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ABSTRACT

Constructive election control considers the problem of an adversary

who seeks to sway the outcome of an electoral process in order to

ensure that their favored candidate wins. We consider the compu-

tational problem of constructive election control via issue selection.

In this problem, a party decides which political issues to focus

on to ensure victory for the favored candidate. We also consider a

variation in which the goal is to maximize the number of voters sup-

porting the favored candidate. We present strong negative results,

showing, for example, that the latter problem is inapproximable

for any constant factor. On the positive side, we show that when

issues are binary, the problem becomes tractable in several cases,

and admits a 2-approximation in the two-candidate case. Finally,

we develop integer programming and heuristic methods for these

problems.
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1 INTRODUCTION

The study of the extent to which elections are susceptible to sub-

version by malicious parties has received considerable attention

under the general framework of election control. The computational

complexity of this problem has been formally studied from a num-

ber of perspectives, such as control by adding and deleting can-

didates and voters [5, 17], and in the context of different voting

systems [11, 13, 15, 18, 22]. However, there is an important means

of manipulating election outcomes that has been largely ignored:
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that of determining which issues are discussed and, consequently,

which are most salient for voters when they come to the polls.

To illustrate, take three issues, healthcare, environmental regula-

tion, and immigration, and suppose that all voters want universal

health coverage and environmental regulation, and a slight major-

ity wish to restrict immigration. Suppose that positions are binary

(support or oppose). Now, consider two candidates, one who sup-

ports immigration, environmental regulation, universal healthcare,

and the second who is opposed to all three. Clearly, if all issues are

considered, the former candidate wins in a landslide. However, if

one party is able to skew discourse entirely towards immigration,

the second candidate may narrowly win.

We investigate the problem of election control through manipu-

lating issues (which can also be viewed as a novel variant of the

bribery problem [16, 24, 29]). In this problem, we assume that voters

and candidates can be represented as points in a vector space over

issues, where each vector represents one’s (voter’s or candidate’s)

position on all issues, and the preference ranking of candidates

by a voter is induced by the norm distance between their respec-

tive position on issues in the natural way. We then investigate the

election control problem in the context of a choice of a subset of

issues, whereby the distance between a voter and a candidate in the

resulting restricted issue space determines the relative standing of

this candidate to others. Our study considers several related varia-

tions of this general framework: the decision problem in which the

interested party either aspires to have a candidate of their choice

win, and the optimization problem of maximizing the support (to-

tal number of votes) for a target candidate, all in the context of

plurality elections.

We obtain a series of strong negative results. First, we show that

not only is the general problem of controlling elections through

manipulating issues NP-Hard for both the decision problem and the

variant aiming to maximize support, it is actually inapproximable

for any constant factor for the latter variant. Moreover, the prob-

lem remains hard whether one breaks ties in favor of the target

candidate, or not, and even when there is either a single voter, or

two candidates. Second, we show that the problem remains hard if

we restrict issues to be binary. On the other hand, we observe that

under certain restrictions we can obtain positive results. For exam-

ple, the problem is tractable if there is only a single voter (unlike in

the general case), and maximizing support is 2-approximable when

there are two candidates. Finally, we provide solution approaches

for these problems based on integer linear programming, as well as

a greedy heuristic.
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1.1 Related Work

Our work is related to two areas of research on social choice: the

spatial theory of elections (including lobbying) and election control.

Spatial Theory of Elections and Lobbying Models. Spatial models of

elections were first introduced by Hotelling [19], with extensive

research following in the decades since [1, 2, 9, 10, 21, 23, 27]. A

major focus areas of research in the spatial model of elections is

that of a candidate choosing where to locate in a policy space [7, 28].

A key development in this field is the Median Voter Theorem (MVT)

[7], which characterizes the special case of our model with two

candidates and one issue. In this case, the winning candidate is the

one preferred by the median voter. However, MVT’s assumptions

of absolute candidate mobility and global attraction are unrealistic,

which continues to stimulate research on this model [25, 26]. Algo-

rithmic work in the spatial model has been somewhat more sparse,

although with several recent studies focusing largely on social

choice functions and distortion relative to a natural social choice

function caused by common voting rules, such as plurality [1, 2, 27].

An important research area within the spatial model is lobbying,

whereby an actor wishes to change decisions by voters on issues so

that majority vote on each issue corresponds to this actor’s prefer-

ence [6, 8]. The two clear difference from our proposed research is

that in our case, issue preferences determine which candidate wins,

rather than votes on each issue separately, and that in our case

manipulation targets groups of voters, whereas lobbying research

is typically focused on changing votes for a subset of k voters.

Somewhat related research assumes voters and candidates are fixed

actors in a policy space, and considers the game of convincing

voters of a candidate’s truthfulness [4, 20].

Election Control. Election control research focuses on the problem

of tampering with an election to either ensure that a candidate wins

or loses an election. The spatial theory of elections aims to explain

why voters vote the way they do by modeling an election system

as sets of voters and candidates as positions in an n-dimensional

policy space, in which voters vote for those candidates closest to

them in Euclidean distance.

The computational problem of constructive election control, in

which an adversary manipulates an election to ensure that a can-

didate wins was first studied by Bartholdi et al. [5], while Hemas-

paandra et al. [17] initiated the study of destructive control. Much

work since then has been done in election control under different

voting systems, such as range voting [22], approval voting [12], and

others [11, 13, 15, 18], as well as in bribery [13, 14, 24, 29].

2 CONTROL THROUGH ISSUE SELECTION

We study the problem of election control through issue selection. To

do so, we impose structure on a voting problem by assuming that

voter preferences over candidates are solely based on their relative

stance on the issues. To be more precise, consider a collection of

ℓ issues, and a space X ⊆ Rℓ of possible positions on the issues.

Thus, x ∈ X represents a vector of positions on all issues, with xk
the position on (opinion about) issue k . In our setting, we have a

collection ofm candidates, C = {ci }
m
i=1

, and n voters, V = {vj }
n
j=1

,

where each candidate i and voter j is characterized by a position

vector (representing their respective positions on all ℓ issues), which

we denote by ci and vj , respectively, with ci ,vj ∈ X . We use cik
(vjk ) to denote the position of candidate i (voter j) on issue k , and
we refer to the vector of a candidate’s or voter’s beliefs as their belief

vector. Denote by [a : b] the interval of all natural numbers from a
to b, and suppose that voters consider a nonempty subset of issues,

S ⊆ [1 : n], S , ∅, in deciding which candidate to vote for. This set

S captures those issues which are salient to voters, for example, due

to a focus on these during campaigning. We assume that a voter vj
will rank candidates in order of their relative agreement on issues,

as captured by an lp norm for integral p ≥ 1 with respect to the set

of issues S . Henceforth, we focus on plurality elections, so that a

voter vj would vote for a candidate i which minimizes ∥vSj − cSi ∥p ,

where xS denotes a restriction of x to issues in S .

We consider two constructive control problems within this frame-

work: control through issue selection (Issue Selection Control

(ISC)), and maximizing support (Max Support), which we now

define formally.

Definition 2.1 (Issue Selection Control (ISC)). Given a set of can-

didates C , voters V , and ℓ issues, is there a nonempty subset of

issues S ⊆ [1 : ℓ] such that a target candidate c1 wins the plurality

election?

Definition 2.2 (Max Support). Given a set of candidates C , voters
V , and ℓ issues, find a nonempty subset of issues S ⊆ [1 : ℓ] which

maximizes the number of voters who vote for a target candidate c1.

For both problems, we must define a rule by which to break ties. We

consider both the best-case of undecided voters choosing the target

candidate c1, and the worst-case of undecided voters choosing

another candidate. We use the same tie-breaking rule when several

candidates are tied.

3 REAL-VALUED ISSUES

We begin our study of election control by analyzing its algorithmic

hardness when issue positions are unrestricted, i.e., X = Rℓ . We

show that the problem is computationally intractable, even for a

single voter or with only two candidates. However, the problem is

tractable when the number of issues is bounded by a constant.

3.1 Issue Selection with a Single Voter

Consider election control through issue selection with only a single

voter, v , which we term Single-Voter Issue Selection (SVIS).

We start by assuming that ties are broken in candidate c1’s favor

(best-case tie breaking). Note that in this setting, Issue Selection

and Max Support are essentially equivalent: in either case, we

ask whether there exists a nonempty subset of issues S ⊆ [1 : ℓ]

such that when restricted to these issues, candidate c1 wins the

voter v (with a maximum support of 1 if c1 wins, and 0 if it loses).

Equivalently, we ask if there exists a nonempty subset S such that∑
k ∈S

|c
1k −vk |

p ≤
∑
k ∈S

|cik −vk |
p ∀i ∈ [2 : m] (1)
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where vk is the sole voter’s position on issue k . Observe that con-
dition (1) holds if and only if∑

k ∈S

|cik −vk |
p − |c

1k −vk |
p ≥ 0 ∀i ∈ [2 : m]

Thus, setting the entries of an auxiliary (m − 1) × ℓ matrixM

Mi−1,k = |cik −vk |
p − |c

1k −vk |
p , i ∈ [2 : m],k ∈ [1 : ℓ] (2)

we can equivalently ask whether there exists a nonempty subset

S of the columns of M such that the restriction of M to these has

nonnegative row sums. We will refer to such a restriction of an

election as "highlighting" a set of issues.

Theorem 3.1. SVIS with best-case tie breaking is NP-complete for

any lp norm.

Proof. First observe that SVIS is in NP. Indeed, given an instance

of SVIS and a proposed subset S , it is trivial to verify whether S
satisfies condition (1) in polynomial time.

We now show that SVIS is NP-hard via reduction from 0-1 Integer

Linear Programming, which is well-known to be NP-complete. In

this problem, we are given a matrix A ∈ Zm×ℓ
and a vector b ∈ Zℓ ,

and we ask if there exists a vector x ∈ {0, 1}ℓ such that Ax ≥ b
componentwise.

Given an arbitrary instance (A,b) of 0-1 Integer Linear Program-
ming (ILP), we construct an (m + 1) × (ℓ + 1) matrixM as follows:

Mi ,k B Ai ,k i = 1, . . . , ℓ k = 1, . . . , ℓ

Mi ,ℓ+1
B −bi i = 1, . . . ,m

Mm+1,k B −
1

ℓ + 1

k = 1, . . . , ℓ

Mm+1,ℓ+1
B 1.

This construction is motivated by the observation that choosing a

subset S of columns ofM so that c1 wins the election is analogous

to choosing the positions of ones in a vector x that satisfies Ax ≥ b.
Each row of M corresponds to a candidate belief vector with the

constraint vector b included as an added issue. We force this issue

to be considered by creating a dummy candidate whose beliefs

coincide with c1 on all but that issue.

We now construct an instance of SVIS by setting the voter belief vec-

torv to be the zero vector and constructing a sequence of candidate

belief vectors C = {ci }
m
i=2

fromM .

c
1k B

p

√����min

i
Mik

���� k ∈ [1 : ℓ + 1]

ci+1,k B
p
√
Mik + c

p
1k i ∈ [1 : m + 1], k ∈ [1 : ℓ + 1]

We do this because we want to arrange thatMik = |cik |
p − |c

1k |
p
,

using positive values of cik for simplicity. It is then straightforward

to see that the original instance of 0-1 Integer Linear Program-

ming is satisfiable if and only if our constructed instance of SVIS

is satisfiable, by constructing a 0-1 vector x with ones at precisely

the indices in S \ {ℓ + 1}, or vice versa. �

Theorem 3.2. The worst-case version of SVIS is at least as hard as

the best-case version of SVIS.

Proof Sketch. Consider anm × ℓ matrixM representing an arbi-

trary instance of the best-case version of SVIS and define

ϵ = min

i ∈[1:m],k ∈[1:ℓ]

1

2

������ ∑
k ′∈R(k )

Mi ,k ′

������,
where the set R(k) = {

(r
k
)
, r ∈ [1..ℓ]}. We can create a new (m +

2) × (ℓ + 1) matrixM ′
as follows:

M ′
i ,k B Mi ,k i = 1, . . . ,m k = 1, . . . , ℓ

M ′
m+1,k B 0 k = 1, . . . , ℓ

M ′
i ,k+1

B
ϵ

2

i = 1, . . . ,m + 1

M ′
m+2,k B ϵ k = 1, . . . , ℓ

M ′
m+2,ℓ+1

B −
ϵ

2

.

Recall that in the worst-case version of SVIS, a voter will default to

other candidates in cases of a tie. So, we are forced to include issue

ℓ + 1 in S in order to win against candidatem + 1. Once we include

issue ℓ + 1, we bias the voter towards the target candidate and

against each candidate by a small amount. Because of our choice

of ϵ , this bias will only affect the election in instances where the

candidates are tied. However, we still have to include at least one

other issue from [1 : ℓ] to win against candidatem + 2.

This construction then turns into the best-case version of SVIS once

we begin to consider combinations of issues from [1 : ℓ] with issue

m + 1. �

3.2 Issue Selection with Two Candidates

While issue selection is hard even with a single voter, we now

ask whether it remains hard if we have only two candidates. We

term the resulting restricted problem Two-Candidate Issue Selec-

tion (TCIS). We show that both of the considered problem variants

remain NP-hard. Furthermore, Max Support is actually inapprox-

imable to any constant factor even in this restricted setting.

Theorem 3.3. TCIS with best-case tie breaking is NP-complete.

Proof. First, observe that TCIS is in NP because, given a set S of

issues to highlight, we can easily check if c1 wins the election in

polynomial time. We use a reduction from 0-1 Integer Linear

Programming to prove it’s NP-Hard.

Next, consider the issue selection problem with two candidates and

a set of voters V . Note that we successfully control the election

iff the following condition holds for at least half of the voters vj
(remember that ties are broken in c1’s favor):∑

k ∈S

��c
1k −vjk

��p ≤
∑
k ∈S

��c
2k −vjk

��p
(3)

We now construct a matrixM with entries

Mj ,k =
��c

2k −vjk
��p −

��c
1k −vjk

��p , j ∈ [1 : n],k ∈ [1 : ℓ]. (4)

We can equivalently ask for a nonempty subset S of columns of

M such that the restriction ofM to those columns maximizes the

number of indices j s.t.
∑
k ∈S Mjk ≥ 0.
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Let A be our ILP matrix, and b - the ILP constraints. Then, we can

reduce ILP to TCIS by creating the following (2n+1)×(ℓ+1)matrix

M :

Mj ,k B Aj ,k j ∈ [1 : n] k ∈ [1 : ℓ]

Mj ,k B −1 j ∈ [n + 1 : 2n + 1] k ∈ [1 : ℓ]

Mj ,ℓ+1
B −bj j ∈ [1 : n]

Mj ,ℓ+1
B 0 j ∈ [n + 1 : 2n]

M
2n+1,ℓ+1

B ℓ + 1

As in our reduction of SVIS, we represent the constraint vector b
as an issue that must be put in S in order for S to win. We also

create n dummy voters with all negative entries. This will force us

to look for assignments of S that satisfy all rows that correspond to

constraints of ILP. If c1 can win the given election, we return yes

for ILP, and no if c1 cannot win.

Finally, we show that for any M we can derive voter preferences

consistent with it. Since definition ofM is independent for different

issues k , it will suffice to do this for an arbitrary issue k (kth column

ofM , which we denote byMk ). Consequently, consider a column

Mk
, and define M̄k = maxj |Mj ,k | (the value ofMk with the largest

magnitude). Define c
1k = 0 and c

2k = M̄
1/p
k . Additionally, define

a function f (z) = |c2 − z |p − |c1 − z |p for z ∈ [0, c2]. Clearly, this

function is continuous, and f (0) = M̄k while f (c2) = −M̄k . Then

by the intermediate value theorem, for any Mjk , we can find a vjk
such that f (vjk ) = Mjk . Repeating the process for each issue k
gives us the construction. �

Next, we turn to the Max Support version of the issue selection

problem with two candidates; we term this Two-Candidate Max

Support (TCMS). We show that not only is it NP-hard, it is inap-

proximable.

Theorem 3.4. TCMS with best-case tie breaking is NP-hard for any

lp norm. Moreover, it cannot be approximated to any constant factor

unless P = NP .

Proof. We can now show that TCMS is NP-hard by restricting ℓ

to 2 and reducing from Maximum Independent Set (MIS). Given

an undirected graphG = (V , E) on |V | vertices, MIS asks to select a

maximal subset of vertices S ⊆ V so that S is an independent set

(i.e., no pair of vertices in S is connected by an edge).

Given any instance of MIS, we can represent that instance as an

instance of TCMS by first creating a |V | × |V | matrix with every

value along the diagonal equal to |V | − 1. For every pair of vertices

u,v , set Mu ,v = Mv ,u B −|V | if u and v are connected in G, and
−1 otherwise. Now, if we were to select an issue corresponding

to vertex u with neighbor v , then we cannot hope to select any

other subset of issues such that rowv sums to greater than or equal

to 0. Thus, the action of selecting columns of M to include in S
corresponds to selecting vertices of G to be in our independent set,

and maximizing the number of rows in this manner corresponds to

finding a maximum independent set.

To complete the reduction, what remains to prove is that we can de-

rive voter belief and candidate belief vectors for anyM constructed

in this manner. The associated lemma is provided in the supplement.

Inapproximability follows directly from our reduction of MIS to

TCMS: we know thatMIS is NP-hard to approximate within any con-

stant factor c > 0 [3], and our reduction fromMIS is approximation-

preserving. �

The next results show that the worst-case tie breaking setting is no

easier than when ties are broken in c1’s favor.

Theorem 3.5. The worst-case version of TCIS is at least as hard as

the best-case version of TCIS for the two-candidate case.

Proof Sketch. Given an n × ℓ matrix M associated with a two-

candidate instance of best-case issue selection, define ϵ as in the

proof of Theorem 3.2. Further, we let x B max

j ∈[1:n],k ∈[1:ℓ]

��Mj ,k
��
, and

create a 3n × (ℓ + 1) matrixM ′
as follows:

M ′
j ,k B Mj ,k j ∈ [1 : n] k ∈ [1 : ℓ]

M ′
j ,k B x j ∈ [n + 1 : 2n] k ∈ [1 : ℓ] (5)

M ′
j ,k B −x j ∈ [2n + 1 : 3n] k ∈ [1 : ℓ] (6)

M ′
j ,ℓ+1

B
ϵ

2

j ∈ [1 : n]

M ′
j ,ℓ+1

B −
ϵ

2

j ∈ [n + 1 : 3n]

Once again, we choose a value of ϵ > 0 such that ϵ will affect

the election only if a voter is undecided. The proper assignment is

shown in the supplement.

Recall that in the worst-case version of TCIS, undecided voters

(rows ofM ′
with a net zero value) will default to a candidate other

than c1. With the addition of column ℓ + 1, any undecided voters

will now be “nudged” in the direction of c1 instead. Also, since the

values of column n + 1 are smaller than the difference of any two

values ofM , the issue affects the election only if a voter is actually

undecided. So, issue ℓ+ 1 appropriately mimics the weak inequality

used in the best-case version of TCIS, and if a candidate wins an

election in the worst-case reduction, they win the election in the

best-case version, and vice versa.

Note: we add 2n extra voters to the problem to set things up such

that including issue n + 1 would not be sufficient for winning

the election. We also choose 2n voters specifically so that we can

be guaranteed to split voters evenly between c1 and c2 with our

assignments in Equations 5 and 6. �

Corollary 3.6. The worst-case version of TCMS is NP-hard.

4 BINARY ISSUES

We have shown that election control through issue selection is hard

in general. However, real world opinions may have a variety of

restrictions. For example, legislative issues can be viewed as binary

issues, where a voter opinion can take only two values: support or

oppose.
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Formally, in binary versions of the issue selection problems, X =

{0, 1}ℓ . Voters vote for the candidate with whom they agree on

most issues. Let Binary Issue Selection Control (BISC) be the

variant of Issue Selectionover a binary domain and, similarly, let

Binary Max Support (BMS) be the corresponding variant of the

Max Support problem.

4.1 Binary Issue Selection with 1, 2 and 3 Voters

We start by considering again the problem of issue selection with a

single voter, which we showed to be NP-Hard in the general case

of real-valued issues. We show that this problem is now in P.

As before, it suffices to consider solely Single-Voter BISC . We

start with the case when ties are broken in c1’s favor (best-case

tie-breaking). Consider the following Single Issue Win algorithm:

Check if there is an issue such that either (a) c1 agrees with the

voter v , or (b) no other candidate c j agrees with v . If it exists,
return YES. Otherwise, return NO.

Theorem 4.1. The Single Issue Win algorithm solves Single-Voter

BISC with best-case tie-breaking.

Proof. It suffices to show that whenever Single IssueWin returns

NO, c1 cannot win the election. Consider an arbitrary subset of

issues S . Since the answer is NO, it must be that for each issue k ∈ S ,
c1 disagrees with v on k . Consequently, ∥v − c1∥ = |S |. Choose a c j
which agrees with v on some issue k ∈ S . Then ∥v − c j ∥ ≤ |S | − 1,

that is, c1 cannot win for issues restricted to S . Since S is arbitrary,

the result follows. �

In fact, we can easily generalize the algorithm for a single voter

to a setting with two voters by simply applying the algorithm for

each voter.

Corollary 4.2. 2-Voter BISC problem with best-case tie-breaking

is poly-time solvable.

Next, we show that the problem is in P for one and two voters

even with worst-case tie-breaking, although the algorithmic ap-

proach is quite different. For worst-case tie-breaking, we propose

the following Agree On Issues algorithm:

Let Saдree be the set of all issues on which c1 agrees with v . If c1

wins over each other candidate c j when issues are restricted to

Saдree , return YES. Otherwise, return NO.

Theorem 4.3. The Agree On Issues algorithm solves Single-Voter

BISC with worst-case tie-breaking.

Proof. It suffices to consider the case when we return NO. Suppose

there is some c j that wins when we restrict to Saдree . Then it

must be that c j also agrees with v on all issues in Saдree (and any

subset thereof). Consider an arbitrary subset of issues S , and let

x jk = 1 if j agrees with v on issue k . c j ’s difference from v is then

∑
k ∈S∩Saдree x jk +

∑
k ∈S−S∩Saдree x jk ≥ |S ∩ Saдree |. Since the

difference between ci and v is |S ∩ Saдree |, the result follows. �

The same approach is also applicable to 2-Voter BIS.

Corollary 4.4. 2-Voter BISC with the wost-case tie-breaking is

poly-time solvable.

Proof. For the candidate c1 to win, both voters must support her.

Without loss of generality, we can assume that c1 opinion on all

isues is 1. Let Saдree be the set of all issues on which c1 agrees with

both voter v1 and v2. Similarly to Theorem 4.3, if c1 does not win

against each other candidate c j over the set Saдree , then no other

subset of issues will achieve c1’s win. �

Remarkably, while BSIC with 1 and 2 voters are efficiently solvable

for both best-case and worst-case tie-breaking, with 3 voters we

see a qualitative difference in complexity, depending on how ties

are broken. First, we observe that the 3-voter case with worst-case

tie-breaking is tractable.

Corollary 4.5. 3-Voter Binary Issue Selection with the worst-

case tie-breaking is poly-time solvable.

Proof. By Corollary 4.2 we can test in poly-time whether any

given pair of voters can be won over by c1. Applying this to each

of the three possible pairs of voters, we can determine in poly-time

whether the support of any two voters can be obtained simultane-

ously. If so, then c1 can be made to win. Otherwise no subset of

issues will make c1 the winner. �

Now, we show that the problem becomes hard with best-case tie-

breaking even with only 3 voters.

Theorem 4.6. 3-Voter Binary Issue Selection with the best-case

tie-breaking is NP-hard.

Proof. The proof relies on a reduction from the Exact 3-Cover

(X3C) problem. An instance of X3C is governed by t – number of

elements, s – the number of sets. In the reduced instance we will

denote byw the preferred candidate (and assume that his opinion

on all issues is 1), c – the candidate whose opinion on every issue

is 0 (zero), v3 – the voter whose opinion on every issue is 0. This

implies that to win the electionw should gain the support of both

voters v1 and v2. In addition we will denote by r the number of

issues in the reduced instance, setting it to r = s + t + 2. Finally,

we will set the number of candidates tom = t + 4 and name them

c1, . . . , ct , x,y, c,w .

The preferences of v1 and v2 over the r issues are as follows:

v1 : 1 . . . 1 0 . . . 0 1 0

v2 : 0 . . . 0︸︷︷︸
s

1 . . . 1︸︷︷︸
t

0 1

Preferences of candidates take a more complex form
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• For issues from 1 through s . These preferences will encode the
X3C instance. In particular, candidates ci , c j , ce will have opin-

ion 1 on the kth issue if and only if the kth set in the X3C

instance is {i, j, e} = Sk . Otherwise the opinion of these three

candidates on the kth issue will be 0 (zero).

• On issues s + 1 through s + t all candidates c1, . . . , ct have 0

(zero) opinion.

• On the s + t + 1 issue all candidates c1, . . . , ct have opinion 0

(zero)

• On s + t + 2 issue all candidates c1, . . . , ct have opinion 1

• Candidate y has opinion 1 on issues 1, . . . , s + t and opinion 0

(zero) on the issues s + t + 1 and s + t + 2

• Candidates x has opinions in the complete opposion to candi-

date y

Let us now show that if we have a solution to the resulting Issue

Selection Control problem, we can recover a solution for the

original X3C instance.

Candidate c , with all his opinions set to 0 (zero), serves as a kind of

reference for voters. Thus, given a selection S of issues, the preferred
candidatew will gain the support of a voter only if they agree on

at least as many issues in S as they disagree. As a result, Issue

Selectionsolution should contain equal number, q, of issues from
the set {1, . . . , s, s +t +1} and from the set {s +1, . . . , s +t, s +t +2}.

Consequently, candidatew will agree with any voter on exactly q
issues.

Notice that both the issue s + t + 1 and s + t + 2 must be selected in

a solution to the Issue Selection Control. To see this consider

the follwoing two cases

• Neither s+t+1, nor s+t+2 are in the solution set, S of issues. Still,
an equal number of elements (denoted earlier by q) must be

selected from the sets of issues {1, . . . , s} and {s + 1, . . . , s + t}
for the solution set S . Wlog., issue 1 ∈ S . Then voter v1 agreed

with the candidate ci1 on q + 1 issues (q issues from the set

{s + 1, . . . , s + t} and issue 1). As a result, voter v1 would not

vote for candidate w . Thus S , that does not contain neither

s + t + 1 nor s + t + 2, can not be a valid solution to our BISC

instance.

• Only one among issues s+t +1 and s+t +2 is selected as a part of

the solution set of issues S . If it is the issue s + t + 1, then voterv1

agreed with the candidate x on q + 1 issues and with candidate

w on q issues only. Thus,v1 would not vote forw , and S is not a

valid soluion. Similarly, if s + t + 2 was selected, then candidate

y will win the support of v2, once again preventing w from

winning.

Now, with both issues s+t+1 and s+t+2 chosen, let us show howwe

can obtain a solution to the original X3C problem from the solution

set of issues S to the reduced BISC problem. The set of issues S
makes candidatew the winner of the election. Let {i1, . . . , iq−1} =

S ∩ {1, . . . , s}. We will show that the collection Si1 , . . . , Siq−1
is the

solution to the original X3C instance.

(1) If there is an element j that belongs to two different sets in the

collection Si1 , . . . , Siq−1
, then v1 agrees with c j on 2 issues from

i1, . . . , iq−1 and on q − 1 issues from {s + 1, . . . , s + t}. Totalling
q + 1 agreements between v1 and c j . Which implies that v1 will

not vote forw , and contradictsw being the winner.

(2) If there exists an element j that does not belong to any set in

the collection Si1 , . . . , Siq−1
, then c j ∈ C \ {c ji , cki , cei } for all

i ∈ {i1, . . . , iq−1}. As a consequence v2 agrees with c j on q − 1

issues from the set of issues {1, . . . , s} and on both issues s+t+1

and s + t + 2. This totals q + 1 agreements between v2 and c j ,
entailing that v2 will not vote forw , contradictingw being the

winner.

As a result, the collection Si1 , . . . , Siq−1
constructed from the BISC

solution S is a proper solution to the original X3C instance, i.e.

every element belong to 1 and only 1 set.

Let us now show that a solution to the X3C instance can be trans-

lated into a solution to the BISC reduction instance.

Let Si1 , . . . , Sik be a legal solution to the X3C instance. Then set

the selection of issues S = {i1, . . . , ik } ∪ {s + 1, . . . , s + k} ∪ {s +
t + 1, s + t + 2}. Notice that k is the number of elements in the X3C

instance, and therefore k = t
3
and s + k < s + t .

By the choice of i1, . . . , ik , it must hold that v1 agrees with every

candidate c j once on issues i1, . . . , ik and
t
3
times on issues s +

1, . . . , s + k, s + t + 1, s + t + 2. Overall v1 and c j agree on
t
3
+ 1

issues. Candidate x agrees withv1 on issues s + 1, . . . , s +k, s + t + 1

only, totalling
t
3
+ 1 agreements as well. Similarly, candidates c and

y rake in
t
3
+ 1 agreements. Thus, by the tie-breaking rule, v1 votes

forw .

Similarly, v2 is matched with the opinion of c j over
t
3
− 1 issues

from the set {i1, . . . , ik } and 2 more matches are produced over

issues s + t +1, s + t +2. This totals
t
3
+1 matches between c j andv2.

Similarly tov1,v2 also agrees with x,y and c on t
3
+ 1 issues. Again,

tie-breaking will decide in favour ofw . Thusw has the support of

both v1 and v2 and becomes the winner.

We conclude that the original X3C instance has a solution if and

only if the reduction instance of BISC has a solution. �

4.2 Binary Issue Selection with Two Candidates

With an arbitrary number of voters and only two candidates, even

the BISC problem with best-case tie-breaking is hard.

Theorem 4.7. With two candidates, BISC with best-case tie-breaking

is NP-complete.

Proof. It is evident that BISC problem is in NP, so we only need to

show that it is NP-hard. We will do so by a reduction from Hitting

Set, where p denotes the number of elements, s – the number of

sets, and k — the number of elements which should be chosen as

the hitting set. We construct a profile for BISC problem with 2

candidates, ℓ issues and n voters, where ℓ is such that ℓ = p +k and

n = 2ks + 4.

Session 2D: Social Choice Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

534



We assume that the preferred candidate is c1 and set his opinion to

1 on all issues. All opinions of his rival, c2, are set to 0 (zero). We

then arrange voters into 3 blocks, as follows:

• [Block 1.] Two voters. The first one has opinion 0 (zero) for

issues from 1 through issue ℓ −k , and opinion 1 for issues from

ℓ − k + 1 to ℓ. The second voter has an opposite opinion wrt all

issues.

• [Block 2.] Second block consists of ks voters divided into k

sub-blocks. For every sub-block, opinions of voters on issues

from 1 to ℓ − k encode the hitting set problem instance. That is,

voter (f − 1)s + i has opinion 1 on issue j if and only if element

j ∈ si for all f ∈ [1 : k] . For issues from ℓ−k + 1 to ℓ, all voters

of the sub-block f ∈ [1 : k] will have the same 0 (zero) opinion

on issue ℓ − k + f and 1 on all other issues.

• [Block 3.] This block consists of ks + 2 voters whose opinion

on all issues is 0.

Let us now show the correctness of this reduction. Let {i1, . . . , i j }
be a set issues chosen to make c1 the winner. Consider voters who

support c1. Evidently, nobody from Block 3 is among them — no

matter which issues were chosen, voters from Block 3 will support

c2. As a result, c2 has at least ks + 2 votes. Hence, all voters from

Blocks 1&2 should vote for c1 to make him the winner.

Consider voters in Block 1. They both vote for c1, therefore, {i1, . . . , i j }
consists of equal number of elements from both issue sets [1 : ℓ−k]
and [ℓ − k + 1 : ℓ]. Otherwise, there are (w.l.o.g.) more issues from

[1 : ℓ − k] than from [ℓ − k + 1 : ℓ]. Which implies that the second

voter from Block-1 has more negative (0) opinions than positive (1),

and he will vote for the candidate c2. Additionally that means at

most k issues were picked from both sets. Denote this number by

r ≤ k .

W.l.o.g. issue ℓ − k + 1 is chosen from the set [ℓ − k + 1 : ℓ]. Thus,

voters from the first sub-block of Block-2 have r − 1 1’s and one

0 as an opinion on issues in [ℓ − k + 1 : ℓ]. Therefore, all voters

from this sub-block should have at least one positive (1) opinion

on issues chosen from the issues set [1 : ℓ − k]. That is, these issues
represent a hitting set with r elements where r ≤ k .

Similarly a solution for the BISC can be constructed from a given

Hitting Set solution.

This proof is easy to adapt to worst-case tie-breaking. �

Corollary 4.8. The BMS problem is NP-hard.

Although Binary Max Support is NP-hard, we now show that

it is easy to achieve a
1

2
-approximation using the following Best-

Single-Issue algorithm: choose one issue that maximizes the net

number of voters c1 captures.

Theorem 4.9. The Best-Single-Issue algorithm approximates 2-

candidate Binary Max Support to within a factor of
1

2
, for best-case

and worst-case tie-breaking.

Proof. Let’s denote number of voters by n and the number of

issues by ℓ. Among two candidates c1 and c2 the promoted one is

c1. Without loss of generality, we can assume that candidate c1 has

opinion 1 on every issue. We will provide proof for the case of best-

case tie-breaking and will describe changes needed to transform

this proof into proof for worst-case tie-breaking.

• [Case 0.] There is an issue s.t. candidate c2 also has opinion 1

about this issue. Therefore, if we highlight only this issue all

voters will vote for c1 because of tie-breaking. Thus, that is an

optimal solution (and as such approximation within factor 2 of

optimal solution). It is also the issue that captured the greatest

number of voters for c1 if highlighted. From now on we can

assume that opinion of candidate c2 is 0 for all issues.

• [Case 1.] There exists an issue s.t. at at least
n
2
voters have

same opinion as c1. If highlighted such issue will capture for c1

at least
n
2
voters. That is, for issue that causes c1 to capture the

greatest number of voters it is at least
n
2
voters too. Thus, it is

provide
1

2
-approximation, because optimal solution is at most

n.

• [Case 2.] Now we can assume that for all issues less then

n
2
voters have opinion 1. Denote the largest such number by

h and show that h is
1

2
-approximation of optimum. Assume

the contrary. W.l.o.g. issues s1, . . . , sk maximizes support for

candidate c1. By choice of h the number of opinions which

equals to 1 over all issues s1, . . . , sk is at most kh. On the other

hand voter supports candidate c1 if and only if he has opinion 1

for at least
k
2
issues among s1, . . . , sk . By assumption there are

strictly more than 2h such issues. That is, on issues s1, . . . , sk
opinion 1 shared strictly more than

k
2

2h = kh times. Obtained

contradiction proves the theorem.

This proof can be easily adopted for the case of worst-case tie

breaking. It is easy to see that if candidate c2 has opinion 1 on all

issues then for every highlighted set of issues support of candidate

c1 will be 0. Thus, any single issue provides
1

2
-approximation of

optimum. Therefore, we may assume that there exist issue on which

candidate c2 has opinion 0.

Evidently, if there is optimum si1 , . . . , sik such that on some of

highlighted issues candidate c2 has opinion 1. W.l.o.g. this issue sik
then si1 , . . . , sik−1

is also optimum. Therefore, we may assume that

candidates have different opinions on all issues. Thus, it is enough to

consider cases 1 and 2. The proof for case 1 remains unchanged. For

case 2 we should change the counting of number of points needed

to obtain at least 2h votes in favor of candidate c1. A voter would

only vote for c1 if he has opinion 1 for

⌊
k
2

⌋
+ 1 issues s1, . . . , sk .

Therefore, the number of opinions 1 is (

⌊
k
2

⌋
+1)2h ≥ kh+h, yielding

same contradiction as in best-case tie-breaking. �

5 ALGORITHMIC APPROACHES

We now present several general algorithmic approaches for Max

Support: 1) exact approaches based on integer linear programming

(ILP), and 2) a heuristic approach which works well in practice.
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Integer Linear Programming: Define A as follows:

Ai jk =
��cik −vjk

��p −
��c

1k −vjk
��p ,∀i ∈ [2 : m], j ∈ V ,k ∈ [1 : ℓ].

(7)

Define α B
∑
i jk

��Ai jk ��. The following ILP computes an optimal

solution for (best-case) Max Support:

max

x

m∑
i
yi (8a)∑

k

Ai jkxk + (1 − yj )α ≥ 0 ∀i ∈ [2 : m], j ∈ V (8b)

xk ,yj ∈ {0, 1} ∀k ∈ [1 : ℓ], j ∈ V . (8c)

Constraint (8b), ensures that yj = 1 iff c1 is the most favored by

voter j. A similar approach can be used to develop a ILP approach

for the Issue Selection Control problem.

Greedy Heuristic: Finally, we present a simple greedy algorithm

for the Max Support problem, where we iteratively add one issue

at a time that maximizes the net gain in voters. We stop by adding

any single issue would decrease the number of voters captured.

6 EXPERIMENTS

We now compare the performance of our exact and heuristic solu-

tion algorithms for the binary and continuous versions of the issue

selection problem. We consider the greedy heuristics described

above, as well as Best-Single-Issue.

We run all of our experiments assuming a worst-case tie-breaking

rule and generate random synthetic test cases. For continuous test

problems, we sample candidate and voter belief vectors from the

multivariate normal distribution with a mean of 0 and a random

covariance matrix. A similar generative model for Boolean issues,

tends to produce problem instances in which Best-Single-Issue is

nearly always optimal. Consequently, we generate a more special-

ized distribution of these instances as follows. We first construct

a vertex-weighted complete binary tree T on 2
ℓ − 1 vertices. Each

vertex v is assigned an independent random weight pv drawn from

the uniform distribution on [0, 1]. To produce a sample from T , we
perform a directed random walk from its root to one of its leaves.

The sequence (0 for left movements, and 1 for right) emitted by this

process is then the desired sample from {0, 1}ℓ .

We default to 3 candidates, 100 voters, and 10 issues. To generate

each plot, we fix 2 of these parameters and vary the 3rd.We generate

100 instances of Max Support for each set of parameter values,

and run the heuristics on the instances. The plotted values are

averages of the ratio of the number of voters captured and the

optimal solution.

We find that for most instances of Max Support with binary issues,

our greedy heuristic does not significantly outperform Best-Single-

Issue in the two-candidate setting as number of issues and voters

increase. This is because the number of instances in which a com-

bination of issues can get us more voters than a single best issue is

increasingly unlikely. However, the greedy algorithm outperforms

Best-Single-Issue on instances of Binary Max Support with

greater than 2 candidates. We can also observe that on the specific

Figure 1: Plots of experimentally observed approximation

ratios as functions of the numbers of candidates, voters, and

issues in synthetic test cases for binary (left) and continuous

(right) versions of Max Support.

distribution of binary issue instances we generate, the quality of

heuristic solutions degrades rapidly with the number of candidates.

We find that for Max Support with real-valued issues, the greedy

algorithm significantly outperforms Best-Single-Issue. For a small

number of candidates (< 5), the greedy algorithm seems to perform

within 0.8 of optimal. Interestingly, as the number of voters in-

creases, the greedy algorithm improves in quality on our randomly

generated problem instances. In all cases, we can also observe that

the heuristics tend to be close to optimal.

7 CONCLUSION

When candidates participate in an election, they must choose poli-

cies and issues to stress in their campaigns. We introduce and study

the problem of election control through issue selection. We find a

number of strong negative results for the problem, and show that,

even though we cannot provide formal approximation guarantees

for a continuous instance of Max Support, a simple greedy heuris-

tic performs well. Moreover, restricting issues to be binary admits

further positive results, including a 1/2-approximation.
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