fails one of these) the situation

changes completely when we look to the strong axioms. Of the

6 rules analyzed only 4 satisfy strong SMWPI and only 2 satisfy

strong SMWOPI.

We have also presented some results related to the compatibility

between representation and monotonicity axioms. First, we have

proved that PR is incompatible both with strong SMWPI and with

committee monotonicity. Our results also show that EJR and PJR

are compatible with strong SMWPI and weak SMWOPI (in particu-

lar, PAV satisfies all these axioms). Our incompatibility results are

mostly of theoretical interest because PR rules are NP-hard to com-

pute [29] and therefore of little practical use. However, we believe

that these results are interesting because they illustrate the exis-

tence of a certain conflict between representation and monotonicity.

With respect to the compatibility between EJR and PJR with mono-

tonicity axioms, several interesting open questions remain open.

First of all, the only rule that we have found that satisfies EJR (or

PJR) and strong SMWPI is PAV, which is known to be NP-hard to

compute. Therefore, it would be very interesting to find a rule that

satisfies EJR (or PJR) and strong SMWPI but can be computed in

polynomial time. Very recently, Aziz et al. [3] have identified a set

of voting rules that satisfy EJR and can be computed in polynomial

time. The study of these rules could be interesting in this regard. In

the second place, it is also open whether EJR and PJR are compatible

with strong SMWOPI. Other open issues would be to find a rule

that satisfies both EJR and committee monotonicity and to find a

rule that satisfies strong SMWOPI and PR. The similarity between

the strategyproofness axiom proposed by Peters [23] and SMWOPI

makes us think that the use of SAT solvers could be a possible

approach to address these research questions.

We have also studied the relevance of our axioms to several

types of scenarios. We have found that our support monotonicity

axioms fit well with all the cases studied except in the case of the

second type of proportional representation discussed by Sánchez-

Fernández et al. [29], where the goal is to satisfy large cohesive

groups according to their size. Therefore, it would be interesting

to define an additional support monotonicity axiom that fits well

in this scenario and is compatible with EJR (which is oriented

to this type of proportional representation). The development of

an adapted version of the notion of non-crossing monotonicity

proposed by Elkind et al. [12] for ranked ballots could also be a line

of continuation of this work.
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