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ABSTRACT
We consider a coalition formation setting where each agent belongs

to one of the two types, and agents’ preferences over coalitions

are determined by the fraction of the agents of their own type in

each coalition. This setting differs from the well-studied Schelling’s

model in that some agents may prefer homogeneous coalitions,

while others may prefer to be members of a diverse group, or a

group that mostly consists of agents of the other type. We model

this setting as a hedonic game and investigate the existence of stable

outcomes using hedonic games solution concepts. We show that a

core stable outcome may fail to exist and checking the existence of

core stable outcomes is computationally hard. On the other hand,

we propose an efficient algorithm to find an individually stable

outcome under the natural assumption that agents’ preferences

over fractions of the agents of their own type are single-peaked.
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1 INTRODUCTION
At a conference dinner, researchers split into groups to chat over

food. Some junior researchers prefer to stay in the company of

other junior researchers, as they want to relax after a long day

of talks. Some senior researchers prefer to chat with their friends,

who also happen to be senior researchers. But there are also junior

researchers who want to use the dinner as an opportunity to net-

work with senior researchers, as well as senior researchers who are

eager to make the newcomers feel welcome in the community, and

therefore want to talk to as many junior people as possible.

This example can be viewed as an instance of a coalition forma-

tion problem. The agents belong to two types (senior and junior),

and their preferences over coalitions are determined by the fraction

of agents of each type in the coalition. This setting is reminiscent

of the classic Schelling model [25], but there is an important differ-

ence: a standard assumption in the Schelling model is homophily,
i.e., the agents are assumed to prefer to be surrounded by agents

of their own type, though they can tolerate the presence of agents

of the other type, as long as their fraction does not exceed a pre-

specified threshold. In contrast, in our example some agents have
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homophilic preferences, while others have heterophilic preferences,
i.e., they seek out coalitions with agents who are not like them.

There is a very substantial body of research on homophily and

heterophily in group formation. It is well-known that in a variety of

contexts, ranging from residential location [25, 28, 29] to classroom

activities and friendship relations [22, 23], individuals prefer to

be together with those who are similar to them. There are also

settings where agents prefer to be in a group with agents of the

other type(s): for instance, in a coalition of buyers and sellers, a

buyer prefers to be in a group with many other sellers and no

other buyers, so as to maximize their negotiating power. Aziz et al.

[3, 4] model this scenario as a Bakers and Millers game, where a
baker wants to be in a coalition with many millers, whereas a miller

wants to be in a coalition with many bakers. However, there are

also real-life scenarios where agents can have different attitudes

towards diversity: this includes, for instance, language learning by

immersion (with types being learners’ native languages), shared

accommodation (with types being genders), primary and secondary

education (with types being races and income groups), etc. In all

these settings we expect the agents to display a broad range of

preferences over ratios of different types in their group.

Our contribution The goal of our paper is to provide strategic

foundations for the study of coalition formation scenarios where

each agent may have a different degree of homophily. Specifically,

we consider settings where agents are divided into two types (blue

and red), and each agent has preferences regarding the fraction

of the agents of her own type, which determines her preferences

over coalitions. For most of our results, we assume that agents’

preferences are single-peaked, i.e., each agent has a preferred ratio

θ of agents of her own type, and prefers one fraction θ1 to another

fraction θ2 if θ1 is closer to θ than θ2 is. Our model allows agents to

express a variety of preferences including both complete homophily

and complete heterophily.

We model this setting as a hedonic game, and investigate the

existence of stable outcomes according to several established no-

tions of stability, such as core stability, Nash stability and individual

stability [6, 9]. We demonstrate that a core stable outcome may

fail to exist, even when all agents have single-peaked preferences.

Moreover, we show that deciding whether a core stable outcome

exists is NP-complete. However, we identify several interesting

special cases where the core is guaranteed to be non-empty.

We then consider stability notions that are defined in terms of

individual deviations. While a Nash stable outcome may fail to exist,

we propose an efficient algorithm to reach an individually stable

outcome, i.e., an outcome where if some agent would like to deviate

from her current coalition to another coalition, at least one agent in

the target coalition would object to the move. Our proof employs a

careful and non-trivial adaptation of the algorithm of Bogomolnaia

and Jackson [9] for single-peaked anonymous games. Our algorithm
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is decentralized in the sense that, by following a certain set of rules,

the agents can form a stable partition by themselves.

Relatedwork Ourwork is related to an established line of research

that studies the impact of homophily on residential segregation.

The seminal paper of Thomas Schelling [25] introduced a model

of residential segregation in which two types of individuals are

located on a line, and at each step a randomly chosen individual

moves to a different location if the fraction of the like-minded

agents in her neighborhood is below her tolerance ratio. With

simple experiments using dimes and pennies, Schelling [25] found

that any such dynamics almost always results in total segregation

even if each agent only has a mild preference for her own type.

Following numerous papers empirically confirming Shelling’s

result [1, 13, 14, 17, 18, 21, 26], Young [27] was the first to provide

a rigorous theoretical argument, showing that stability can only be

achieved if agents are divided into homogeneous groups. In con-

trast, Brandt et al. [10] showed that with tolerance parameter being

exactly
1

2
, the average size of the monochromatic community is

independent of the size of the whole system; subsequently, Immor-

lica et al. [20] extended this analysis to the two-dimensional grid.

Recent papers of Chauhan et al. [12] and Elkind et al. [16] consider

game-theoretic variants of this model, which take into account

both the fraction of the like-minded agents in the neighborhood

and agents’ preferences for being close to specific locations, and

investigate existence and quality of Nash equilibria.

We note, however, that our model is fundamentally different

from Shelling’s model, for at least three reasons. First, we do not

assume any underlying topology that restricts coalition formation.

Second, the coalitions in an outcome of a hedonic game are pairwise

disjoint, while the neighborhoods in the Schelling model may over-

lap. Finally, as argued above, our model does not assume homophilic

preferences.

There is also a substantial literature on stability in hedonic

games, starting with the early work of Bogomolnaia and Jackson [9].

Among the various classes of hedonic games, two classes are par-

ticularly relevant for our analysis: fractional hedonic games [3, 4]

and anonymous hedonic games [9].

In fractional hedonic games, the agents are located on a social

network, and they prefer a coalition C to a coalition C ′ if the frac-
tion of their friends inC is higher than inC ′. The Bakers andMillers

game is an example of a fractional hedonic game, where it is as-

sumed that each baker is a friend of each miller, but no two agents

of the same type are friends. Aziz et al. [3, 4], and, subsequently,

Bilò et al. [7, 8] identify several special cases of fractional hedonic

games where the set of core stable outcomes is non-empty. In par-

ticular, Aziz et al. [3, 4] give a characterization of the set of strictly

core stable outcomes in the Bakers and Millers game.

In anonymous hedonic games, agents’ preferences over coali-

tions depend on the size of these coalitions only. Similarly to our

setting, it is known that with single-peaked anonymous preferences,

there is a natural decentralized process to reach individual stability;

however, a core stable outcome may fail to exist [9], and deciding

the existence of a core stable outcome is NP-complete [5].

There are also other subclasses of hedonic games where stable

outcomes are guaranteed to exist, such as acyclic hedonic games

[15, 19], dichotomous games [24], and top-responsive games [2].

Full version. The full version of the paper is available on arXiv

[11]. It contains the proofs of Theorem 3.3, Proposition 3.4, and

Proposition 3.5 which are omitted from this version due to space

constraints.

2 OUR MODEL
For every positive integer s , we denote by [s] the set {1, . . . , s}. We

start by defining the class of games that we are going to consider.

Definition 2.1. A diversity game is a triple G = (R,B, (≻i )i ∈R∪B ),
where R and B are disjoint sets of agents and for each agent i ∈ R∪B
it holds that ≻i is a linear order over the set

Θ =
{ r
s

��� r ∈ {0, 1, . . . , |R |}, s ∈ {1, . . . , |R | + |B |}} .
We set N = R ∪ B; the agents in R are called the red agents, and the

agents in B are called the blue agents.

We refer to subsets of N as coalitions. For each i ∈ N , we denote

by Ni the set of coalitions containing i . For each coalition S ⊆ N ,

we say that S is mixed if it contains both red and blue agents; a

mixed coalition S is called a mixed pair if |S | = 2.

For each agent i ∈ N , we interpret the order ≻i as her preferences

over the fraction of the red agents in a coalition; for instance, if

2

3
≻i

3

5
, this means that agent i prefers a coalition in which two

thirds of the agents are red to a coalition in which three fifths of

the agents are red.

For each coalition S , we denote by θR (S) the fraction of the red

agents in S , i.e., θR (S) =
|S∩R |
|S | ; we refer to this fraction as the red

ratio of S . For each i ∈ N and S,T ∈ Ni , we say that agent i strictly
prefers S to T if θR (S) ≻i θR (T ), and we say that i weakly prefers S
to T if θR (S) = θR (T ) or θR (S) ≻i θR (T ). A coalition S is said to be

individually rational if every agent i in S weakly prefers S to {i}.
An outcome of a diversity game is a partition of agents in N into

disjoint coalitions. Given a partition π of N and an agent i ∈ N ,

we write π (i) to denote the unique coalition in π that contains i . A
partition π of N is said to be individually rational if all coalitions in
π are individually rational.

The core is the set of partitions that are resistant to group devi-
ations. Formally, we say that a coalition S ⊆ N blocks a partition
π of N if every agent i ∈ S strictly prefers S to her own coalition

π (i). A partition π of N is said to be core stable, or in the core, if no
coalition S ⊆ N blocks π .

We also consider outcomes that are immune to individual de-
viations. Consider an agent i ∈ N and a pair of coalitions S < Ni
and T ∈ Ni . An agent j ∈ S accepts a deviation of i to S if j weakly
prefers S ∪ {i} to S . A deviation of i from T to S is said to be an

NS-deviation if i prefers S ∪ {i} to T ; and an IS-deviation if it is an

NS-deviation and all agents in S accept it. A partition π is called

Nash stable (NS) (respectively, individually stable (IS)) if no agent
i ∈ N has an NS-deviation (respectively, an IS-deviation) from π (i)
to another coalition S ∈ π or to ∅.

We say that the preferences ≻i of an agent i ∈ N are single-
peaked if for every i ∈ N there is a peak pi ∈ [0, 1] such that

θ1 < θ2 ≤ pi or θ1 > θ2 ≥ pi implies that θ2 ≻i θ1.

In particular, if an agent has a strong preference for being in the

majority, then her preferences are single-peaked, as illustrated in

the following example.
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Example 2.2 (Birds of a feather flock together). Suppose that all
agents in R are smokers and all agents in B are non-smokers. Then

we expect an agent to prefer groups with the maximum possible

ratio of agents of her own type. Formally, for each r ∈ R and each

θ ,θ ′ ∈ Θ we have θ ≻r θ
′
if and only if θ > θ ′, and for each b ∈ B

and each θ ,θ ′ ∈ Θ we have θ ≻b θ ′ if and only if θ < θ ′. In this

case, the partition in which each agent forms a singleton coalition

is core stable and Nash stable (and hence also individually stable).

If an agent strongly prefers to be surrounded by agents of the

other type, her preferences are single-peaked, too.

Example 2.3 (Bakers and Millers [4]). Suppose that each agent

prefers the fraction of agents of the other type to be as high as

possible. This holds, for instance, when individuals of the same

type compete to trade with individuals of the other type. A Bakers
and Millers game is a diversity game where for each r ∈ R and each

θ ,θ ′ ∈ Θ we have θ ≻r θ
′
if and only if θ < θ ′, and for each b ∈ B

and each θ ,θ ′ ∈ Θ we have θ ≻b θ ′ if and only if θ > θ ′. Note
that if |R | = |B |, a partition into mixed pairs is core stable and Nash

stable; indeed, Aziz et al. [4] prove that every Bakers and Millers

game has a non-empty core.

3 CORE STABILITY
Examples 2.2 and 2.3 illustrate that if all agents have extreme ho-

mophilic or extreme heterophilic preferences, the core is guaranteed

to be non-empty. However, we will now show that in the intermedi-

ate case the coremay be empty, even if all agents have single-peaked

preferences.

Example 3.1. Consider a diversity game G, where the set of

agents is given by R = {r1, r2, r3, r4, r5, r6, r7} and B = {b1,b2}.
Agents can be divided into the following three categories with es-

sentially the same preferences:X = {r1, r2, r3, r4,b1},Y = {r5}, and
Z = {r6, r7,b2}. We have Θ = {0, 1

3
,
1

2
,
3

5
,
2

3
,
5

7
,
3

4
,
7

9
,
4

5
,
5

6
,
6

7
,
7

8
, 1}.

Each agent has the following single-peaked preferences over the

ratios of red agents:

• r1, r2, r3, r4 :
6

7
≻ 5

6
≻ 4

5
≻ 7

9
≻ 3

4
≻ 7

8
≻ 1 ≻ 5

7
≻ · · ·

• b1 :
6

7
≻ 5

6
≻ 4

5
≻ 7

9
≻ 3

4
≻ 7

8
≻ 5

7
≻ · · ·

• r5 :
5

6
≻ 4

5
≻ 7

9
≻ 3

4
≻ 6

7
≻ 7

8
≻ 1 ≻ 5

7
≻ · · ·

• b2 :
3

4
≻ 7

9
≻ 4

5
≻ 5

6
≻ 6

7
≻ 7

8
≻ 5

7
≻ · · ·

• r6, r7 :
3

4
≻ 7

9
≻ 4

5
≻ 5

6
≻ 6

7
≻ 7

8
≻ 1 ≻ 5

7
≻ · · ·

Figure 1 illustrates the preferences of each preference category.

We will now argue that the game in Example 3.1 has empty core.

Proposition 3.2. The game G in Example 3.1 has no core stable
outcomes.

Proof. Suppose towards a contradiction that there exists a core

stable outcome π . We note that, by individual rationality, θR (S) ≥
3/4 for every mixed coalition S ∈ π , as red agents in a coalition S
with θR (S) ⩽ 5/7 < 3/4 would strictly prefer to be alone. Also, π
contains at least one mixed coalition, as otherwise {r1, r2, r3,b1}
would block π .

Let θ∗ be the largest ratio of red agents in a mixed coalition

in π . We have argued that θ∗ ≥ 3/4. Also, if 3/4 ≤ θ∗ ≤ 4/5,

then θR (π (x)) ≤ 4/5 for all x ∈ X and 3/4 ≤ θR (π (r5)) ≤ 4/5 or

θR (π (r5)) = 1; thus coalition X ∪Y with θR (X ∪Y ) = 5/6 blocks π .

5

7

3

4

7

9

4

5

5

6

6

7

7

8

1 θ

Figure 1: Single-peaked preferences over the ratios of red
agents. The thick, grey, and dotted lines represent the pref-
erences of agents in X , Y , and Z , respectively. We omit the
ratios 1

3
, 1
2
, 2
3
since there is no individually rational coalition

with these fractions of red agents.

Hence, θ∗ ≥ 5/6. Now since π contains at least one mixed coalition

with red ratio at least 5/6, and all mixed coalitions in π must have

red ratio at least 3/4, if there is more than one mixed coalition,

the number of agents would be at least 10, a contradiction. Thus,

π contains exactly one mixed coalition of red ratio at least 5/6. It

follows that for each agent i it holds that either

• i belongs to a mixed coalition of red ratio at least 5/6, i.e.,

θR (π (i)) ≥ 5/6; or

• i belongs to a completely homogeneous coalition, i.e., if i ∈ Y ,
then θR (π (i)) = 0 and if i ∈ R, then θR (π (i)) = 1.

In particular, this means that θR (π (z)) , 3/4 for all z ∈ Z , and
hence each z ∈ Z prefers 3/4 to θR (π (z)).

Now suppose that r5 does not belong to a coalition with his

favorite red ratio, i.e., 5/6. Then θR (π (r5)) ≥ 6/7 and thus r5 prefers
3/4 to θR (π (r5)). Thus, the coalition Y ∪ Z of red ratio 3/4 blocks

π , a contradiction. Hence, r5 belongs to a coalition of his favorite

red ratio 5/6, and thus θ∗ = 5/6. Further, if some agent r ∈ X ∩ R
does not belong to a mixed coalition, then θR (π (r )) = 1 and the

coalition {r } ∪Z would block π . Hence, the unique mixed coalition

of red ratio 5/6 contains both r5 and all four red agents in X , which

means that no red agent in Z belongs to the mixed coalition. Now

we have:

• b1 ∈ X ∩ B prefers 6/7 to θR (π (b1)) since θR (π (b1)) = 0 or

θR (π (b1)) = 5/6; and

• each x ∈ X ∩ R prefers 6/7 to θR (π (x)) = 5/6; and

• each z ∈ Z ∩ R prefers 6/7 to θR (π (z)) = 1.

Then coalitionX∪(Z∩R) of red ratio 6/7would block π , a contradic-
tion. We conclude thatG does not admit a core stable partition. □

Indeed, we can show that checking whether a given diversity

game has a non-empty core is NP-complete.

Theorem 3.3. The problem of checking whether a diversity game
G = (R,B, (≻i )i ∈R∪B ) has a non-empty core is NP-complete.

Session 2E: Game Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

567



In Example 3.1 there are at least two agents of each type. In

contrast, if one of the types is represented by a single agent, then

the core is guaranteed to be non-empty.

Proposition 3.4. LetG = (R,B, (≻i )i ∈R∪B ) be a diversity game
with |R | = 1 or |B | = 1. Then the core of G is non-empty, and a
partition in the core can be constructed in polynomial time.

We also note that in the game in Example 3.1 agents’ preferences

belong to one of the three categories. The next proposition shows

that if all agents have the same preferences, then there is a core

stable outcome. We conjecture that with only two types of single-

peaked preferences, the core is non-empty as well.

Proposition 3.5. LetG = (R,B, (≻i )i ∈R∪B ) be a diversity game
such that each agent has the same preference over Θ \ {0, 1}. Then G
has a non-empty core and a partition in the core can be constructed
in polynomial time.

4 NASH STABILITY AND INDIVIDUAL
STABILITY

We have seen that core stability may be impossible to achieve.

It is therefore natural to ask whether every diversity game has

an outcome that is immune to individual deviations. It is easy to

see that the answer is ‘no’ if we consider NS-deviations, even if

we restrict ourselves to single-peaked preferences: for instance,

the game where there is one red agent who prefers to be alone

and one blue agent who prefers to be in a mixed coalition has

no Nash stable outcomes. In contrast, each diversity game with

single-peaked preferences admits an individually stable outcome.

Moreover, such an outcome can be computed in polynomial time. In

the remainder of this section, we present an algorithm that achieves

this, and prove that it is correct.

Theorem 4.1. Let G = (R,B,≻i ∈R∪B ) be a diversity game with
single-peaked preferences. Then an individually stable outcome exists
and can be constructed in O(|N |4) time.1

The algorithm will be divided into three parts:

(1) For agents with peaks greater than half, make mixed coali-

tions with red majority. For agents with peaks smaller than

half, make mixed coalitions with blue majority.

(2) Make pairs from the remaining red agents and blue agents

who are not in the mixed coalitions.

(3) Put all the remaining agents into singletons.

We will first show that one can construct a sequence of mixed

coalitions with red majority that are immune to IS-deviations.

4.1 Create mixed coalitions with red majority
In making mixed coalitions, we will employ a technique that is

similar to the algorithm for anonymous games proposed by Bogo-

molnaia and Jackson [9]. Intuitively, imagine that red agents and

blue agents with peaks at least 1/2 form two lines, each of which

is ordered from the highest peak to the lowest peak. The agents

enter a room in this order, with a single blue agent entering first

1
Indeed, a straightforward bound on the running time of the subsequent Algorithm

1 is O ( |B | · |R | · ( |R | · |B |)). The running time of the subsequent Algorithm 2 is

dominated by the running time of Algorithm 1. A detailed analysis is deferred to the

full version.

and red agents successively joining it as long as the fraction of red

agents does not exceed the minimum peak of the agents already in

the room. Once the fraction of the red agents reaches the minimum

peak, a red agent who enters the room may deviate to a coalition

that has been formed before. We alternate these two procedures as

long as there is a red agent who can be added without exceeding

the minimum peak. If no red agent can enter a room, then agents

start entering another room and create a new mixed coalition in

the same way. The algorithm terminates if either all red agents or

all blue agents with their peaks at least half join a mixed coalition.

Figure 2 illustrates this coalition formation process. We formalize

this idea in Algorithm 1. We will create mixed coalitions containing

exactly one blue agent, so we define the virtual peak qi to be the

favorite ratio of agent i among the ratios of red agents in coalitions

containing exactly one blue agent.

In what follows, we assume that S0, S1, . . . , Sk are the final coali-

tions that have been obtained at the termination of the algorithm,

and that π is the output of the algorithm. For each t > 0 and i ∈ St ,

• i is called a default agent of St if i is a blue agent or i is a red
agent who has joined St at Step 9;

• i is called a new agent of St if i is a red agent who has joined

St in Step 14 or Step 19.

We denote by Dt the set of default agents of St , and we denote by

Nt the set of new agents of St .
For each St with t > 0, each agent in St is either a default agent

of a new agent. Notice that S0 starts with the empty set and plays

the role of the last resort option for red agents, i.e., red agents can

always deviate to S0 if they strictly prefer staying alone to the mixed

coalition they have joined.

Deviations of blue agents We will first show that the algorithm

constructs a sequence of coalitions such that no blue agent in the

coalitions has an IS-deviation to other coalitions. We establish this

by proving a sequence of claims. First, it is immediate that the red

ratio of each coalition St is at least half, except for the last coalition,
which may contain a single blue agent.

Lemma 4.2. For each S ∈ π , the red ratio of S is at least half, i.e.,
θR (S) ≥

1

2
.

Proof. Take any S ∈ π . The claim is immediate when S ⊆ S0.
Suppose that S = St for some t > 0. Then it is clear that St contains
exactly one blue agent. If St contains no red agent, then this would

mean that all red agents with their peaks at least half joined St , but
deviated to smaller indexed-coalitions, meaning that St is the last
coalition that has been formed, i.e., t = k ; but this contradicts the
construction in Step 21. Thus, St contains exactly one blue agent

and at least one red agent, which implies that θR (St ) ≥
1

2
. □

This leads to the following lemma.

Lemma 4.3. For each r ∈ S0, r is a red agent and r strictly prefers
{r } to a mixed pair.

Proof. By construction every agent in S0 is a red agent. Suppose
that before joining S0, r has joined a mixed coalition St with t > 0

at Step 9 and then deviated to S0 at Step 14. Just before r has left
St , the ratio θ ′ of red agents in St is at least half, implying that

θ ′ ≻r
1

2
or θ ′ = 1

2
. Since r joined S0 at Step 14, we also have 1 ≻r θ

′
.
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S0

b1

S1

bt

St

ri

Figure 2: Illustration of how HALF(R,B, (≻i )i ∈R∪B ) creates coalitions with red majority. Gray circles correspond to red agents,
while white circles correspond to blue agents.

Algorithm 1: HALF(R,B, (≻i )i ∈R∪B )
input :A single-peaked diversity game (R,B, (≻i )i ∈R∪B )
output :π

1 sort red and blue agents so that qr1 ≥ qr2 ≥ . . .qrx and

qb1 ≥ qb2 ≥ . . . ≥ qby ;

2 initialize i ← 1, k ← 1 and S0 ← ∅;

3 initialize R′ ← { r ∈ R | pr ≥
1

2
} and B′ ← {b ∈ B | pb ≥

1

2
};

4 while R′ , ∅ and B′ , ∅ do
5 set Sk ← {bk };

6 while θR (Sk ∪ {ri }) ≤ min{qri ,qbk }, or there exist an
agent r ∈ Sk ∩ R and t < k such that r has an IS-deviation
from Sk to St do

7 // add red agents to Sk as long as the ratio
of red agents does not exceed the minimum
virtual peak;

8 while θR (Sk ∪ {ri }) ≤ min{qri ,qbk } do
9 set Sk ← Sk ∪ {ri };

10 set R′ ← R′ \ {ri } and i ← i + 1;

11 // let red agents in Sk deviate to

smaller-indexed coalitions;

12 if there exists an agent r ∈ Sk ∩ R and t < k such that r
has an IS-deviation from Sk to St then

13 choose r and St so that θR (St ∪ {r }) is r ’s most

preferred ratio among the coalitions St satisfying
the above;

14 set St ← St ∪ {r }, Sk ← St \ {r };

15 set B′ ← B′ \ {bk }, and k ← k + 1;

16 // let the remaining agents deviate to mixed
coalitions as long as they prefer the ratio of the
deviating coalition to half;

17 while there is an agent r ∈ R′ and a coalition St such that
t ≥ 0, θR (St ∪ {r }) ≻r 1

2
, and all agents in St accept a

deviation of r to St do
18 choose r and St so that θR (St ∪ {r }) is r ’s most preferred

ratio among the coalitions St satisfying the above;

19 St ← St ∪ {r } and R
′ ← R′ \ {r } ;

20 if R′ = ∅ and Sk consists of a single blue agent then
21 return π = { {r } | r ∈ S0 } ∪ {S1, S2, . . . , Sk−1};

22 else
23 return π = { {r } | r ∈ S0 } ∪ {S1, S2, . . . , Sk };

Combining these yields 1 ≻r
1

2
. The claim is immediate when r

joined S0 at Step 19. □

We also observe that, by the construction of the algorithm, all

default agents belong to the coalition whose red ratio is at most

their virtual peak; see Figure 3 (a) for an illustration.

Lemma 4.4. For every default agent i in St , where St ∈ π with
t > 0,

(1) the red ratio of St is at most i’s virtual peak, i.e., θR (St ) ≤ qi ;
and

(2) i weakly prefers St to {i} and to a mixed pair.

Proof. Take any t > 0 and take any default agent i in St . Before
the algorithm starts forming the next coalition St+1, the ratio θR (St )
remains below qi by thewhile-condition in Step 6. After St+1 starts
being formed, θR (St ) can only increase by accepting red agents from
larger-indexed coalitions. However, if a deviation of some red agent

to St increases the fraction above qi , this would mean that i would
not be willing to accept such a deviation. Thus, θR (St ) ≤ qi . To
show the second statement, recall that pi ≥

1

2
by construction of

the algorithm and θR (St ) ≥
1

2
by Lemma 4.2. If i is a blue agent,

then by single-peakedness i weakly prefers St both to {i} and to

a mixed pair. If i is a red agent who has joined St at Step 9, then

by single-peakedness and the fact that he has not deviated to S0 at
Step 14, i weakly prefers St both to his singleton and to a mixed

pair. □

We are now ready to prove that no coalition in π admits a devia-

tion of a blue agent.

Lemma 4.5. For each S ∈ π , there is an agent in S who does not
accept a deviation of a blue agent to S .

Proof. If S ⊆ S0 and |S | = 1, it follows from Lemma 4.3 that

no r ∈ S accepts a deviation of a blue agent. Suppose S = St
for some t > 0, and assume towards a contradiction that some

blue agent b ∈ B can be accepted by all agents in St ∈ π for

some t > 0. By Lemma 4.2, the ratio of red agents in St is at

least
1

2
. If the fraction of red agents in St is at most the peak of

some agent, i.e., θR (St ) ≤ pi for some agent i ∈ St , this means that

θR (St∪{b}) < θR (St ) ≤ pi , i.e., i would not acceptb, a contradiction.
Hence, suppose that the fraction of red agents in St is beyond the

maximum peak, i.e., θR (St ) > maxi ∈St pi . Take i ∈ St ∩ B. By

Lemma 4.4, pi < θR (St ) ≤ qi . Since pi ≥
1

2
by construction of

the algorithm, we have θR (St ) >
1

2
, which means that coalition St

contains one blue agent and at least two red agents. Hence, even

if one red agent leaves the coalition, its red ratio would be at least

half, i.e.,

1

2

≤
|St ∩ R | − 1

|St | − 1
(:= θ∗) < pi ,
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where the second inequality holds, since otherwise pi ≤ θ∗ <
θR (St ) ≤ qi , which contradicts the fact that qi is i’s favorite ratio
of the coalitions containing exactly one blue agent. Further, agent

i prefers θR (St ) to θ∗ by single-peakedness and by the fact that

θ∗ < θR (St ) ≤ qi . Since i accepts the deviation of b to St , after
adding b to St , the red ratio should remain at least θ∗, implying that

θ∗ < θR (St ∪ {b}). But this would mean that
|St∩R |−1
|St |−1

<
|St∩R |
|St |+1

,

or, equivalently, (|St | + 1)(|St ∩ R | − 1) < |St ∩ R |(|St | − 1). This
inequality can be simplified to 2|St ∩R | < |St |+1, implying θ∗ < 1

2
,

a contradiction. □

θqiθR(St)

(a) Virtual peak of a default agent.

θqrθR(St ′) θR(St)

(b) Virtual peak of a new agent.

Figure 3: The red ratio of a coalition is at most the virtual
peak of a default agent, but exceeds the virtual peak of a
new agent.

Deviations of red agents We now show that coalitions S1, . . . , Sk
do not admit an IS-deviation by red agents. To this end, we first

observe that the red ratio of a coalition to which a new agent

belongs exceeds the virtual peak of the new agent; see Figure 3 (b)

for an illustration. Due to single-peakedness, this means that new

agents do not accept further deviations of red agents.

Lemma 4.6. Let S be the set of agents that belong to St with t > 0

after the while-loop of Step 8 of Algorithm 1, and let ri be the last
agent in S to join St . Then no red agent r j with j > i can join S without
exceeding the minimum peak, i.e., θR (S ∪ {r j }) > min{qbt ,qr j }.

Proof. Take any r j with j > i . If θR (S ∪ {r j }) ≤ min{qbt ,qr j },
then this would mean that θR (S ∪ {ri+1}) ≤ min{qbt ,qri+1 }, since
qri+1 ≥ qr j . Hence, the algorithm would have added ri+1 to S , a
contradiction. □

Lemma 4.7. For all St ∈ π (t > 0) and each new agent r ∈ St :
(1) the red ratio of St exceeds r ’s virtual peak, i.e., θR (St ) > qr ;
(2) r is the unique new agent in St ;
(3) r weakly prefers St to {r } and to a mixed pair.

Proof. Let r be the first new agent who joined St at Step 14 or

Step 19. When r joined St , his virtual peak qr was at most that of

any other red agent in St . By Lemma 4.6, he cannot join St without
exceeding the virtual peak qr , i.e., θR (Dt ∪ {r }) < qr . Thus, by
single-peakedness, he does not accept any further deviations by

red agents. Hence, r is the unique new agent in St . To see that the

third statement holds, note that if r joined St at Step 19, then r
prefers θR (St ) to

1

2
by the if-condition of Step 17. Also, r chooses

his favorite coalition among the coalitions to which he can deviate,

and thus r prefers θR (St ) to θR (S0 ∪ {r }) = 1. Now suppose that r

joined St from St ′ with t
′ > t at Step 14. At that point, the ratio θ ′

of red agents in St ′ was at least half, and agent r weakly prefers St ′

to a mixed pair since
1

2
≤ θ ′ ≤ qr . Hence, since r prefers θR (St ) to

θ ′, by transitivity r prefers θR (St ) to
1

2
. Also, by the if-condition in

Step 12, r prefers St to being in a singleton coalition. □

We also observe that the red ratio of a higher-indexed coalition

is smaller than or equal to that of a lower-indexed coalition.

Lemma 4.8. Let t ′ ≥ t > 0 and let S be the set of agents in St just
after thewhile-loop of Step 8. Then, the red ratio of Dt ′ is at most the
red ratio of S , i.e., θR (Dt ′) ≤ θR (S); in particular, θR (Dt ′) ≤ θR (Dt ).

Proof. Assume for the sake of contradiction that θR (Dt ′) >

θR (S). Since S and Dt ′ contain exactly one blue agent, this means

that Dt ′ contains more red agents than S does, i.e., |S ∩ R | + 1 ≤
|Dt ′ ∩R |. Thus, even if we add a red agent to S , its red ratio does not
exceed θR (Dt ′), i.e., for each r ∈ R\S we have θR (S∪{r }) ≤ θR (Dt ′).

Now recall that by Lemma 4.4, the red ratio of St ′ does not exceed
the virtual peak of each default agent, which means that

θR (Dt ′) ≤ θR (St ′) ≤ min

x ∈Dt ′
qx .

Combining these observations, for every r ∈ R \ S we have

θR (S ∪ {r }) ≤ min

x ∈Dt ′
qx . (1)

Moreover, since t = t ′, or St ′ has been created after St , there is
a red agent r j ∈ Dt ′ \ S with qr j ≤ qr for every r ∈ S ∩ R and

qb′ ≤ qb , where b
′
and b are the unique blue agents in Dt ′ and S ,

respectively. Combining this with inequality (1) yields

θR (S ∪ {r j }) ≤ min

x ∈S∪{r j }
qx ,

which contradicts Lemma 4.6. □

Lemma 4.9. Let t ′ > t > 0 with θR (Dt ′) = θR (Dt ). Then some
agent in Dt ′ does not accept a deviation of a red agent to St ′ .

Proof. Since θR (Dt ′) = θR (Dt ), bothDt andDt ′ contain exactly

one blue agent as well as the same number of red agents. By the

description of the algorithm, the minimum virtual peak of agents

in Dt ′ is smaller than that of agents in Dt , i.e.,

min

x ∈Dt ′
qx ≤ min

x ∈Dt
qx . (2)

Further, by Lemma 4.6, no red agent in Dt ′ can join Dt without

exceeding the minimum virtual peak, which implies that for every

r ∈ Dt ′ we have

min

x ∈Dt∪{r }
qx < θR (Dt ∪ {r }) =

|Dt ′ ∩ R | + 1

|Dt ′ | + 1
.

Combining this with the inequality (2) implies

min

x ∈Dt ′
qx <

|Dt ′ ∩ R | + 1

|Dt ′ | + 1
.

Thus, by single-peakedness, there is an agent in Dt ′ who does not

accept a deviation of a red agent to Dt ′ . □

We are now ready to show that no coalition in π admits a devia-

tion of a red agent.

Lemma 4.10. No agent r ∈ St ∩ R has an IS-deviation to another
coalition St ′ with 0 < t ′ < t .
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Proof. Suppose towards a contradiction that there is such an

agent r ∈ St ∩ R and a coalition St ′ with 0 < t ′ < t . Let t ′ be
the largest index of coalition St ′ to which r has an IS-deviation.

Observe that if St ′ contains a new agent, then the new agent does

not accept a deviation of agent r by Lemma 4.7; thus, St ′ has no
new agent and St ′ = Dt ′ . If r is a default agent in St , then r weakly
prefers St to Dt and hence r strictly prefers Dt ′ ∪ {r } to Dt by

transitivity. Thus, agent r could have deviated to St ′ from St at

Step 14, a contradiction. If r is a new agent in St , then r joined St
in Step 14 or Step 19, but this means that r could have deviated

to St ′ instead of St , as r strictly prefers Dt ′ ∪ {r } to Dt ∪ {r }, a
contradiction. □

Lemma 4.11. No agent r ∈ St ∩ R has an IS-deviation to another
coalition St ′ with t ′ > t .

Proof. Suppose towards a contradiction that there is such an

agent r ∈ St ∩ R and a coalition St ′ . Let t
′ > t be the smallest

index of coalition St ′ to which r has an IS-deviation. Again, if St ′

contains a new agent, then r cannot deviate to St ′ ; thus, St ′ = Dt ′ ,

and θR (St ′) = θR (Dt ′) ≤ θR (Dt ) ≤ θR (St ) by Lemma 4.8.

First, consider the case where agent r is a default agent in St and
t > 0. Then, by Lemma 4.4 and by the fact that θR (St ′) ≤ θR (St ),
we have

θR (St ′) ≤ θR (St ) ≤ qr .

Since r ’s preferences are single-peaked, r has an incentive to join St ′

only if θR (St ′) = θR (St ); however, by Lemma 4.9 this implies that

there is an agent in St ′ who is not willing to accept r ’s deviation, a
contradiction.

Second, consider the case where agent r joined St at Step 14.

Let Sℓ be the coalition to which the red agent r belonged before

joining St , and let S be the set of agents in Sℓ just before r deviated
from Sℓ to St at Step 14. Note that Sℓ is a coalition that has been

created before St ′ emerged, i.e., ℓ ≤ t ′, since otherwise r would

have deviated to St ′ instead of St at Step 14. By Lemma 4.8, θR (Dt ′)

is at most θR (S) and θR (S) ⩽ qr by the description of the algorithm.

Now we have θR (Dt ′) ≤ θR (S) ≤ qr < θR (St ).
Recall that r strictly prefers St to S ; thus, by single-peakedness,

r has an incentive to deviate from St to St ′ only if θR (Dt ′) = θR (S).
Since θR (Dℓ) ≤ θR (S) by Lemma 4.8, this means that θR (Dt ′) =

θR (Dℓ). Also, if ℓ < t ′, some agent in Dt ′ does not accept the

deviation of r by Lemma 4.9, and hence ℓ = t ′. Thus, agent r
deviated from St ′ to St and later the coalition St ′ regained the same

number of red agents as before. Now, if θR (S) = qr , then r would not
have left the coalition S at Step 14; hence θR (S) < qr , which implies

θR (Dt ′ ∪ {r }) ≤ qr . Recall that by Lemma 4.4, the red ratio of Dt ′

is at most the minimum virtual peak, i.e., θR (Dt ′) ≤ minx ∈Dt ′ qx .
If adding r to Dt ′ exceeds the minimum, some agent would not

accept a deviation of r ; thus, we have

θR (Dt ′ ∪ {r }) ≤ min

x ∈Dt ′∪{r }
qx . (3)

Now, since θR (S \ {r }) < θ (Dt ′), there is at least one red agent

r j ∈ Dt ′ who does not belong to S . By (3),

θ (S ∪ {r j }) = θ (Dt ′ ∪ {r }) ≤ min

x ∈Dt ′∪{r }
qx ≤ min

x ∈S∪{r j }
qx ,

contradicting Lemma 4.6.

Finally, consider the case where r joined St at Step 19. Since St ′

does not contain any new agents, agent r could have joined St ′

instead of St at Step 19, a contradiction. □

4.2 Algorithm for individual stability
We will now construct an individually stable outcome using the

algorithm described in Section 4.1 as a subroutine. Suppose that

we are given a diversity game (R,B, (≻i )i ∈R∪B ). For each i ∈ R ∪ B,
we denote by ≻Bi the preference over the ratios of the blue agents

in each coalition: θ1 ≻
B
i θ2 if and only if (1 − θ1) ≻i (1 − θ2).

Algorithm 2: Algorithm for an individually stable outcome

input :A single-peaked diversity game (R,B, (≻i )i ∈R∪B )
output :π

1 make mixed coalitions with red majority, i.e., set

πR = HALF(R,B, (≻i )i ∈R∪B ) ;

2 let R
left
← R \

⋃
S ∈πR S and B

left
← B \

⋃
S ∈πR S ;

3 make mixed coalitions with blue majority, i.e., set

πB = HALF(B
left
,R

left
, (≻Bi )i ∈Rleft

∪B
left
);

4 set R
left
← R

left
\
⋃
S ∈πB S , and Bleft ← B

left
\
⋃
S ∈πB S ;

5 make mixed pairs from remaining agents in R
left

and B
left

who

prefer a coalition of ratio
1

2
to his or her own singleton; add

them to πpair ;

6 set R
left
← R

left
\
⋃
S ∈πpair S , and Bleft ← B

left
\
⋃
S ∈πpair S ;

7 // let the remaining agents deviate to mixed
coalitions as long as they prefer the deviating
coalition to his or her singleton;

8 foreach A ∈ {R,B} do
9 while there is an agent i ∈ A

left
and a mixed coalition

S ∈ πA such that S ∪ {i} is individually rational and all
agents in S accept a deviation of i to S do

10 choose such pair i and S where θA(S ∪ {i}) is i’s most

preferred ratio among the coalitions S satisfying the

above;

11 πA ← πA \ {S} ∪ {S ∪ {i}}, and Aleft
← A

left
\ {i};

12 put all the remaining agents in R
left

and B
left

into singletons,

and add them to π
single

;

13 return π = πR ∪ πB ∪ πpair ∪ πsingle;

Now let πR , πB , πpair, and πsingle denote the partitions computed

by Algorithm 2, and let π = πR ∪ πB ∪ πpair ∪ πsingle. Arguing as
in the previous section, we can establish the following properties.

Lemma 4.12. For each A ∈ {R,B} and each coalition S ∈ πA it
holds that:

(a) S is individually rational;
(b) if i joined S at Step 11, then i does not accept a further deviation

of an agent in A to S ;
(c) there is an agent who does not admit a deviation of an agent

in N \A;
(d) for each agent i ∈ S who joined S before Step 11 of Algorithm

2, i weakly prefers S to a mixed pair.
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Proof. Without loss of generality suppose thatA is the set of red

agents. Claim (a) (individual rationality) holds due to Lemmas 4.4

and 4.7 and the while-condition in Step 9 of Algorithm 2.

To show claim (b), suppose that a red agent r is the first agent
who joined S ∈ πR at Step 11. By single-peakedness, the claim holds

when pr ≤
1

2
; so suppose pr >

1

2
. Since r did not belong to any of

the coalitions in πR before, his virtual peak qr is at most that of any

other red agent in S . Since all agents in S \ {r } accept r at Step 9 of

Algorithm 2, S did not contain a new agent by Lemma 4.7, so the

red ratio of S \ {r } is at most the minimum virtual peak of agents

in S \ {r } by Lemma 4.4 and this remains true after accepting r .
However, by Lemma 4.6, agent r cannot join S without exceeding

either the virtual peak of the unique blue agent or the virtual peak

qr ; thus, θR (S) < qr . By single-peakedness, we conclude that r does
not accept any further deviation of red agents.

To prove claim (c), we can use the argument in the proof of

Lemma 4.5. To establish claim (d), we recall that each agent i ∈
S weakly prefers S to a mixed pair by Lemmas 4.4 and 4.7; by

transitivity, this still holds after accepting the deviation of red

agents at Step 11 of Algorithm 2. □

Lemma 4.13. Mixed pairs created at Step 5 of Algorithm 2 do not
admit an IS-deviation.

Proof. Let R′ and B′ be the set of red and blue agents in R
left

and B
left

just before Step 5 of Algorithm 2, respectively. Note that

both R′ and B′ are non-empty only if red agents (respectively, blue

agents) are left when mixed coalitions with red majority have been

formed, and blue agents (respectively, red agents) are left when

mixed coalitions with blue majority have been formed. So, the red

agents in R′ and the blue agents in B′ have opposite peaks, i.e., we
have either

• pr ≥
1

2
for all r ∈ R′ and pb ≤

1

2
for all b ∈ B′; or

• pr ≤
1

2
for all r ∈ R′ and pb ≥

1

2
for all b ∈ B′.

Thus, for each agent who would like to join, one of the agents in

the pair would not accept such a deviation. □

Lemma 4.14. The partition π is individually stable.

Proof. We first observe that π is individually rational. Indeed,

all singletons in π are individually rational. Also, all mixed pairs

are individually rational, since they prefer a coalition of ratio
1

2

to being in a singleton coalition. All coalitions in πR and πB are

individually rational by Lemma 4.12(a).

We will now show that π satisfies individual stability. Take any

red agent r ∈ R. We note that by individual rationality, r has no
incentive to deviate to red-only coalitions; also, by Lemma 4.13, r
cannot deviate to a coalition in πpair. Further, by Lemma 4.12(c),

agent r has no IS-deviation to a coalition in πB . Thus, it remains to

check whether r has an IS-deviation to a coalition in πR , or a blue
singleton in π

single
. Consider the following cases:

(1) Agent r joined S ∈ πR before Step 11 of Algorithm 2.

By Lemmas 4.4 and 4.7, agent r weakly prefers S to a mixed pair

before accepting the deviation of red agents at Step 11 of Algorithm

2, and by transitivity, this remains true after Step 11 of Algorithm

2, meaning that r does not want to join a blue singleton. Also, r has
no IS-deviation to a coalition in πR by Lemmata 4.10 and 4.11.

(2) Agent r joined S ∈ πR at Step 11 of Algorithm 2.

By individual rationality, agent r weakly prefers his coalition to

forming his own singleton. Hence, if r has an IS-deviation to a

coalition of a single blue agent in π
single

, then it means that both

agent strictly prefer a mixed pair to their own singleton coalitions

and hence they would have formed a pair at Step 5, a contradiction.

Also, if agent r has an IS-deviation to some coalition T ∈ πR , then
it means that no red agent joined T at Step 11 of Algorithm 2 by

Lemma 4.12(c), and thus agent r would have joined T instead of S ,
a contradiction.

(3) Agent r belongs to a coalition S ∈ πB .
By construction of the algorithm, we have pr ≤

1

2
, and agent r

weakly prefers S to a mixed pair before accepting the deviation of

blue agents at Step 11 of Algorithm 2. By transitivity, this remains

true after Step 11 of Algorithm 2, which means that r prefers his
coalition to a coalition with blue ratio at most

1

2
. Thus, r has no

incentive to deviate to a coalition in πR , or to a blue-only coalition.

(4) Agent r belongs to a coalition in πpair.
Clearly, agent r has no incentive to deviate to singleton coalitions of
blue agents. Also, if r has an IS-deviation to some coalition T ∈ πR ,
r would have joined T at Step 19 of Algorithm 1, a contradiction.

(5) Agent r belongs to a coalition in π
single

.

If r has an IS-deviation to some coalition T ∈ πR , r could have

joined T at Step 11 of Algorithm 2, a contradiction. If r has an

IS-deviation to some coalition in π
single

that consists of a single

blue agent b, then r and b could have formed a pair at Step 5, a

contradiction.

A symmetric argument applies to blue agents’ deviations, and

hence no blue agent has an IS-deviation to other coalitions. □

5 CONCLUSION
We have initiated the formal study of coalition formation games

with varying degree of homophily and heterophily. Our results

suggest several directions for future work.

First, while we have argued that Nash stable outcomes may

fail to exist, the complexity of deciding whether a given diversity

game admits a Nash stable outcome remains unknown. Also, we

have obtained an existence result for individual stability under the

assumption that agent’s preferences are single-peaked, but it is not

clear if the single-peakedness assumption is necessary; in fact, we

do not have an example of a diversity game with no individually

stable outcome. In a similar vein, it would be desirable to identify

further special classes of diversity games that admit core stable

outcomes.

More broadly, it would be interesting to extend ourmodel tomore

than two agent types. Another possible extension is to consider

the setting where agents are located on a social network, and each

agent’s preference over coalitions is determined by the fraction of

her acquaintances in these coalitions; this model would capture

both the setting considered in our work and fractional hedonic

games.
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