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ABSTRACT

Covert networks are social networks that often consist of harmful
users. Social Network Analysis (SNA) has played an important role
in reducing criminal activities (e.g., counter terrorism) via detecting
the influential users in such networks. There are various popular
measures to quantify how influential or central any vertex is in a
network. As expected, strategic and influential miscreants in covert
networks would try to hide herself and her partners (called leaders)
from being detected via these measures by introducing new edges.

Waniek et al. [72] show that the corresponding computational
problem, called HIDING LEADER, is NP-complete for the degree and
closeness centrality measures. We study the popular core centrality
measure and show that the problem is NP-complete even when
the core centrality of every leader is only 3. On the contrary, we
prove that the problem becomes polynomial time solvable for the
degree centrality measure if the degree of every leader is bounded
above by any constant. We then focus on the optimization version
of the problem and show that the HIDING LEADER problem admits
a 2 factor approximation algorithm for the degree centrality mea-
sure. We complement it by proving that one cannot hope to have
any (2 — ¢) factor approximation algorithm for any constant ¢ > 0
unless there is a /2 factor polynomial time algorithm for the DENs-
EST k-SUBGRAPH problem which would be considered a significant
breakthrough. We empirically establish that our 2 factor approxima-
tion algorithm frequently finds out a near optimal solution. On the
contrary, for the core centrality measure, we show that the Hiping
LEADER problem does not admit any (1 — «) In n factor approxima-
tion algorithm for any constant @ € (0,1) unless P = NP even when
the core centrality of every leader is only 3. Hence, our work shows
that, although classical complexity theoretic framework fails to
shed any light on relative difficulty of HipiNG LEADER for different
centrality measures, the problem is significantly “harder” for the
core centrality measure than the degree centrality one.
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1 INTRODUCTION

Social network analysis (SNA) has played a pivotal role in many
applications in multi-agent systems and artificial intelligence [16,
55, 63, 71]. One of the most successful applications of SNA is in
counter-terrorism via analyzing covert networks [17, 45, 60, 75].
Covert network loosely refers to network of criminals, terrorists,
illegal activities, etc. Security personnel regularly use various SNA
tools to understand criminal behavior, catch their leaders, and ef-
fectively dismantle such networks [27, 30, 40].

Centrality measure is one of the most useful tools that SNA
provides to analyze covert networks. It assigns scores to the vertices
based on their relative influence or importance in the network [8];
depending on the centrality measure, higher scores may correspond
to important vertices and important vertices are expected to be more
central. One of the simplest and oldest such centrality measures
is the degree centrality which ranks vertices according to their
degree [67]. Other important examples include closeness centrality
and betweenness centrality that are measures based on shortest
paths [9]. Another centrality measure is the core centrality [65]
which ranks the vertices based on their core number. Intuitively
speaking, if a vertex has a high core number, then it is part of
some dense cohesive community within the network. Formally, a
k-core is an induced subgraph of the network where the minimum
degree of the vertices is at least k. The core number of a vertex
is the highest integer k such that the vertex is part of some k-
core. Therefore, the core centrality can be more revealing about the
position of a node than its degree centrality—while degree centrality
only concerns about the degree of a vertex, the core centrality
elegantly takes into consideration the degrees of the neighbors
as well as the vertex. These two measures are also related in the
sense that the core centrality of any vertex is at most its degree
centrality. Due to its sophisticated nature, the core centrality has
been extensively used in the study of covert networks [51, 53, 66]
as well as in other important tasks such as viral marketing and
social engagement [12, 39] in social networks.

In this paper, our goal is to study the centrality measure based
secrecy in covert networks. Indeed, understanding covert networks
remains a challenging task mainly due to incompleteness and dy-
namic evolution of the data as well as the strategic nature of the
users [1, 5, 41, 62, 64, 68]. Since the criminals often possess technical
expertise [4, 15, 19, 36, 69], we are interested in the evolution of
terrorist networks under a framework of strategic users [72]: How
is the network designed to hide the central or influential users aka the
leaders?

Waniek et al. [72] first propose the HIDING LEADER problem
which incorporates the viewpoint of the leaders of a criminal orga-
nization. It also explicitly models knowledge of the criminals about
SNA tools that are used to detect them and thus help in disman-
tling their organization. Intuitively, the input in the HIDING LEADER



Session 2F: Agent Societies and Societal Issues 2

problem is a network with a subset of vertices marked as leaders.
The goal is to add fewest edges to ensure that various SNA tools
do not rank any leader high based on centrality measures thereby
capturing the efficiency vs secrecy dilemma that the criminals are be-
lieved to possess [20, 53, 70]. Waniek et al. show promising results
that the HIDING LEADER problem is computationally intractable
even for the simplest degree centrality measure.

1.1 Contribution

In this paper, we study the HIDING LEADER problem for the core
centrality measure and show that the degree centrality measure
is much more computationally vulnerable than the core centrality
measure although the HIDING LEADER problem is NP-complete
for both of them. We reinforce our above claim further through
extensive empirical evaluations. Our specific contribution in this
paper are as follows.

> We show that the HIDING LEADER problem for degree cen-
trality is polynomial time solvable if the degree of every
leader is bounded by some constant [Theorem 3.1].

> We present a 2 factor approximation algorithm for the Hip-
ING LEADER problem for degree centrality which optimizes
the number of edges added [Theorem 3.2]. We complement
this by proving that, if there exists a (2 — ¢) factor approx-
imation algorithm for the above problem for any constant
0 < ¢ < 1, then there exists a ¢/2 factor approximation algo-
rithm for the DENSEST k-SUBGRAPH problem [Theorem 3.3]
which would be considered a substantial breakthrough. To
the best of our knowledge, the state of the art algorithm for
the DENSEST k-SUBGRAPH problem achieves an approxima-
tion ratio of O(n'/*) only [11].

> For the core centrality measure, we show that the HipING
LEADER problem is NP-complete even if the core centrality
of every leader is exactly 3 [Theorem 4.1]. We prove that our
result is almost tight in the sense that the HIDING LEADER
problem is polynomial time solvable if the core centrality
of every leader is at most 1 [Proposition 4.3]. Moreover, we
also prove that there does not exist any (1 — @) Inn factor
approximation algorithm for any constant & € (0,1) which
optimizes the number of edges that one needs to add even
when the core centrality of every leader is 3 [Corollary 4.2].

> We show that a construction of a network by Waniek et
al. [72], called “captain network” there, hides the leaders
with respect to the core centrality measure also.

> We empirically evaluate our 2-approximation algorithm for
the degree centrality measure in synthetic networks. We
observe that our algorithm almost always produces near
optimal results in practice. In the experimental results, we
also show the extent in which a leader can hide in the captain
network with respect to core centrality.

1.2 Related Work

Waniek et al. first proposed and studied the HIDING LEADER prob-
lem [72, 73]. They proved that the problem is NP-complete for
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both the degree and closeness centrality measures. They also pro-
posed a procedure to design a captain (covert) network from scratch
which not only hides the leaders based on the degree, closeness,
and betweenness centrality measures, but also keeps the influence
of the leaders high in the network. In this paper, we provide two
approximability results for degree centrality and core centrality
respectively. We also show the problem is harder in the case of core
centrality. Liu et al. [44] studied another related problem to make
the degree of each node in the network beyond a given constant by
adding minimal edges.

Other problems that align with privacy issues in social networks
were studied before [2, 77]. In [77], the authors showed how an
adversary exploits online social networks to find the private in-
formation about users. Altshuler et al. [2] discussed the threat of
malware targeted at extracting information in a real-world social
network.

Computing centrality and related problems. A significant
amount of related work study the computationally complexity of
various centrality measures. Brandes [13] first proposed an efficient
algorithm to compute the betweenness centrality of a vertex in a net-
work. More recently, Riondato et al. [61] introduced an approach to
compute the top-k vertices according to the betweenness centrality
using VC-dimension theory. Yoshida [76] studied similar problems
for both the betweenness and coverage centrality measures in a
group setting. Mahmoody et al. subsequently improved the perfor-
mance of the above algorithms using a novel sampling scheme [46].
There is an active line of research to optimize the centrality of one
node as well as of a set of nodes [18, 21, 34, 49]. Nikos et al. proposed
a novel procedure to maximize the expected decrease in shortest
path distances from a given node to the remaining nodes via edge
addition [59]. Crescenzi et al. [18] proposed greedy algorithms to
increase centrality of certain vertices and show effectiveness of
their approach through extensive simulation. Kilberg [38] and oth-
ers studied behavioral models to understand why certain network
topologies are common in covert networks [10, 19, 23]. Enders and
Su [29] and others develop models to explain various properties like
efficiency vs secrecy dilemma etc. of covert networks [26, 28, 35, 43].
Other important direction includes quantifying the influence of
vertices; most prominent among them include Independent Cascade
model [33], Linear Threshold model [37], Bass model [7, 47], etc.

Other network design problems. We also provide a few de-
tails about previous work on other network modification (design)
problems. A set of design problems were introduced in [56]. Lin et
al. [42] addressed a shortest path optimization problem via improv-
ing edge weights on undirected graphs. The node version of this
problem was also studied [25, 48, 50]. Meyerson et al. [52] proposed
approximation algorithms for single-source and all-pair shortest
paths minimization. Faster algorithms for some of these problems
were also presented in [57, 58]. Demaine et al. [22] minimized the
diameter of a network by adding shortcut edges. Dey et al. [24]
studied the social network effect in the surprise in elections.

2 PRELIMINARIES

For a positive integer ¢, we denote the set {1,2,...,¢} by [£]. A
network or graph G = (V, &) is a tuple consisting of a finite set V
(or V[G]) of nvertices and aset & € V XV of edges (also denoted
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by E[G]). A network is called undirected if we have (x,y) € &
whenever we have (y,x) € & for any x,y € V withx # y. A
self loop is an edge of the form (x,x) for some x € V. In this
paper, we focus on undirected networks without any self loop. The
degree of a vertex x is the number of edges incident on it which is
|{e € & : x € e}|. A subgraph of a network G = (V, &) is a network
H = (U,F)suchthat Y € Vand F € EN (U xU). For a
positive integer k, a subgraph # of a network G is called a k-core
if the degree of every vertex in H at least k. The core number of a
vertex x in a network is the largest integer k such that x belongs to
a k-core.

2.1 Network Centrality

Let G be any network. Bavelas [8] introduces the notion of central-
ity of vertices. Intuitively, centrality measures try to capture the
importance of a vertex in a network. Shaw [67] proposes the degree
centrality measure which has turned out to be one of the most use-
ful measures. The degree centrality of a vertex x in G is the degree
degg (x) of x in the network, that is |{y € VI[G] : {x,y} € E[G]}I.

Seidman [65] introduces the idea of core centrality which is par-
ticularly useful for finding network cohesion. For an integer k, a
k-core is a subgraph H of G such that the degree of every vertex
in H is at least k. The core number of a vertex x in G is the largest
k such that x belongs to a k-core, that is max{k € N : IH C
G,degq,(x) = kVx € V[H]}. The core centrality of a vertex x
in G is its core number in the network. Other popular network
centrality measures includes closeness centrality [9], betweenness
centrality [3, 31], etc.

2.2 Problem Definition

Intuitively, the input in the HIDING LEADER problem is a network
with a subset of vertices marked as leaders (and the other vertices
are followers), a budget b which is the maximum number of edges
that we can add in the network, and a target d which is the min-
imum number of followers whose centrality must be at least as
high as the centrality of any leader in the resulting network (after
addition of the new edges). We now define our problem formally.
In Definition 2.1, c(+, ) denote either degree centrality or core cen-
trality.

Definition 2.1 (HIpING LEADER (HL)). Given a graph G = (V,E), a
subset £ C V of leader vertices, an integer b denoting the maxi-
mum number of edges that we are allowed to add in G, an integer
d denoting the number of follower vertices in ¥ =V \ L whose
final centrality should be at least as high as any leader, the goal is
to compute if there exists a subset W C F X ¥ of edges between
followers such that the conditions below hold.

@) W <b

(i) g c#1F’| = d such that

c(G.f) =@ .DNfeF'leL
where G’ = (V,E UW).

3 RESULTS FOR DEGREE CENTRALITY

We present our algorithmic and hardness results for the Hiping
LEADER problem for the degree centrality measure in this section.
We begin with presenting our polynomial time algorithm for the
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HIpING LEADER problem for the degree centrality measure when
the degree of every leader in the network is bounded above by any
constant. On a high level, our algorithm makes greedy choices as
long as it can and uses local search technique when “stuck”

THEOREM 3.1. There exists a polynomial time algorithm for the
HIpING LEADER problem for degree centrality if the degree of every
leader is bounded by any constant.

Proor. Let G be the input graph and k the highest degree of
any leader; that is k = max{degg(l) : | € L}. We are given that k
is a constant. If the number of followers is at most 2k, then there
are at most (22k ) (which is a constant) new edges that we can add
and we try all possible subsets of it of cardinality at most b. The

number of such subsets is at most 2() which is a constant and
thus we can output correctly in polynomial time. So let us assume
that the number of followers is at least 2k + 1. Similarly we can also
assume without loss of generality that the budget b is at least 4k®
since otherwise we will try to add all possible b new edges (there
are only On?b) = n9M possibilities since k = O(1)) and thus we
can output correctly in polynomial time.

Suppose there are already d’ number of followers in G whose
degrees are at least k. If d’ > d, we output YEs. Otherwise let us
assume without loss of generality that d’ < k. Let X € F with
|X| = d —d’ be the set of top d — d’ highest degree followers in the
network whose degrees are less than k. Intuitively, our algorithm
greedily adds new edges between two vertices in X whose degrees
are less than k until it is stuck and removes some edge it had
added before to make progress. Concretely, our algorithm works
as follows. To distinguish existing (old) edges from newly added
edges (by the algorithm) in G, we color the existing (old) edges as
red and whenever we add a new edge, we color it green. To begin
with, all the edges in G are colored red and there is no green edge.
We apply the following step (%) as long as we can. If the number of
green edges in G is less than b and there exist two vertices x,y € X
such that the degrees of both the vertices are less than k and there
is no edge between them, then we add an edge {x,y} in G and color
it green. Such a pair of vertices (if exists) can be found in O(n?). If
such a pair of vertices does not exist in G, then one of the following
four cases must hold.

Case 1: The degree of every vertex in X is at least k. In this case,
we output YES.

Case 2: The number of green edges in G is b. In this case, we output
vEs if the degree of every vertex in X is at least k; otherwise we
output NO.

Case 3: There exists exactly one vertex x € X with degree less than
k. If the degree of x is k — 1, then we add an edge between x and
any vertex y € L such that there is no edge between x and y in G
and color it green. If the number of green edges in G is at most b,
then we output YEs; otherwise we output No. Otherwise we assume
that the degree of x is less than k — 1. If the number of green edges
in G is at most 3k?, then we can add k new green edges on x and
answer YES since we have already assumed that b > 4k?. So let us
assume without loss of generality that the number of green edges
in G is more than 3k%. Let {u,v} be a green edge such that there is
no edge between x and u and between x and v in G. Such a green
edge {u,v} always exists in G since the degree of x is less than k — 1
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in G and there are more than 3k? green edges in G. Moreover such
an edge can be found in polynomial time by simply checking all the
green edges. We now remove the green edge {u,v} from G, add two
edges {x,u} and {x,v} in G, color both of them green, and continue
(return to the step (x)).

Case 4: For every pair of vertices x,y € X,x # y with degree less
than k for both the vertices, there is an edge between them.Let Z € X
be the set of vertices in X with degree less than k. Since there exists
an edge between every pair of vertices in Z in this case and the
degree of every vertex in Z is less than k, we have |Z| < k. If the
number of green edges in G is at most 3k?, then we can add k new
green edges on every vertex in Z and answer YES since we have
|Z| < kand b > 4k2. So let us assume that the number of green
edges in G is more than 3k2. Let a,b € X be any two vertices. Let
N (a) and N (b) denote the set of neighbors of a and b in X. Since
the degrees of both a and b are less than k, we have [N (a)| < k
and [N (b)| < k. Since the degree of every vertex in X is at most
k and the number of green edges in G is at least 3k?, there exists
at least one green edge {u,v} in G which does not incident on any
vertex in N (a) UN (b) U{a, b} (there can be at most 2k? green edges
incident on any vertex in this set). Moreover such an edge can be
found in polynomial time by simply checking all the green edges.
We now remove the green edge {u,v} from G, add two edges {a,u}
and {b,v} in G, color both of them green, and continue (return to
the step (x)).

The algorithm always terminates in polynomial time since in
every iteration, it adds a green edge and at most b (< n?) green
edges could be added - in cases 3 and 4, we have added two green
edges and removed only one green edge; the algorithm terminates
in cases 1 and 2. Also, whenever the algorithm outputs YES, adding
green edges to the graph makes the degree of at least d followers in
the network at least k. Hence, if the algorithm outputs YEs, the in-
stance is indeed a YEs instance. So, let us assume that the algorithm
outputs No. Except (in case 3) when there exists exactly one vertex
x in the network with degree less than k and the degree of x is
k — 1, whenever we add one green edge in total (which is the same
as adding two green edges and removing one green edge in cases 3
and 4), the sum of the degrees of all the vertices in X increases by
2. Hence the number of green edges added in the graph is at most
ALG = [} xex (k—deg(x))/2]. Since the algorithm outputs No, we
have ALG > b. We observe that since any edge increases the degree
of at most 2 vertices, when the algorithm outputs No, the instance
is indeed a No instance. Hence the algorithm is correct. O

We now present a simple 2 factor polynomial time approximation
algorithm for the HIDING LEADER problem for degree centrality.

THEOREM 3.2. There exists a polynomial time algorithm (HLDA)
for approximating the budget b in HIDING LEADER within a factor of
2 for degree centrality.

Proor. Let F/ C F be the set of followers in ¥ whose degree
centrality is at least the degree centrality of every vertex in L.
Let |[F'| = d’. If d’ > d, then we output an empty set of edges.
Let x; € F,i € [d — d’] be the (d — d’) followers with highest
degree centrality among the vertices in 7 \ ¥’. We keep on adding
edges with at least one end point in {x; : i € [d — d’]} until the
degree centrality of every x;,i € [d — d’] is at least the degree of
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every vertex in £ in the resulting graph. When we have d followers
with degree at least the degree of every vertex in £, we output
the set of edges that we have added. The algorithm adds at most
Z?;ld, (d — deg(x;)) many edges where where deg(x;) is the degree
of the vertex x; in the input graph. Since any new edge can increase
the sum of the degrees of the followers by at most 2, we have
OPT> Z;-jz_ld/ (d-deg(x;))/2 > ALG/2 by the choice of F’. Hence our
algorithm approximates b by a factor of 2. O

We now complement our approximation algorithm in Theo-
rem 3.2 by proving that if there exists a polynomial time approxima-
tion algorithm for the HIDING LEADER problem for degree centrality
with approximation factor (2 — ¢) for any constant ¢ > 0, then there
exists a constant factor polynomial time approximation algorithm
for the DENSEST k-SUBGRAPH problem. In the DENSEST k-SUBGRAPH
problem, the input is a graph G and an integer k and we need to find
a subgraph H of G on k vertices with highest density. The density
of a graph on n vertices is the number of edges in it divided by ('21)
To the best of our knowledge, we do not know whether there exists
any polynomial time algorithm which can distinguish a graph con-
taining a clique of size k from a graph where the density of every
sub-graph of size k is at most (¢/2) (any ¢/2 factor approximation
algorithm for the DENSEST k-SUBGRAPH problem would be able to
distinguish). In fact, none of the known algorithms can distinguish
even for some sub-constant values for ¢ (see [14] and references
therein). We now show that if there exists a (2 — ¢) factor approxi-
mation algorithm for the HIDING LEADER problem for any constant
0 < ¢ < 1, then there exists an ¢/2 factor approximation algorithm
with the same running time (of the HIDING LEADER algorithm).

THEOREM 3.3. Suppose there exists a (2 — €) factor polynomial
time approximation algorithm for the HIDING LEADER problem for
degree centrality for some constant €. Then there exists a polynomial
time algorithm for distinguishing a graph containing a clique of size
k from a graph where the density of every sub-graph of size k is at
most /2.

PRrooOF. Let G be any graph which satisfies either (exactly) one
of the following properties.

(i) Completeness: There exists a clique of size k in G.

(ii) Soundness: The density of any subgraph of G of size k is
at most ¢/2.

From G we construct an instance of HIDING LEADER. Intuitively,
we introduce a vertex a,, corresponding to every vertex v € V[G]
in G and the edge set among those vertices is the complement of the
corresponding edge set in G. To ensure that, in the resulting graph,
the degree of every vertex a,, for v € V[G] is n, we add appropriate
number of edges between a, and some auxiliary vertices d(,, ¢
for every v € V[G],{ € [n]; we ensure that the degree of any
such auxiliary vertex is at most 1 which will guarantee that these
auxiliary vertices are never part of any optimal solution. Finally we
add a clique on a set {x; : i € [n + k]} of leader vertices so that the
degree centrality of every leader is n + k — 1. Formally, the instance
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(H, L,d) of HIDING LEADER is defined as follows.

VIH] = lav.dpe):veVI[Gl,Le[n]}Ulx;:ie[n+k]}
L = {xj:ie[n+k]}
E[H] = {{au,a0}: (u,0) ¢ E[G]}
Ullxixjl:1<i<j<n+k}
U{{av,d(v,0)} : v € VIG].L € [degg(v) + 1]}
d = k

We now use the (2 — ¢) factor approximation algorithm for the
HipING LEADER problem for degree centrality which outputs that
there is a way to add bar g number of edges so that there exist
at least d followers in H whose degree is at least the degree of
any leader. Let bopr denotes the minimum number of edges that
one needs to add to ensure that there exist at least d followers in
H whose degrees are at least the degree of every leader. Then we
have barg < (2 — €)bopT. We output that the graph G contains a
k-cliqueifbarg < (2—-¢) (];) Otherwise, we output that the density
of any subgraph of G on k vertices is at most ¢/2. We now prove
correctness of our algorithm. We first observe that the degree of
every leader in H is n + k — 1, the degree of a,, € V[H] for every
v € V[G] is n, and the degree of every other vertex is at most 1.

(i) Completeness: Let W C V[G] with |W| = k be a clique
in G. Let us consider the subset X = {a, : v € W} C
V[H]\ L. By construction, X forms an independent set in
H and the degree of every vertex in H is n. Since, adding
all the edges in {{ay, a0} : u,v € W,u # v} in H makes the
degree of every vertex in X in the resulting graph n+k—1, we
have bopr < (I;) Hence, we have barg < (2 — ¢)bopr <

@-o(5).

Soundness: In this case, the density of any subgraph of G on
k vertices is at most ¢/2. Let Y C V[H ]\ L with | Y| = k be
a set of any k followers. By the construction of H, we have
|E[Y[H]] = (1-(/2)) (g) Hence, the minimum number of
edges one needs to add to make the degree of every vertex in
Y atleast n-+k—1isatleast k(k—1)-(c/2) () = (2-(¢/2)) (5).
In particular, we have barg > bopr = (2 — (¢/2)) (I;) >

@-o(5).

This concludes the proof of the statement. O

(ii)

4 RESULTS FOR CORE CENTRALITY

We present our results for the HIDING LEADER problem for the core
centrality measure in this section. Unlike in degree centrality case,
the problem becomes NP-complete even when the core centrality
of every leader is only 3. This is almost tight as we prove that the
problem is polynomial time solvable if the core centrality of every
leader is at most 1.

In Theorem 4.1 below, we prove that the HIDING LEADER problem
is NP-complete even when the core centrality of every leader is 3.
We reduce the SET CovER problem to the HIDING LEADER problem
there. In the SET COVER problem, the input is a universe U =
{ui,uz,...,un}, a collection S = {51,59,...,Sm} of subsets of U, and
an integer t and we need to compute if there exist at most ¢ sets
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in S, union of which results in U. It is well known that the SET
CoVER problem is NP-complete [32].

THEOREM 4.1. The HIDING LEADER problem for the core centrality
measure is NP-complete even when the core centrality of every leader
is 3.

Proor. The HIDING LEADER problem for the core centrality mea-
sure is clearly in NP. Note that computing core centrality of a
node takes polynomial time [12]. To prove NP-hardness, we re-
duce from the SET CovER problem. Let (U = {uq,uy,....,un},S =
{$1,S2,...,Sm},t) be an instance of the SET COVER problem. To
define a corresponding HIDING LEADER problem instance, we con-
struct the graph G as follows.

Intuitively, for each subset S; € S, we create a path of n vertices
Xi1, X520 Xin N G (Xi,2,X1,3), 5 (Xi,n—1,Xi,n)s (Xi,n, Xi,1)
are the edges of the above path. We also add 5 vertices Wj 1 to W; 5
with eight edges where the four vertices in {W; p : 2 < £ < 5}
form a clique with six edges; the other two edges are (W;,1, W; 2)
and (Wi 1, W;,5). For each uj € U, we add a set of 5 vertices {Z; ¢
1 < ¢ < 5} with eight edges where the four vertices (leaders)
{Zi,¢ : 2 < € < 5} form a clique with six edges; the other two edges
are (Zj,1,Zj,2) and (Zj,1,Zj,5). We also have an edge (Xj,j,Zj 1) for
every uj € S;. We allow to add t new edges and demand that the
core centrality of at least 4m+n(t+1) +t followers should be at least
as high as the core centrality of every leader. Figure 1 illustrates the
structure of our construction for sets S = {u1,u2},S2 = {uz},53 =
{us,u4}. We now formally describe our HIDING LEADER instance.

VIG] ={Xij:SieSuj e U UV,
E[G] =E1 UE UE3 UE4 UE5 UEg UE7 UEg

Vi={Wip:SieS.pe[5]}U{Zjp:ujeU,pel5])
E1 = {(Xi,j,Xij+1) 1 j € [n = 1]\ {1},i € [m]}

Ez = {(Xi,n,Xi,1) + 1 € [m]}

E3 = {(Wi,1,Wip)li € [m],p = 2,5}

Eq = {(Wi,1,Xi,j)luj ¢ Si,i € [m],j € [n]}

Es = {(Zj,1.Zjp)j € [n].p = 2,5}

E¢ ={(Xi,j,Zj1)luj € Si,i € [m],j € [n]}

E7 = {(Wip,Wig)li€ [m],2<p<q<5}

Es ={(Zjp.Zjgli€[n].2<p<qg<5}

L={Zjplj€ [n],p=2,3,4,5}
b=td=4dm+n(t+1)+t

We now claim that these two instances are equivalent. In one
direction, let us assume that the SET COVER instance is a YES in-
stance. By renaming, let us assume that the collection {Sy,...,S;}
forms a valid set cover of the instance. We add the edges in the
set & = {(Xi,1,Xi2) : i € [t]} in the graph G. Let the resulting
graph be H. We claim that the core centrality of every vertex in
{Zin:ien}U{X;j:iet]je [n]}u{Wyr:ie[t]}U{W;:
i € [m],j € [4]} is 3 in H. We first observe that the core centrality
of every leader remains 3 even after adding the edges in &’. Also,
for any i € [m], if the edge (X;,1,X,2) is added in the graph, the
core centrality of the n + 1 vertices X; ;,t € [n] and W;,; become
3. Hence after addition of the edges in &’ in G, the core centrality
of every vertex in {X; ; : i € [t],j € [n]} U {Wj 1 : i € [t]} becomes
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Figure 1: Example construction for hardness from Set Cover
where U = {uy,up,u3,ug},S = {51,5,53},51 = {u,uz},S2 =
{up},S3 = {u3,uq}. The red nodes are the leaders and the blue
nodes are the followers.

3. Since {S1,...,S;} forms a set cover for U, the core centrality of
every vertex in {Z; 1 : i € [n]} becomes 3. Lastly, the core centrality
of every vertex in {W; j : i € [m],j € [4]} was already 3 in G
and since addition of edges never decreases the core centrality of
any vertex, the core centrality of these vertices are at least 3 in H.
Hence the HIDING LEADER instance is a YES instance.

For the other direction, let us assume that there exists a set &’
of edges such that in the graph H = (V[G],E[G] U &’), the core
centrality of at least d vertices in V[G] \ L is at least 3; let the set
of followers with core centrality at least 3 in H be Y € V[G]\ L.
Since adding edges in the graph never decreases the core centrality
of any vertex, we have {W; j : i € [m],j € [4]} € Y. Let us consider
the following subset J C [m] defined as: J = {j € [m] : 91 <
i <k < nwith (Xj,;,Xjx) € F). Since [F| < band b = t, we
have | J| < t. We claim that {S; : j € J} forms a set cover for
U . Suppose not, then at most n — 1 vertices in {Z; 1 : i € [n]} can
belong to Y since Z,; does not belong to Y if u, is uncovered.
Also, any vertex in {X; ¢,Wj1 : i € [m]\ J, € [n]} does not
belong to Y. Hence, we have | Y| < 4m+t(n+1) +n—1 < d which
contradicts our assumption that ¥ forms a valid solution for the
HipiNG LEADER instance. Hence the SET COVER instance is a YES
instance. o

Theorem 4.1 along with well known inapproximability result for
the SET CoVER problem immediately give us the following result.

COROLLARY 4.2. There does not exists any polynomial time algo-
rithm for approximating the number of edges one needs to add in the
HipING LEADER problem for core centrality within an approximation
ratio of (1 — @) Inn for any constant a assuming P # NP even when
the core centrality of every leader is 3.

Proor. The result follows from the observation that the reduc-
tion in the proof of Theorem 4.1 is approximation preserving and
the (1 — ) In n inapproximability result for the SET COVER problem
for any constant & assuming P # NP [54]. O

We now show that the hardness result in Theorem 4.1 is almost
tight in the sense that if the core centrality of every leader is at
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most 1 in the network, then the corresponding HIDING LEADER
problem is polynomial time solvable.

PROPOSITION 4.3. There exists a polynomial time algorithm for
the HIDING LEADER problem for core centrality if the core centrality
of every leader in the network is at most 1.

ProoOF. We observe that if the degree of any vertex x is at least
1, then its core centrality is at least 1. Let # C F be the subset
of followers whose core centrality is at least 1; say |F'| = d’.
Hence the degree of every vertex in F \ ¥’ is 0. We add [(d-d")/2]
new edges such that the degree of at least d — d” vertices in ¥ \
¥’ becomes at least 1 in the resulting graph. We output YEs if
[(d-d")/2] > b; otherwise we output No. Since any optimal solution
must add at least [(d—d’)/2] edges, our algorithm is correct.
[m}

5 CAPTAIN NETWORKS

In this section, we show the “captain network”, originally proposed
by Waniek et al. [72], also ensures that the core centrality of any
leader is at most the core centrality of any captain. They propose
two constructions; one for single leader and another for multiple
leaders.

5.1 For Multiple Leaders

We first describe the construction in [72]. The set £ of leaders
forms a clique. Each leader I; € £ has a corresponding group
of p captains C; = {Cj,1,Ci 2, - ,Cip} and [; is connected to all
vertices in C;. Assuming that |£| = h > 2, there are h such sets
of captains {C1,C2,- -+ ,Cp}. All vertices in the captain sets are
connected as a complete h-partite graph. A captain C; ; serves
two things: 1) It helps to hide the leader by being higher or of
same centrality than the leader with maximum centrality. 2) It
spreads the influence from the leader to the rest of the network.
The remaining vertices X = {X1,X2,--- ,Xpm} are each connected
to one captain from each group C;. The follower set in the network
isF =XUCLUCU---UCy. Let us call the resulting graph Gy,.
We now show that the core centrality of every leader in Gy is at
most the core centrality of every captain.

THEOREM 5.1. Given a captain network Gy, letr = L%J denotes
the minimum number of connections that a captain C; j has with
vertices from X. Assuming we have at least 2 leaders and p > 1,
the core centralities of the captains are either greater or same as the
leaders.

Proor. In Gy, the vertices in X do not contribute in the core
centrality of either the leaders or the captains. We observe that the
degree of any vertex in X is h. So their core centrality can be at most
h. We claim that the captains and the leaders are in higher core than
h. Consider a induced subgraph G’ ¢ Gy that includes only the
leaders, the captains and the edges between them. In G/, the degree
of any captain C; j is p(h — 1) + 1; on the other hand, the degree of
any leader [; is h—1+p. So, in G, all the captains and the leaders are
at least in dmin = min{d(G,c; j),d(G,l;)}-core. This comes from
the fact that all the nodes (captains and leaders) have a minimum
degree of dy,in and thus they are at least in dy,;,-core. Note that,
d(G,cij)—d(G,Li) =pth-1)+1-(h—-1+p)=(h-2)(p—-1) 20
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as h > 2 and p > 1. This implies the captains have higher degree
than the leaders in G’. So, the captains have at least the same core-
centrality as the leaders. Our claim is proved. Additionally, any
vertex in X is in h-core and h < dy,ip assuming p > 1. m

COROLLARY 5.2. Given the same captain network G, assuming
h > 2 and p > 1, the core centrality of all the captains is strictly
larger than the leaders.

Proor. The key idea is that the captains will form a core only
among themselves and that will be higher core than the leaders.
Now;, for any captain c; j the degree among themselves is p(h — 1).
Now that, p(h— 1) —(h—-1+p) = (h-2)(p—-1) -1 > 0 or
(h—2)(p—1) > 1is possible when h > 2 and p > 1. So, the captains
have larger core-centrality than the leaders. O

5.2 For Single Leader

We start with the construction in [72] when h = 1 and show the
core centralities of the leaders and the captains remain same in this
case.

A single leader I (h = 1) has a corresponding two sets of p
captains C; = {C1,1,C1,2," - ,Cl,p} and similarly it has Cy. All
vertices in the captain sets are connected as a complete bipartite
graph. Each of the remaining vertices in X = {x1,x2, - ,xm} is
connected to one captain from each group C; and Cy. The follower
set in the network is F = {X U C; U C2}.

COROLLARY 5.3. Given the captain network described above, let
r= I_%J denote the minimal number of connections that a captain,
ci,j has with vertices from X. Assuming h = 1, the core centralities of
all the captains are same as the leader.

Proor. The proof follows from that of Theorem 5.1. The leader
has degree 2p where as the captains have degree 1 + p + r. But the
vertices in X has only degree 2. So the leader and the captains will
be in the higher core and it will be min{2p,p + 1}. Assuming p > 2
all the captain vertices and the leader will be in p + 1-core. If p = 1,
all the vertices in the network will be in 2-core. O

6 SIMULATION RESULTS

In this section, we evaluate the performance of our 2 approximation
algorithm in Theorem 3.2 using synthetic networks. For brevity,
let us call our algorithm in Theorem 3.2 as HLDA and called the
lower bound used in Theorem 3.2 as LB. We also show how well the
leaders can be hidden in the captain network via the core centrality
measure. Solutions were implemented in Java and experiments
conducted on 3.30 GHz Intel cores with 30 GB RAM.

6.1 Evaluation of 2-Approximation Algorithm
in Theorem 3.2

Settings: We generate synthetic network structures from two well-
studied models: (a) Barabasi-Albert (BA) [6] and (b) Watts-Strogatz
(WS) [74]. While both have “small-world” property, WS do not have
a scale-free degree distribution. We generate both the datasets of
70 thousands vertices for three different edge densities: average
degree of vertices as 2, 4 and 10. In the experiments we choose
20 leaders (| L] = h = 20) randomly from the top 100 high degree
vertices.
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Figure 2: Number of edges added (b) by different algorithms:
LB implies a loose lower bound, HLDA is our algorithm that
gives 2-approximation and Random denotes a random edge
addition algorithm. Clearly, in both networks while varying
edge density (average degree of nodes), the number of edge
addition by our algorithm HLDA is almost same as that of
LB.

Baselines: We compare our algorithm (HLDA) with two base-
lines. Our first baseline is the lower bound used in Theorem 3.2
which we call LB. Our second baseline is Random which denotes the
number of random edges one needs to add to achieve the goal. The
performance metric of the algorithms is the number of edges being
added to satisfy the degree centrality requirement for d followers.
Hence, the quality is better when the number of edges is lower.

Results: Theorem 3.2 shows that our algorithm (HLDA) pro-
posed for degree centrality gives a 2-approximation. However in
practice it gives near optimal results. Figure 2 shows the results
varying d on four datasets. Note that, the axes are in logarithmic
scale. In all six datasets, the number of solution edges of HLDA is
similar to LB. However, Random cannot produce high quality re-
sults. Comparing the datasets (BA and WS), the algorithms (HLDA
and LB) need higher number of edges in BA as the chosen leaders
(randomly chosen from 100 top degree nodes) have much higher
degree than the followers due to the scale-free degree distribution.
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Figure 3: Summary of the difference in core centralities be-
tween a leader and a captain in a given captain network
(with 550 vertices) by varying number of captains in each
group (p) and leaders (h).

6.2 Captain Networks and Core Centrality

In section 5, we prove that the core centrality of the leaders can be
hidden by the captains in the captain networks [72] (Theorem 5.1
and Corollary 5.2). We empirically evaluate the core centralities of
the the leaders and the captains by varying two parameters: the
number of captains (p) in each group C; and the number of leaders
(h) for network with multiple leaders.

Figure 3 presents the results for a captain network with 550
vertices. For every pair of two parameters (p and h), we compute
the maximum difference in core centrality between any leader and
any captain. The intensity of the color signifies that the difference
is higher. Higher difference also implies higher disguise for the
leaders. Low values of p result into lower disguise for a leader. On
the other hand, a high value of p (large number of captains in each
group) with high values of h produces the maximum amount of
disguise. But for a high value of p, if the number of leaders are low,
i.e., low h, the amount of disguise for the leaders decreases.

We summarize our experimental findings as follows.

> HLDA produces near optimal results in practice, where as,
Random cannot produce high quality results. HLDA and LB
need more edges to satisfy the degree requirements for d
followers in BA due to the scale-free degree distribution.

> A captain network with small number of leaders (low k) and
a large number of captains in each group (high value of p)
produces the maximum amount of disguise.

> A low value of p, i.e., a small number of captains in each
group yields lower disguise for core centrality which is not
true for other centralities such as degree, closeness, and
betweenness [72].
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7 CONCLUSION AND FUTURE WORK

We have shown that the HIDING LEADER problem for the core
centrality measure is NP-hard to approximate with a factor of
(1 — @)Inn for any constant & > 0 for optimizing the number
of edges one needs to add even when the core centrality of every
leader is only 3. On the other hand, we prove that the HipiNG
LEADER leader problem for degree centrality is polynomial time
solvable if the degree of every leader is O(1). Moreover, we also
provide a 2 factor polynomial time approximation algorithm for
the HIDING LEADER problem for optimizing the number of edges
one needs to add to hide all the leaders. Hence, our results prove
that, although classical complexity theoretic framework fails to
compare relative difficulty of hiding leaders with respect to various
centrality measures [72], hiding leaders may be significantly harder
for the core centrality than the degree centrality. We complement
our 2 factor approximation algorithm for the HIDING LEADER prob-
lem for degree centrality by proving that if there exists a (2 — ¢)
factor approximation algorithm for the HIDING LEADER problem for
degree centrality for any constant 0 < ¢ < 1, then there exists a ¢/2
factor approximation algorithm for the famous Densest k-Subgraph
problem which would be considered a major break through. The
current best polynomial time algorithm for the Densest k-Subgraph
problem achieves an approximation ratio of only (j(nl/ 4) [11]. We
have also empirically evaluated our approximation algorithm which
shows that our algorithm produces an optimal solution for most of
the cases. We have also shown that the captain networks proposed
in [72] can hide the leaders with respect to core centrality.

An important future direction is to explore the average case com-
putational complexity of the HIDING LEADER problem for popular
network centrality measures. Since the results of Waniek et al. [72]
and ours establish that the HIDING LEADER problem is intractable
only in the worst case, it could very well be possible that there exist
heuristics that efficiently solve most randomly generated instances.
If this is true, then the apparent complexity shield against manipu-
lating various centrality measures will become substantially weak.
Another immediate future work is to resolve the computational
complexity of the HIDING LEADER problem for the core centrality
measure when the core centrality of every leader is at most 2.
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