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ABSTRACT
We initiate the study of local core stability in simple symmetric
fractional hedonic games. The input is an unweighted undirected

graph G where vertices are the agents and edges model social

connection (i.e., acquaintance) among agents. We assume that if

there is an edge between two agents then they value 1 each other

otherwise they value 0 each other, i.e., we consider the simple

setting where an agent values 1 all and only her acquaintances. A

coalition structure is a partition of the agents into coalitions where

the utility of an agent is equal to the number of agents inside her

coalition that are valued 1 divided by the size of the coalition. A

coalition structure is in the core if no subset of agents can strictly

improve all their utility by forming a new coalition together. In [7]

it is shown that simple symmetric fractional hedonic games may

not admit a core stable coalition structure. However, the fact that

the core is required to be resilient to deviations by any groups of

agents could be sometimes unrealistic, especially in systems with

large populations. In fact, it may be difficult that agents are able to

coordinate each other in order to understand whether there is the

possibility of deviating together.

Motivated by the above considerations, we define a relaxation of

the core, called local core. A coalition structure is in the local core if

there is no subset of agents which (1) induces a clique in the graph

G and (2) such that all agents can improve their utility by forming a

new coalition together. We first show that any local core dynamics

converges, which implies that a local core stable coalition structure

always exists. We then study its performance with respect to the

classic utilitarian social welfare and provide tight and almost tight

bounds on the local core price of anarchy and stability, respectively.
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1 INTRODUCTION
Hedonic games, introduced in [10], are a game-theoretic approach

to the study of coalition formation problems. The outcomes of

these games are coalition structures, which are partitions of the
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agents into coalitions, over which the agents have valuations, or

preferences. One of the main properties of hedonic games is the

non-externality, that is agents are interested only in the coalition

they belong to and they do not care about how agents outside their

coalition are allocated. A significant amount of research considered

the study of many classes of hedonic games and characterized

various solutions concepts like Nash stability, core stability and

individual stability (see [3] for a survey on the topic).

This work is about symmetric fractional hedonic games, a sub-

class of hedonic games, where agents have mutual, cardinal valua-

tions over each other. Given a coalition structure, the utility of an

agent is equal to the sum of her valuations over the agents in her

coalition divided by the size of the coalition. We focus on the spe-

cial case in which all the valuations are either 0 or 1. These games

are known in the literature as simple symmetric fractional hedonic
games (SS-FHG) [1]. It is worth mentioning that SS-FHG have a

succinct representation of each agent’s valuations over coalitions.

This is different from most of the classes of hedonic games, for

which it takes exponential space to represent agents’ valuations

over coalitions.

SS-FHG suitably model a basic economic scenario, referred to

in [1] as Bakers and Millers, where each agent can be considered

as a buyer or a seller. There are only edges connecting buyers

and sellers and every agent sees the others of the same type as

market competitors. Each agent prefers to be situated in a group

(market) with a small number of competitors, that is, each buyer

wants to be in a group with many sellers and few other buyers,

thus maximizing their ratio, in order to decrease the price of the

good. On the other hand, a seller wants to be situated in a group

maximizing the number of buyers against the number of sellers,

in order to be able to increase the price of the good and gain a

higher profit. SS-FHG can also model other realistic scenarios: (i)

politicians may want to be in a party that maximizes the fraction of

like-minded members; (ii) people may want to be with an as large

as possible fraction of people of the same ethnic or social group.

Other examples of real-life scenarios modelled by SS-FHG can be

found in [1, 6, 7, 16].

One of the most well-known stability concept in the literature is

the core. A coalition structure is said to be core stable, or that it is in

the core, if no subset of agents can strictly improve all their utility

by forming a new coalition together. This concept has been applied

to many classes of hedonic games (see for example [1, 7, 9, 21]).

In particular, in [7], it is given an instance of SS-FHG that does

not admit a core stable coalition structure. However, the fact that

the core is required to be resilient to deviations of any group of

agents could be sometimes unrealistic, especially in systems with

large populations. In fact, in this scenario, it may be difficult for
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agents to coordinate each other in order to understand whether

there is the possibility of deviating together. Motivated by this

concern, we incorporate social connection aspects into SS-FHG

and consider only deviations of groups composed by agents who

know each other. In particular, we model SS-FHG by an unweighted

undirected graphsG , where vertices are the agents and edges model

social connection (i.e., acquaintance) among agents. We assume

that if there is an edge between two agents then they value 1 each

other, otherwise they value 0 each other (i.e., an agent values 1 all

and only her acquaintances). We define a relaxation of the core

stability, called local core. A coalition structure is in the local core if

there is no subset of agents, inducing a clique on the graph G (we

assume that all agents must know each other to coordinate in order

to form a new coalition together), that can all improve their utility

by forming a new coalition together.

1.1 Our results
We start by showing in Theorem 3.1 that any local core dynamics

converges, which implies that a local core stable coalition struc-

ture always exists. We then turn our attention to the study of its

performance by considering the classic utilitarian social welfare,

which is defined as the sum of all the agents’ utilities. In particular,

we study the local core price of anarchy and the local core price of

stability, that is the ratio of the optimal social welfare divided by

the social welfare of the worst local core and the best local core,

respectively. We prove in Theorem 4.2 and Proposition 4.4 that the

local core price of anarchy is at most 4 and that this bound is tight,

while we provide a lower bound equal to 2 (in Theorem 5.1) and an

upper bound equal to 8/3 (in Theorem 5.4) for the local core price

of stability. The latter one is our main technical result.

Due to space constraints, the proof of Lemma 5.3 is only sketched.

1.2 Related work
Hedonic games, where each agent has a complete and transitive

preference relation over all possible coalitions she can belong to

without any form of externality, have been first formalized by Dréze

and Greenberg [10], who analyze them under a cooperative per-

spective. A significant amount of research considered the study of

many classes of hedonic games and characterized various solutions

concepts like Nash stability, core stability and individual stability

(see [3] for a survey on the topic).

Fractional hedonic games, a natural and succinctly representable

class of hedonic games, have been introduced by Aziz et al. [1].

They mainly focus on core stable outcomes and prove that for

general graphs the core can be empty, and even if the core is not

empty, computing and verifying a core stable partition is NP-hard

and coNP-complete, respectively. However, they also show that

the core is not empty for restricted undirected graph topologies

like graphs with degree at most 2, multipartite complete graphs,

bipartite graphs admitting a perfect matching and regular bipartite

graphs. Brandl et al. [7] study the existence of both core and individ-

ually stable coalition structures and the computational complexity

of the related existence decision problems. In particular, they show

that also in SS-FHG the core can be empty. Bilò et al. [6] consider

Nash stable outcomes in fractional hedonic games. They show that

a Nash equilibrium is not guaranteed to exist in symmetric frac-

tional hedonic games with negative weights. However, they notice

that it always exists when weights are non-negative. Furthermore,

they give bounds on the (Nash) price of anarchy and stability. In

[5, 16] the authors provide improved bounds on the (Nash) price of

stability for SS-FHG. In [6] the authors show an instance of SS-FHG

that does not admit a 2-strong stable coalition structure. Elkind et

al. [11] study Pareto optimal coalitions in fractional hedonic games

and provide bounds on the price of Pareto optimality. Other sta-

bility concepts applied to fractional hedonic games are discussed

in [7, 20]. Aziz et al. [2] consider the computational complexity of

computing welfare maximizing partitions (not necessarily Nash

stable) for fractional hedonic games, while in [12] the authors con-

sider the online scenario. Finally, Strategyproof mechanisms for

fractional hedonic games have been proposed in [13].

Olsen [19] considers a slight variant of the symmetric fractional

hedonic games called modified fractional hedonic games, where

the utility of each agent in a coalition structure is equal to the sum

of the weights of the incident edges in the coalition she belongs

to, divided by the size of the coalition minus 1, that is, the agent

herself is not accounted to the population of the coalition. It is

worth mentioning that in this setting the core is always non-empty.

Monaco et al. [18] consider Nash and core stable outcomes for

modified fractional hedonic games and provide bounds on the core

price of anarchy and stability.

As far as concerns social connection aspects in SS-FHG, Igarashi

and Elkind [15] study hedonic games in which a subset of agents can

form a coalition if and only if they are connected in a given input

graph. They investigate the complexity of finding stable outcomes

in such games for several notions of stability, mainly focusing on

acyclic graphs. Our work is different than [15] for the following

aspects: i) we admit stable outcomes in which coalitions may not be

isomorphic to cliques, because we require that they are cliques only

when they are formed by improving deviations; ii) we consider SS-

FHG (which are not considered in [15]) defined over any graph; iii)

we also provide an analysis on the performance of the core. In [14]

the authors consider social connection aspects in hedonic games

and analyze the effects of network-based visibility and structure on

the convergence of coalition formation processes to stable states.

However, they consider games with correlated preferences, i.e., each

coalition has a weight that agents share equally. In particular, their

results do not apply to the case where each agent has preference

order over coalitions.

The concept of local stable outcomes close in the spirit to our

local core is studied also in other important contexts like network

design games [17], network creation games [4] andmaxk-cut games

[8].

2 PRELIMINARIES
For any n ∈ N, we denote by [n] the set {1, 2, . . . ,n}. Given an undi-

rected unweighted graphG = (N ,E), a Simple Symmetric Fractional
Hedonic Game (SS-FHG) G(G) induced by G is a game in which

(1) each node u ∈ N , where N = [n], is a selfish agent, (2) if edge
{u,v} ∈ E, thenu andv value each other 1, while if {u,v} < E, then
u values v 0 and vice versa. Each agent u has to choose a coalition

to join among a set of n available ones. Specifically, the strategy set
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of each agent u is an integer i ∈ [n]. Thus, a strategy profile of the

game is a coalition structure C = {C1, . . .Cn }, where C(u) denotes
the coalition agent u belongs to, and Ci contains all the agents u
such thatC(u) = i . Observe that C is a partition of the nodes into n
coalitions, that is,

⋃
i ∈[n]Ci = N and Ci ∩Cj = ∅ ∀i, j ∈ [n], with

i , j. Since for a strategy profile some coalitions may be empty,

we define |C| to be the number of non-empty coalitions. Let δG (u)
be the number of neighbors of agent u in G, and let δC (u) be the
number of neighbors ofu that belong to coalitionC . Given coalition

Ci ∈ C, let G(Ci ) be the subgraph induced by the nodes belonging

to coalition Ci . Given a partition C, the utility or payoff µu (C) of
agent u is equal to the number of neighbors in her own coalition

divided by the total number of agents in the coalition, that is

µu (C) =
δC(u)(u)

|C(u)|
.

The (utilitarian) social welfare of a strategy profile C =

{C1, . . . ,Cn } is given by the sum of agents’ utilities. Analogously,

the social welfare of a coalitionCi is given by the sum of the utilities

of all agents belonging to Ci . If, for any coalition C , we define E(C)
to be the set of edges whose nodes are both in coalition C , then we

obtain, for every i ∈ [n],

SW (Ci ) =
∑
u ∈Ci

µu (C) =
2E(Ci )

|Ci |

and

SW (C) =
∑
u ∈N

µu (C) =
n∑
i=1

SW (Ci ).

A coalition structure C is q-core stable (q-CS), 1 ≤ q ≤ n, if there
exists no subsetT ⊆ N of size at most q such that every agentu ∈ T
strictly prefersT to her coalitionC(u), that is, ∀T ⊆ N , ∃u ∈ T such

that

δC (u)(u)
|C(u) | ≥

δT (u)
|T | . When q = n, then a n-CS coalition is said to

be core stable (CS) and it is said to be in the core. Intuitively, for any
q > 1, a coalition structure that is q-CS, is also (q − 1)-CS.

A coalition structure C is local core stable (LCS) if there exists
no subset T ⊆ N such that (1) the subgraph G(T ) of G induced by

T is a clique, and (2) µu (C) <
|T |−1

|T | ∀u ∈ T .
Considering local core stability, given a coalition structure C, a

strategy i ∈ [n] is a local core improving deviation in C for agents

belonging to set T = u1, . . . ,uk (with k ≥ 2) if G(T ) is a clique and
agents in T can improve their utilities by forming together a new

coalition Ci . Notice that in an LCS coalition structure there exists

no set of agents possessing a local core improving deviation. A local
core dynamics is a sequence of coalition structures such that for any

two consecutive coalition structures C and C′, C′ is obtained by

performing an improving local core deviation in C. A game has the

finite improvement path property under the local core stability if it

does not admit a local core dynamics of infinite length. Notice that

such a game converges to an LCS coalition structure and therefore,

clearly, it always admits an LCS coalition structure.

Given a game G(G), let C∗(G(G)) be the solution maximizing the

utilitarian social welfare, and let q-CS(G(G)) and LCS(G(G)) be the
set of coalition structures that are q-core stable and local core stable,

respectively. The q-core price of anarchy (resp. local core price of anar-
chy) of a simple symmetric fractional hedonic game G(G) is defined

as the ratio between the social welfare of the optimal outcome C∗

and that of the worst q-core stable (resp. local core stable) outcome.

Formally, q −CPoA(G(G)) =maxC∈q-CS(G(G))
SW (C∗(G(G)))

SW (C) (resp.

LCPoA(G(G)) =maxC∈LCS(G(G))
SW (C∗(G(G)))

SW (C) ). Analogously, the

q-core price of stability (resp. local core price of stability) is the

ratio between the social welfare of the optimal outcome C∗ and

that of the best q-core stable (resp. local core stable) outcome.

Formally, q-CPoS(G(G)) = minC∈q-CS(G(G))
SW (C∗(G(G)))

SW (C) (resp.

LCPoS(G(G)) = minC∈LCS(G(G))
SW (C∗(G(G)))

SW (C) ). Clearly, for any

game G(G) it holds that 1 ≤q-CPoS(G(G)) ≤ q-CPoA(G(G)) (resp.
1 ≤ LCPoS(G(G)) ≤ LCPoA(G(G))).

3 EXISTENCE OF AND CONVERGENCE TO
LOCAL CORE STABLE COALITIONS

It is known that an instance of SS-FGH may admit no core stable

coalition structure [7]. Here we show instead that a local core stable

coalition structure always exists and also that it is guaranteed that

any local core dynamics converges.

Theorem 3.1. Any instance of SS-FHG has the finite improvement
path property.

Proof. Consider any dynamics D starting from any coalition

structure C0
. We show that D = ⟨C0,C1 . . .⟩ has finite length, i.e.

that an LCS coalition structure is eventually reached. For any i ≥ 1,

let T i be the set of agents (forming a clique in G) that performs

a local core improving deviation leading from coalition structure

Ci−1
to Ci , and let N i =

⋃i
j=1

T i be the set of all agents involved

in some of the first i improvement moves of D. Notice that all

agents in T i will belong to a coalition isomorphic to a clique in

any coalition structure C j with j ≥ i . For any i ≥ 0 and any agent

u ∈ N , let

ηiu =

{
0 if u < N i

µu (C
i ) otherwise.

Moreover, for any i ≥ 0, let ®x i be the vector obtained by listing

ηiu (for all u ∈ N ) in non-increasing order. As usual, given two

n-dimensional vectors ®y and ®y′, we say that the first one is smaller

than the second one for the lexicographical order (and we write

®y ≺ ®y′) if yi < y′i for the first component i for which yi and y′i
differ.

It holds, for any i ≥ 0, that ®x i−1 ≺ ®x i , i.e., vectors ®x i always
lexicographically increase after each improving deviation. In order

to prove this property, we have to consider all agents u ∈ N such

that ηiu , ηi−1

u . In fact, consider for any i ≥ 1 any agent u ∈ T i :
clearly, ηiu > ηi−1

u because either u < N i−1
, and in this case it

trivially holds that ηiu = µu (C
i ) > 0 = ηi−1

u , or u ∈ N i−1
and also

in this case it holds ηiu = µu (C
i ) > µu (C

i−1) = ηi−1

u given that

every agent in T i improves her utility. It remains to deal with any

u ∈ N \ T i such that ηiu , ηi−1

u : first of all, notice that u ∈ N i−1
,

because otherwise ηiu = ηi−1

u = 0; furthermore, it is easy to see

that u is lowering her utility, i.e., µu (C
i ) < µu (C

i−1), because u
has to belong, in Ci−1

, to a clique having at least a node in T i , say
u ′ ∈ T i . Even if ηiu = µu (C

i ) < µu (C
i−1) = ηi−1

u , it still holds that

®x i−1 ≺ ®x i because there exists node u ′ such that ηiu′ > ηi−1

u′ = η
i−1

u .

Session 2E: Game Theory 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

576



Since the set of possible vectors is finite, the claim directly fol-

lows. �

4 LOCAL CORE PRICE OF ANARCHY
In order to prove the bounds on the local core price of anarchy, we

first show in Proposition 4.1 an interesting relation between local

core stability and 2-core stability: LCS ⊆ 2-CS, that is a local core

stable coalition is always 2-core stable.

Proposition 4.1. Given an instance of SS-FHG, a local core stable
coalition is always 2-core stable.

Given Proposition 4.1, an upper bound to the 2-core price of

anarchy is also an upper bound to the local core price of anarchy.

The following theorem shows that the 2-core price of anarchy of

any SS-FHG is at most 4.

Theorem 4.2. Given any graph G, 2 −CPoA(G(G)) ≤ 4.

Proof. Let G(G) be the instance of SS-FHG induced by graph

G, and let C be a 2-CS coalition structure of the nodes in G. We

partition the nodes in two setsA,B such thatA = {u ∈ N | µu (C) ≥
1

2
} and B = N \A. Let C∗ = {C∗

1
, . . .C∗

|C∗ |
, ∅, . . . , ∅} be the coalition

structure maximizing the social welfare. Intuitively, there can be

no edge {u,v} whose endpoints are both in B, otherwise u and v
could join together to form a coalition and earn

1

2
each, violating

the 2-core stability. Thus, if Ai = C
∗
i ∩ A and Bi = C

∗
i ∩ B denote

the agents of coalition C∗i that are in A and B, respectively, we can
upper bound the sum of the utilities of agents in C∗i as follows:∑

u ∈C∗i

µu (C
∗) =

2E(C∗i )

|C∗i |
≤

≤
2

( |Ai |
2

)
+ 2|Ai | |Bi |

Ai + Bi
= (1)

=
|Ai | (|Ai | − 1 + 2|Bi |)

Ai + Bi
≤ 2|Ai |

Inequality 1 holds because the only edges in G are the ones

between either nodes both in Ai , or a node in Ai and a node in Bi .
By summing all the agents’ utilities in C∗, we get SW (C∗) ≤ 2|A|.

On the other hand, since µu (C) ≥
1

2
∀u ∈ A, then SW (C) ≥ |A |

2
.

Hence, 2-CPoA ≤ 4. �

Next corollary directly follows from Proposition 4.1 and Theorem

4.2.

Corollary 4.3. Given any graph G, LCPoA(G(G)) ≤ 4.

In the following proposition we provide a class of instances

showing that the 2-core price of anarchy and local price of anarchy

cannot be less then 4, thus providing a matching lower bound to

the 2-CS and local core price of anarchy.

Proposition 4.4. For any ϵ > 0, there exists a graph G such that
2 −CPoA(G(G)) ≥ 4 − ϵ and LCPoA(G(G)) ≥ 4 − ϵ .

Proof. Consider the game G(G) induced by the graph G de-

picted in Figure 1. There is a cycle C4 = [4] of 4 nodes, and each

node i ∈ C4 is connected with k additional nodes 4 + k(i − 1) + j,
with j = 1, . . . ,k . Thus, the total number of edges in G is 4(k + 1).

C4

5 4 + k

1

3

4 2

5 + k

4 + 2k

5 + 2k4 + 3k

5 + 3k

4 + 4k

Figure 1: The graph inducing a gamewith 2−CPoA and LCPoA
tending to 4 as k tends to∞.

On the one hand, there exists a solution
¯C that puts each agent in

the cycle and her leaves together, that is,
¯C = {C̄1, . . . , C̄4, ∅, . . . , ∅}

where, for any i = 1, . . . , 4, C̄i = {i, 4+k(i−1)+1, . . . , 4+k(i−1)+k}.

Therefore, the optimal social welfare is SW (C∗) ≥ SW ( ¯C) = 8k
k+1

.

On the other hand, consider coalition structure C =

{{1, 2}, {3, 4}, {5}, {6}, . . . , {4 + 4k}, ∅, ∅} that puts pair of neigh-
boring agents of C4 together and leaves all the remaining ones

alone. C is both 2 −CS and LCS , because the maximum clique inG
is of size 2 and none of the agents in the cycle can strictly improve

her utility by deviating together with only one neighbor. The social

welfare of C is SW (C) = 2, thus the ratio between SW (C∗) and
SW (C) is at least 4 − ϵ for k sufficiently large. �

5 LOCAL CORE PRICE OF STABILITY
By turning our attention to the local core price of stability, we first

wonder whether a coalition structure maximizing the utilitarian

social welfare is always local core stable. We answer negatively to

this question by providing an instance for which the unique local

core stable coalition structure is not optimal. More specifically, in

the following theorem we show that the local core price of stability

is at least 2.

Theorem 5.1. For any ϵ > 0, there exists a graph G such that
LCPoS(G(G)) ≥ 2 − ϵ .

Proof. Consider the game G(G) induced by the graph G de-

picted in Figure 2. The graph is similar to the one used in the proof

of Proposition 4.4, but instead of a cycle here we have a cliqueKx of

x = k+2 nodes 1, . . . ,x = k + 2, and each node i ∈ Kx is connected

to k ≥ 1 leaf nodes x + k(i − 1) + j, with j = 1, . . . ,k . k ≥ 4 is an

even number that will be determined later. The total number of

edges is x
(
x−1

2
+ k

)
=
(k+2)(3k+1)

2
.

We first show that the only local core stable coalition structure

contains coalition C1 = [x], i.e., in any LCS coalition structure C,

C1 ∈ C and all agents corresponding to leaf nodes have utility 0;

notice that SW (C) = x − 1 = k + 1. To this aim, we need to prove a

useful property.
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x

x + 1 x + k

x + k + 1

x + 2k

x + (i − 1)k + 1x + ik

x + (x − 1)k + 1

x(k + 1)

1

i

Kx 2

Figure 2: The graph, with x = k + 2, inducing a game with
LCPoS tending to 2 as k tends to∞.

Property 5.1. In any LCS coalition structure C, for any node
u = 1, . . . ,x it holds that µu (C) ≥ k

k+2
.

In order to prove Property 5.1, consider any node u = 1, . . . ,x
and let Bu be the set containing all and only the leaf nodes v con-

nected in G to u and such that C(v) = C(u); similarly, let B̄u be the

set containing all and only the leaf nodesv connected inG to u and

such that C(v) , C(u); moreover, let βu = |Bu | and k − βu = |B̄u |.

If µu (C) ≥
k

k+2
, the property holds and we are done. Otherwise, by

way of contradiction, assume that µu (C) <
k

k+2
.

If βu ≥
k
2
, notice first of all that, since µu (C) <

k
k+2

, other agents

(not connected to u) have to belong to coalition C(u), i.e., |C(u)| >
βu + 1. All nodes inT = {u} ∪Bu strictly prefer coalitionT to their

current one: a contradiction. In fact,
δT (u)
|T | =

βu
βu+1

≥
k
2

k
2
+1

= k
k+2
>

µu (C) and, for any v ∈ Bu ,
δT (v)
|T | =

1

βu+1
> 1

|C(u) | = µv (C).

If βu <
k
2
, all nodes in T = {u} ∪ B̄u strictly prefer coalition T

to their current one: a contradiction. In fact,
δT (u)
|T | =

k−βu
k−βu+1

≥

k
2

k
2
+1

= k
k+2
> µu (C) and, for any v ∈ B̄u ,

δT (v)
|T | =

1

k−βu+1
> 0 =

µv (C). This concludes the proof of Property 5.1.

Let us assume, by way of contradiction, that coalition {1, . . . ,x}
does not belong to C. For any u ∈ [x], let Au = C(u) ∩ [x] and
αu = |Au |. Moreover, for any u ∈ [x], let Bu be the set containing

all and only the leaf nodes v connected in G to u and such that

C(v) = C(u); moreover, let βu = |Bu |. The proof is now divided

into three disjoint cases:

• If, for all u ∈ [x], αu = 1, then, for all u ∈ [x], µu (C) =
βu

βu+1
≤ k

k−1
, because βu ≤ k . Therefore, all nodes inT = [x]

strictly prefer coalitionT to their current one: a contradiction.

In fact, for any u ∈ T , µu (C) ≤
k

k+1
< k+1

k+2
=

δT (u)
|T | .

• If there exists i ∈ [x] such that αi ≥ 2 and, for all u ∈
C(i) ∩ [x], βu ≥ 1, then let v ∈ C(i) ∩ [x] be an agent for

which βv = minu ∈C(i) βu . Notice that αv = αi ≥ 2 because

C(v) = C(i).

It holds that µv (C) =
αv−1+βv
|C(v) | ≤

αv−1+βv
αv+αv βv

≤ 1

2
, where

the last inequality holds because αv ≥ 2 and βv ≥ 1: a

contradiction to the fact that, by Property 5.1, it holds that

µv (C) ≥
k

k+2
≥ 2

3
(the last inequality holds because k ≥ 4).

• Otherwise, i.e., if there exist i ∈ [x] such that αi ≥ 2 and

u ∈ C(i) ∩ [x] such that βu = 0 (notice that also in this case

αu = αi ≥ 2), we have to distinguish among two disjoint

subcases:

– If there exists i ∈ [x] with αi ≥ 2 such that (i) there exists

u ∈ C(i)∩[x]with βu = 0 and (ii) there existsv ∈ C(i)∩[x]
with βv ≥ 1, then all nodes in T = {u} ∪ B̄u strictly

prefer coalition T to their current one: a contradiction.

In fact, µu (C) =
αu−1

|C(i) | ≤
αu−1

αu+1
< k

k+1
=

δT (u)
|T | (the last

inequality holds because αu ≤ k + 2 < 2k) and, for any

j ∈ B̄u , µ j (C) = 0 < 1

k+1
=

δT (j)
|T | .

– If, for all i ∈ [x] with αi ≥ 2, all u ∈ C(i) ∩ [x] are such
that βu = 0, first of all notice that αu ≤ x − 1 = k + 1

because we are assuming that coalition {1, . . . ,x} does not
belong to C. We obtain that all nodes in T = [x] strictly
prefer coalition T to their current one: a contradiction. In

fact, for all u ∈ [x] with αu ≥ 2, it holds that µu (C) =
αu−1

αu ≤ k
k+1
< k+1

k+2
=

δT (u)
|T | . Finally, for all j ∈ [x] with

α j = 1, it holds that µ j (C) ≤
k

k+1
, because agent j can be

connected in C only to agents corresponding to the leaf

nodes adjacent to her in graph G. Thus, µ j (C) ≤
k

k+1
<

k+1

k+2
=

δT (j)
|T | .

Consider now coalition structure
¯C in which each agent u ∈ [x]

in the clique Kx is grouped together with the k leaf nodes adjacent

to u in graph G, that is ¯C = {C̄1, . . . , C̄x , ∅, . . . , ∅} where, for any
i ∈ [x], C̄i = {i,x+k(i−1)+1, . . . ,x+k(i−1)+k}. Hence, the social
welfare of an optimal coalition structure is SW (C∗) ≥ SW ( ¯C) =
2kx
k+1
=

2k (k+2)

k+1
.

Therefore, the ratio between SW (C∗) and SW (C) is at least

2k (k+2)

(k+1)2
≥ 2 − ϵ for a sufficiently large value of k . �

We already know from Theorem 4.2 that LCPoS(G(G)) ≤
LCPoA(G(G)) ≤ 4. We improve this upper bound to

8

3
in Theorem

5.4. In order to prove it, we first introduce the following definition

and Lemma 5.3.

Definition 5.2. Given a graphG, a {K≤3, P3}-coalition structure

is a coalition structure C = (C1, . . . ,Cn ) in which, for i ∈ [n], every
non-empty Ci is such that G(Ci ) is isomorphic either to a clique

of at most 3 nodes (i.e., to a single node K1, a matching K2 or a

triangle K3) or to a path of 3 nodes P3.

The following lemma shows that it is possible to convert any

coalition structure C in a {K≤3, P3}-coalition structure C′ without

losing too much with respect to the social welfare.

Lemma 5.3. Given any graph G and any coalition structure C for
game G(G), there exists a {K≤3, P3}-coalition structure C′ such that
SW (C) ≤ 3

2
SW (C′).

Proof (Sketch). Let C = (C1, . . . ,Cn ). For each coalition Ci ∈
C, consider the induced subgraph G(Ci ). Let C

′
i be a {K≤3, P3}-

coalition structure for game G(G(Ci )) with the highest possible
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A B D F

A
a2

2
for a ≥ 6

a(a − 1) for a ≤ 4

2

3
ab for a ≥ 6

ab for a ≤ 4

2

3
ad 0

B
2

3
ab for a ≥ 6

ab for a ≤ 4

b(b − 1) 7

9
bd 0

D 2

3
ad 7

9
bd 5

9
d2 df

3

F 0 0
df
3

0

Table 1: Recap of themaximumnumber of edges that inCi =
Ai ∪ Bi ∪ Di ∪ Fi all agents in the row set can have towards
all agents belonging to the column sets.

social welfare. Without loss of generality, assume that, among the

{K≤3, P3}-coalition structures with the highest social welfare, C′i is

the one that maximizes the number of coalitions isomorphic to K2.

Given any coalition Ci ∈ C and the corresponding coalition

structure C′i , we can partition the agents into four groups Ai , Bi ,
Di and Fi , as follows:

• Ai is the set of agents that make part of a coalition isomor-

phic to a matching K2 in C′i ,

• Bi is the set of agents thatmake part of a coalition isomorphic

to a triangle K3 in C′i ,

• Di is the set of agents that make part of a coalition isomor-

phic to a path P3 in C′i , and

• Fi is the set of agents that are isolated in C′i , that is they are

in a coalition isomorphic to K1.

In the following we will fix a coalitionCi ∈ C, and we will drop the
subscript i in order to improve the readability of the proof; more-

over, let a,b,d and f , be equal to |A|, |B |, |D | and |F |, respectively.

Thus, there are
a
2
matching coalitions,

b
3
triangle coalitions, and

d
3

path coalitions. Since each matching, triangle, and path coalition

contributes 1, 2, and
4

3
to the social welfare respectively, the social

welfare is SW (C′i ) =
a
2
+ 2b

3
+ 4d

9
.

We aim at estimating the maximum possible degree that nodes

in A, B, D and F can have towards the various possible coalitions

in C′i . In particular, let δYu be the number of edges in Ci that can

connect node u to all nodes in set Y , and let δYX =
∑
u ∈X δYu be

the total degree of all nodes in X with respect to edges connecting

them to other nodes belonging to set Y . Notice that δYX = δXY

and that |E(Ci )| =
∑
X ,Y ∈{Ai ,Bi ,Di ,Fi } δ

Y
X

2
. The upper bounds to δYX ,

with X ,Y ∈ {A,B,C, F }, are summarized in Table 1. Due to space

constraints, the proofs of these upper bounds have been omitted.

Since the social welfare of a coalition is equal to the sum of the

agents’ degrees in that coalition divided by the number of agents,

we are able to bound from above SW (Ci ) =
∑
X ,Y ∈{Ai ,Bi ,Di ,Fi } δ

Y
X

|Ci |
.

Thus, when a ≥ 6, the ratio

SW (Ci )

SW (C′i )
between the social welfare

of coalition Ci and the social welfare of the coalition structure C′i
is at most:

α1 =

a
(
a
2
+ 2b

3
+ 2d

3

)
+ b

(
2a
3
+ b − 1 + 7d

9

)
+ d

(
2a
3
+ 7b

9
+ 5d

9
+

2f
3

)
a + b + d + f
a
2
+ 2b

3
+ 4d

9

Moreover, when a ≤ 4, the ratio

SW (Ci )

SW (C′i )
between the social wel-

fare of coalition Ci and the social welfare of the coalition structure

C′i is at most:

α2 =

a
(
a − 1 + b + 2d

3

)
+ b

(
a + b − 1 + 7d

9

)
+ d

(
2a
3
+ 7b

9
+ 5d

9
+

2f
3

)
a + b + d + f
a
2
+ 2b

3
+ 4d

9

We first notice that α1 ≤
3

2
: in fact, by standard calculation, we

obtain that it is equivalent to

a2 +
2d2

9

+
5ab

6

+
ad

6

+
2bd

9

+ 2b +
3af

2

+ 2b f ≥ 0.

Similarly, it also holds that α2 ≤
3

2
: in fact, by standard calcula-

tion, we obtain that it is equivalent to

a
(
2 −

a

2

)
+

2d2

9

+ b
(
2 −

a

2

)
+
ad

6

+
2bd

9

+
3af

2

+ 2b f ≥ 0.

Since

(
2 − a

2

)
is greater or equal than 0 for a ≤ 4, the last in-

equality always holds.

Hence, it holds that

SW (Ci )

SW (C′i )
≤ 3

2
.

Let C′ be the {K≤3, P3}-coalition structure obtained by putting

together all {K≤3, P3}-coalition structures C′i , for all i ∈ [n].

We have shown that, for every i ∈ [n], SW (Ci ) ≤
3

2
SW (C′i ). By

summing over all the coalitions in C, we get SW (C) ≤ 3

2
SW (C′).

�

We are now ready to prove the
8

3
upper bound to the local core

price of stability.

Theorem 5.4. Given any graph G, LCPoS(G(G)) ≤ 8

3
.

Proof. Let C∗ an optimal coalition structure for G(G). In order

to prove the bound, we provide an algorithm that returns a local core

stable coalition structure whose social welfare is at least
3

8
SW (C∗).

First of all, by Lemma 5.3 (applied to coalition structure C∗) we

know that there exists a {K≤3, P3}-coalition structure C′ such that

SW (C′) ≥ 2

3
SW (C∗).

Starting from coalition structure C′, let us apply Algorithm 1

described below.

It is worth noticing that lines 2–4 and 10–33 of Algorithm 1 are

not needed for the computation of the coalition structure returned,

but they will be useful for proving the efficiency of the algorithm

in terms of the social welfare. To this respect, in the remaining of

this proof we will refer to variables ai , bi , dj , ai, j and bi, j (for any
i ≥ 1 and j ∈ [n]) assuming that their value is the one they have at

the end of the algorithm.

By Theorem 3.1, since SS-FHG has the finite improvement path

property, it is guaranteed that Algorithm 1 terminates returning a

local core stable coalition structure C′′.
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Algorithm 1 It takes as input a {K≤3, P3}-coalition structure C′

and returns a local core stable coalition structure.

1: C0 ← C′

2: for each j ∈ [n] do
3: dj ← SW (C ′j )

4: end for
5: i ← 0

6: while Ci is not local core stable do
7: i ← i + 1 ◃ Beginning of step i
8: Let Ti ⊆ N be a set of agents of maximum size with a local

core improving deviation

9: Ci is obtained from Ci−1
by a local core improving devia-

tion ji of agents in Ti , i.e, C
i
ji
= Ti .

10: ai ← 0

11: bi ← 0

12: for each j ∈ [n] do
13: ai, j ← 0

14: bi, j ← 0

15: end for
16: if |Ti | ≥ 3 then
17: for each j ∈ [n] : Ci−1

j ∩Ti , ∅ do
18: if ji = j then
19: dj ← 0

20: else
21: dj ← SW (Cij )

22: end if
23: ai, j ← SW (Ci−1

j ) − dj
24: ai ← ai + ai, j

25: bi, j ←
∑
u ∈Ti∩C i−1

j
µu (C

i ) = |Ti ∩C
i−1

j |
|Ti |−1

|Ti |
26: bi ← bi + bi, j
27: end for
28: else ◃ In this case |Ti | = 2

29: for each j ∈ [n] : Ci−1

j ∩Ti , ∅ do
30: dj ← SW (Cij )

31: end for
32: dji ← SW (Ciji )

33: end if
34: end while
35: return Ci

It remains to prove that SW (C′′) ≥ 9

16
SW (C′). In fact, it di-

rectly implies the claim, given that SW (C′′) ≥ 9

16
SW (C′) ≥

9

16
· 2

3
SW (C∗) = 3

8
SW (C∗).

Let us call crowded deviation a local core improving deviation

involving at least 3 agents.

In the following we prove some properties that will be useful for

proving the claim.

Property 5.2. If an agent u performs a crowded deviation at step
i , then she cannot deviate anymore.

Weprove this property by induction on the steps of the algorithm,

assuming that in step 0 no agent moves. Namely, we prove that all

agents moving at step i by a crowded deviation will never move at

any step i ′ > i .
The base of the induction for i = 0 is trivially verified.

For the induction step, the induction hypothesis is that for each

step k < i it holds that all agents moving at step k through a

crowded deviation never move at any step k ′ > k . We have to

prove the induction claim for step i .
Assume, by way of contradiction, thatu is among the first agents

that deviate also at step i ′ > i; it follows that |Ti′ | > |Ti | because in
each deviation (i) u is among the first agents ofTi to move at a step

i ′ > i and (ii) u must join a clique strictly larger than the previous

one (otherwise her utility would not increase): hence, |Ti′ | ≥ 4.

Given that for all agents v ∈ [n] it holds that (i) µv (C
′) ≤ 2

3
, (ii)

agents have utility at most
1

2
after a non-crowded deviation, and

(iii) by the induction hypothesis, no agent involved in a crowded

deviation at any step k < i can belong to Ti′ , it follows that the
deviation of agents in |Ti′ | was a local core improving deviation also

before step i of algorithm, because in a clique of at least 4 agents

each of them has utility at least
|Ti′ |−1

|Ti′ |
≥ 3

4
: a contradiction to the

fact that the algorithm considers at each iteration i the set Ti of
maximum size with a local core improving deviation.

This concludes the proof of Property 5.2.

Property 5.3. SW (C′′) =
∑
i≥1

bi +
∑
j ∈[n] dj .

Let A =
⋃
i : |Ti | ≥3

Ti be the set of agents performing a crowded

deviation at any step i of Algorithm 1. Since (i) bi is defined in

Algorithm 1 as the sum of the utilities of the moving agents and

(ii) by Property 5.2 these agents do not move again after step i , we
have that

∑
u ∈A µu (C

′′) =
∑
i≥1

bi .
Furthermore, for any j ∈ [n], dj is initialized to SW (C ′j ) and

its value, at every step i in which the composition of coalition

Cij changes and no agent in Cij has never performed a crowded

deviation at any step i ′ ≤ i , is updated to SW (Cij ) =
∑
u ∈C i

j
µu (C

i )

(at lines 21, 30 and 32 of Algorithm 1). Conversely, for any j ∈ [n],
dj is set to zero at a step i in which agentsTi , performing a crowded

deviation, select strategy j (at line 19 of Algorithm 1). Therefore, it

holds that

∑
u<A µu (C

′′) =
∑
j ∈[n] dj .

Hence, SW (C′′) =
∑
u ∈A µu (C

′′) +
∑
u<A µu (C

′′) =
∑
i≥1

bi +∑
j ∈[n] dj and this concludes the proof of Property 5.3.

Property 5.4. SW (C′) ≤
∑
j ∈[n] dj +

∑
i≥1

ai .

Notice that for any j ∈ [n], dj is initialized to SW (C ′j ). Moreover,

at each step i in which variables dj are lowered, of an amount equal

to x , from SW (Ci−1

j ) to either 0 or to SW (Cij ) (at steps 19 and 21 of

Algorithm 1 and with x = SW (Ci−1

j ) and x = SW (Ci−1

j ) − SW (C
i
j ),

respectively), ai is increased (at lines 23 and 24) exactly of x .
Hence, in order to prove the property it is sufficient to show that

lines 30 and 32 never decrease the value of the sum of all involved

dj variables.
To this aim, let u and v be a pair of agents that performs a non-

crowded deviation to a matching coalition. In order to perform

such a deviation, it must be that the utilities of u and v before the

deviation are both strictly less than
1

2
. For this to happen, they must

be either leaves of a path coalition, or isolated nodes. Let us analyze

the possible deviations at any step i such that |Ti | = 2:

• If u and v were both isolated nodes, then the sum of the in-

volveddj would increase from 0 to 1, because a newmatching

coalition {u,v} is obtained;
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• If u was an isolated node and v was a leaf of a path coalition

{v,x ,y} (or vice versa), then the sum of the involved dj
would increase from

4

3
to 2, because two new matching

coalitions {u,v} and {x ,y} are obtained;
• If u and v were both leaves of two path coalitions {x ,y,u}
and {v,w, z}, then the sum of the involved dj would increase

from 2 · 4

3
= 8

3
to 3, because three new matching coalitions

{x ,y}, {u,v} and {w, z} are obtained.

This concludes the proof of Property 5.4.

Property 5.5. For any step i ≥ 1, it holds that bi ≥ 9

16
ai .

First of all, notice that, for any i ≥ 1, ai =
∑
j ∈[n] ai, j and

bi =
∑
j ∈[n] bi, j . In order to prove the property, in the following

we show that, for any i ≥ 1 and any j ∈ [n], it holds that

bi, j ≥
9

16

ai, j . (2)

In fact, fixed any i ≥ 1, by summing over all j the property directly

follows.

Given any i ≥ 1 and j ∈ [n], consider ai, j and bi, j that are
assigned a value at lines 23 and 25 of Algorithm 1, respectively.

Roughly speaking, ai, j is the amount of social welfare that agents

in Ci−1

j , that have performed no crowded deviation at any step

i ′ < i , are losing at step i (notice that among these agents there are

also, but not solely, all agents of |Ti |), while bi, j is the amount of

social welfare that agents in |Ti | will maintain till the end of the

algorithm, because, by Property 5.2, any agent u ∈ [n] can perform

at most one crowded deviation. Consider now setX = Ci−1

j ∩Ti . We

distinguish among the following disjoint cases, in which ai, j > 0

(notice that if ai, j = 0 inequality (2) trivially holds):

• If Ci−1

j is a matching coalition (i.e., SW (Ci−1

j ) = 1), each

node u ∈ X is such that µu (C
i ) ≥ 2

3
, because agent u can

improve her utility only joining a coalition of size at least

3: it follows that bi, j ≥
2

3
|X |. Since ai, j = 1, we obtain

bi, j ≥
2

3
|X | ≥ 2

3
≥ 9

16
= 9

16
ai, j .

• If Ci−1

j is a triangle coalition (i.e., SW (Ci−1

j ) = 2), each node

u ∈ X is such that µu (C
i ) ≥ 3

4
, because agent u can improve

her utility only joining a coalition of size at least 4: it follows

that bi, j ≥
3

4
|X |.

If |X | = 1, since a matching remains in Cij , we have ai, j =

2 − 1 = 1, and therefore we obtain bi, j ≥
3

4
≥ 9

16
= 9

16
ai, j .

If |X | = 2 or |X | = 3, we have ai, j = 2, and therefore we

obtain bi, j ≥
3

4
|X | ≥ 3

2
≥ 9

8
= 9

16
ai, j .

• If Ci−1

j is a path coalition {u,v,w} (i.e., SW (Ci−1

j ) =
4

3
), if

nodesu and/orw are inX , then µu (C
i ) ≥ 1

2
and/or µw (C

i ) ≥
1

2
, while if node v is is X , then µv (C

i ) ≥ 3

4
because agent

v can improve her utility only joining a coalition of size at

least 4.

If X = {u} or X = {w}, it holds bi, j ≥
1

2
and, since a

matching remains inCij , we have ai, j =
4

3
−1 = 1

3
. Therefore

we obtain bi, j ≥
1

2
≥ 3

16
= 9

16
ai, j .

If X ∋ v , it holds bi, j ≥
3

4
and we have ai, j =

4

3
. Therefore

we obtain bi, j ≥
3

4
= 9

16
ai, j .

Notice that u andw cannot belong both to X because Ci−1

j
is a path coalition and there is no edge between u andw .

This concludes the proof of Property 5.5.

Therefore, it holds that

SW (C′′) =
∑
i≥1

bi +
∑
j ∈[n]

dj (3)

≥
9

16

∑
i≥1

ai +
∑
j ∈[n]

dj (4)

≥
9

16

©«
∑
i≥1

ai +
∑
j ∈[n]

dj
ª®¬

≥
9

16

SW (C′), (5)

where equality (3) holds by Property 5.3, inequality (4) holds by

Property 5.5 and inequality (5) holds by Property 5.4. �

6 CONCLUSIONS AND FUTUREWORKS
We addressed the existence of core stable outcomes in SS-FHG.More

specifically, we introduced a relaxation of core stability, called local

core stability, which takes into account social connection aspects

among agents.We showed that a local core stable coalition structure

always exists for SS-FHG. Up to our knowledge, before this work,

no type of coalition resilient outcomes had been proven to exist in

SS-FHG. Moreover, we proved that the local core price of anarchy

is at most 4 and that this bound is tight, while the local core price

of stability is between 2 and 8/3.

There are some open problems suggested by our work. First, it

would be nice to close the gap between the lower and upper bound

of the local core price of stability. Next, it could be interesting to

study whether any optimal coalition structure is also 2-core stable.

In fact, while our lower bound instance in Theorem 5.1 shows that

an optimal coalition structure may not be resilient to cliques of at

least three nodes, we were not able to prove if this holds also for

deviations performed by coalitions which are matchings. It would

also be interesting to address the complexity of computing a local

core in SS-FHG.

Furthermore, it is worth considering complexity issues that

have not been addressed in this work; for instance, even check-

ing whether a coalition structure is in the local core or not is an

open problem.

Another interesting research direction could be that of consid-

ering the x-local core. More specifically, a coalition structure is in

the x-local core if there is no subset of agents which induces a sub-

graph of G of diameter at most x that can all improve their utility

by forming a new coalition together. We notice that in our paper we

considered 1-local core. A further research direction could be that

of considering x-local core stability to fractional hedonic games in

which the input is a weighted undirected graph. In fact, already in

a slight modification of SS-FHG admitting edges with weight either

1 or −1, it is not clear whether or not 1-local core outcomes are

guaranteed to exist. More generally, it is worth studying the notion

of local core stability in general hedonic games.
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