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ABSTRACT
Multi-agent cooperation is an important feature of the natural
world. Many tasks involve individual incentives that are misaligned
with the common good, yet a wide range of organisms from bac-
teria to insects and humans are able to overcome their differences
and collaborate. Therefore, the emergence of cooperative behav-
ior amongst self-interested individuals is an important question
for the fields of multi-agent reinforcement learning (MARL) and
evolutionary theory. Here, we study a particular class of multi-
agent problems called intertemporal social dilemmas (ISDs), where
the conflict between the individual and the group is particularly
sharp. By combining MARL with appropriately structured natu-
ral selection, we demonstrate that individual inductive biases for
cooperation can be learned in a model-free way. To achieve this,
we introduce an innovative modular architecture for deep rein-
forcement learning agents which supports multi-level selection.
We present results in two challenging environments, and interpret
these in the context of cultural and ecological evolution.
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1 INTRODUCTION
Nature shows a substantial amount of cooperation at all scales,
from microscopic interactions of genomes and bacteria to species-
wide societies of insects and humans [39]. This is in spite of natural
selection pushing for short-term individual selfish interests [9]. In
its purest form, altruism can be favored by selection when coop-
erating individuals preferentially interact with other cooperators,
thus realising the rewards of cooperation without being exploited
by defectors [10, 14, 22, 23, 51]. However, many other possibili-
ties exist, including kin selection, reciprocity and group selection
[43, 44, 54, 56, 57, 60].

Lately the emergence of cooperation among self-interested agents
has become an important topic in multi-agent deep reinforcement
learning (MARL). [35] and [28] formalize the problem domain as an
intertemporal social dilemma (ISD), which generalizes matrix game
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social dilemmas to Markov settings. Social dilemmas are character-
ized by a trade-off between collective welfare and individual utility.
As predicted by evolutionary theory, self-interested reinforcement-
learning agents are typically unable to achieve the collectively op-
timal outcome, converging instead to defecting strategies [35, 48].
The goal is to findmulti-agent training regimes in which individuals
resolve social dilemmas, i.e., cooperation emerges. Previous work
has found several solutions, belonging to three broad categories: 1)
opponent modelling [16, 34], 2) long-term planning using perfect
knowledge of the game’s rules [36, 49] and 3) a specific intrinsic
motivation function drawn from behavioral economics [28]. These
hand-crafted approaches run at odds with more recent end-to-end
model-free learning algorithms, which have been shown to have a
greater ability to generalize (e.g. [11]). We propose that evolution
can be applied to remove the hand-crafting of intrinsic motivation,
similar to other applications of evolution in deep learning.

Evolution has been used to optimize single-agent hyperparame-
ters [30], implement black-box optimization [59], and to evolve neu-
roarchitectures [41, 55], regularization [4], loss functions [27, 29],
behavioral diversity [7], and entire reward functions [52, 53]. These
principles tend to be driven by single-agent search and optimization
or competitive multi-agent tasks. Therefore there is no guarantee
of success when applying them in the ISD setting. More closely
related to our domain are evolutionary simulations of predator-
prey dynamics [61], which used enforced subpopulations to evolve
populations of neurons which are sampled to form the hidden layer
of a neural network.1

To address the specific challenges of ISDs, the systemwe propose
distinguishes between optimization processes that unfold over two
distinct time-scales: (1) the fast time-scale of learning and (2) the
slow time-scale of evolution [similar to 26]. In the former, individual
agents repeatedly participate in an intertemporal social dilemma
using a fixed intrinsic motivation. In the latter, that motivation is
itself subject to natural selection in a population. We model this
intrinsic motivation as an additional additive term in the reward of
each agent [6].We implement the intrinsic reward function as a two-
layer fully-connected feed-forward neural network, whose weights
define the genotype for evolution. We propose that evolution can
help mitigate this intertemporal dilemma by bridging between these
two timescales via an intrinsic reward function.

Evolutionary theory predicts that evolving individual intrinsic
reward weights across a population who interact uniformly at ran-
dom does not lead to altruistic behavior [1]. Thus, to achieve our
goal, we must structure the evolutionary dynamics [43]. We first
implement a “Greenbeard” strategy [10, 31] in which agents choose

1See also [50] and [47] for reviews of other evolutionary approaches to cooperative
multi-agent problems.
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interaction partners based on an honest, real-time signal of cooper-
ativeness. We term this process assortative matchmaking. Although
there is ecological evidence of assortative matchmaking [33], it
cannot explain cooperation in all taxa [17, 18, 25]. Moreover it isn’t
a general method for multi-agent reinforcement learning, since
honest signals of cooperativeness are not normally observable in
the ISD models typically studied in deep reinforcement learning.

To address the limitations of the assortative matchmaking ap-
proach, we introduce an alternativemodular training scheme loosely
inspired by ideas from the theory of multi-level (group) selection
[25, 60], which we term shared reward network evolution. Here,
agents are composed of two neural network modules: a policy net-
work and a reward network. On the fast timescale of reinforcement
learning, the policy network is trained using the modified rewards
specified by the reward network. On the slow timescale of evo-
lution, the policy network and reward network modules evolve
separately from one another. In each episode every agent has a
distinct policy network but the same reward network. As before,
the fitness for the policy network is the individual’s reward. In
contrast, the fitness for the reward network is the collective return
for the entire group of co-players. In terms of multi-level selection
theory, the policy networks are the lower level units of evolution
and the reward networks are the higher level units. Evolving the
two modules separately in this manner prevents evolved reward
networks from overfitting to specific policies. This evolutionary
paradigm not only resolves difficult ISDs without handcrafting but
also points to a potential mechanism for the evolutionary origin of
social inductive biases.

The paper is structured as follows. In Section 2, we define our
problem domain, and describe in detail our agent architecture and
training methods. In Section 3, we present results from our experi-
ments and further analyses of agent policies. Finally in Section 4,
we discuss interpretations of our model as well as make suggestions
for future work.

2 METHODS
Wevaried and explored different combinations of parameters, namely:
(1) environments {Harvest, Cleanup}, (2) reward network features
{prospective, retrospective}, (3) matchmaking {random, assortative},
and (4) reward network evolution {individual, shared, none}. We
describe these in the following sections.

2.1 Intertemporal social dilemmas
In this paper, we consider Markov games [37] within a MARL set-
ting. Specifically we study intertemporal social dilemmas [28, 35],
defined as games in which individually selfish actions produce
individual benefit on short timescales but have negative impacts
on the group over a longer time horizon. This conflict between
the two timescales characterizes the intertemporal nature of these
games. The tension between individual and group-level rational-
ity identifies them as social dilemmas (e.g. the famous Prisoner’s
Dilemma).

We consider two dilemmas, each implemented as a partially ob-
servable Markov game on a 2D grid (see Figure 1), with N = 5
players playing at a time. In the Cleanup game, agents tried to col-
lect apples (reward +1) that spawned in a field at a rate inversely

related to the cleanliness of a geographically separate aquifer. Over
time, this aquifer filled up with waste, lowering the respawn rate
of apples linearly, until a critical point past which no apples could
spawn. Episodes were initialized with no apples present and zero
spawning, thus necessitating cleaning. The dilemma occurred be-
cause in order for apples to spawn, agents must leave the apple
field and clean, which conferred no reward. However if all agents
declined to clean (defect), then no rewards would be received by
any. In the Harvest game, again agents collected rewarding apples.
The apple spawn rate at a particular point on the map depended
on the number of nearby apples, falling to zero once there were no
apples in a certain radius. There is a dilemma between the short-
term individual temptation to harvest all the apples quickly and
the consequential rapid depletion of apples, leading to a lower total
yield for the group in the long-term.

All episodes last 1000 steps, and the total size of the playable area
is 25×18 for Cleanup and 38×16 for Harvest. Games are partially
observable in that agents can only observe via a 15×15 RGBwindow,
centered on their current location. The action space consists of
moving left, right, up, and down, rotating left and right, and the
ability to tag each other. This action has a reward cost of 1 to use,
and causes the player tagged to lose 50 reward points, thus allowing
for the possibility of punishing free-riders [21, 45]. The Cleanup
game has an additional action for cleaning waste.

2.2 Modeling social preferences as intrinsic
motivations

In our model, there are three components to the reward that enter
into agents’ loss functions (1) total reward, which is used for the
policy loss, (2) extrinsic reward, which is used for the extrinsic
value function loss and (3) intrinsic reward, which is used for the
intrinsic value function loss.

The total reward for player i is the sum of the extrinsic reward
and an intrinsic reward as follows:

ri (si ,ai ) = r
E
i (si ,ai ) + ui (fi ) . (1)

The extrinsic reward rEi (s,a) is the environment reward obtained
by player i when it takes action ai from state si , sometimes also
written with a time index t . The intrinsic rewardu(f) is an aggregate
social preference across features f and is calculated according to
the formula,

ui (fi |θ ) = vTσ
(
WTfi + b

)
, (2)

where σ is the ReLU activation function, and θ = {W, v, b} are
the parameters of a 2-layer neural network with 2 hidden nodes.
These parameters are evolved based on fitness (see Section 2.3).
The elements of v = (v1,v2) approximately correspond to a linear
combination of the coefficients related to advantagenous and dis-
advantagenous inequity aversion mentioned in [28], which were
found via grid search in this previous work, but are here evolved.

The feature vector fi is a player-specific vector quantity that
agents can transform into intrinsic reward via their reward network.
It’s composed of features fi j derived from all players 2, so that each

2Note that we use both i and j to index over the players, but i makes reference to the
player receiving the intrinsic reward, while j indexes the players sending the features
over which the intrinsic reward of player i is defined.
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Figure 1: Screenshots from (a) the Cleanup game, (b) the Harvest game. The size of the agent-centered observation window is
shown in (b). The same size observation was used in all experiments.

Figure 2: (a) Agent Aj adjusts policy πj (s,a |ϕ) using off-policy importance weighted actor-critic (V-Trace) [11] by sampling
from a queue with (possibly stale) trajectories recorded from 500 actors acting in parallel arenas. (b) The architecture (shown
only for 1 agent) includes a visual encoder (1-layer convolutional neural net with 6 3x3 filters, stride 1, followed by two fully-
connected layers with 32 units each), intrinsic and extrinsic value heads (V I and V E ), a policy head π , and a long-short term
memory (LSTM, with 128 hidden units), which takes last intrinsic and extrinsic rewards (u(f) and rE ) and last action as input.
The reward network weights are evolved based on total episode return.

player has access to the same set of features, with the exception that
its own feature is demarcated specially (by always occupying the
first element of the vector). The features themselves are a function
of recently received or expected future (extrinsic) reward for each
agent. In Markov games the rewards received by different players

may not be aligned in time. Thus, any model of social preferences
should not be overly influenced by the precise temporal alignment
of different players’ rewards. Intuitively, they ought to depend on
comparing temporally averaged reward estimates between players,
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Algorithm 1 Training Pseudocode - Shared Reward Network
Require: P: pop. of policy networks and hyper-parameters
{{ϕ1, h1 }, ..., {ϕN , hN }}

Require: R: pop. of reward networks {θ1, ..., θN }, where θ = {W, v, b}
Require: S: procedure to sample from P and R and return 5 players
Require: U: procedure to update/evolve weights given a population of

fitness-scored individuals
Require: F: procedure to calculate and assign fitness given the sampled

players
1: while not done do
2: p1:5 = p1, ..., p5 ← S(P, R) ▷ Sample 5 players
3: env ∼ p(T) ▷ Sample from distribution p over environments T
4: e01:5 ← 0 ▷ Initialize temporally decayed reward
5: for t := 1 to T do ▷ Run for T = 1000 steps
6: τ t = (r E,t1:5 , V E,t

1:5 , ot1:5, a
t
1:5) ← env(p1:5) ▷ Play players in

environment, collect outputs in a trajectory τ = {τ 1, ..., τT }
7: for j := 1 to 5 do ▷ Calculate feature vectors for players
8: if retrospective then
9: fj = e tj ← η e t−1j + r E,tj ▷ Decayed extrinsic reward
10: else if prospective then
11: fj ← V E,t

j ▷ Value estimate from extrinsic value head

12: for i := 1 to 5 do ▷ Calculate intrinsic rewards for players
13: fi ← reorder(fi, i)
14: uti ← vTσ

(
WTfi + b

)
▷ Calculate intrinsic reward

15: for i := 1 to 5 do
16: ϕi ← RL(ϕi , τ , ui , hi ) ▷ RL training for each ϕ
17: Fϕk , Fθk ← F(τ ) ▷ Calculate smoothed fitnesses associated

with each reward and policy network sampled in this episode
18: for (ϕk , hk ) ∈ P do
19: if available_to_evolve(ϕk , hk ) then ▷ If burn-in period has

passed, update population based on smoothed fitness of individuals
20: (ϕk , hk ) ← U(P, Fϕk )

21: for θk ∈ R do
22: if available_to_evolve(θk ) then
23: θk ← U(R, Fθk )

rather than instantaneous values. Therefore, we considered two
different ways of temporally aggregating the rewards.

The retrospective method derives intrinsic reward from whether
an agent judges that other agents have been actually (extrinsically)
rewarded in the recent past. The prospective variant derives intrinsic
reward fromwhether other agents are expecting to be (extrinsically)
rewarded in the near future.3 For the retrospective variant, fi j = etj ,
where the temporally decayed reward etj for the agents j = 1, . . . ,N
are updated at each timestep t according to

etj = η e
t−1
j + rE,tj , (3)

and η = 0.975. The prospective variant uses the value estimatesV E
j

(see Figure 2b) for fi j and has a stop-gradient before the reward
network module so that gradients don’t flow back into other agents
(as in for example DIAL from [15]).

3Our terms prospective and retrospective map onto the terms intentional and conse-
quentialist respectively as used by [36, 49].

2.3 Architecture and Training
We used the same training framework as in [29], which performs
distributed asynchronous training in multi-agent environments,
including population-based training (PBT) [30]. We trained a popu-
lation of N = 50 agents4 with policies {πi }, fromwhich we sampled
5 players in order to populate each of 500 arenas (where arena is an
instantiation of a single episode of the environment) running in par-
allel. Within each arena, an episode of the environment was played
with the sampled agents, before resampling new ones. Agents were
sampled using one of two matchmaking processes (described in
more detail below). Episode trajectories lasted 1000 steps and were
written to queues for learning, from which weights were updated
using V-Trace (Figure 2a).

The set of weights evolved included learning rate, entropy cost
weight, and reward network weights θ5. The parameters of the
policy network ϕ were inherited in a Lamarckian fashion as in
[30]. Furthermore, we allowed agents to observe their last actions
ai,t−1, last intrinsic rewards (ui,t−1(fi )), and last extrinsic rewards
(rEi,t−1(si ,ai )) as input to the LSTM in the agent’s neural network.

The objective function was identical to that presented in [11] and
comprised three components: (1) the value function gradient, (2)
policy gradient, and (3) entropy regularization, weighted according
to hyperparameters baseline cost and entropy cost (see Figure 2b).

Evolution was based on a fitness measure calculated as a moving
average of total episode return, which was a sum of apples collected
minus penalties due to tagging, smoothed as follows:

Fni = (1 − ν )F
n−1
i + νRni , (4)

where ν = 0.001 and Rni =
∑
t r

E,t
i is the total episode return

obtained on episode n by agent i (or reward network i in the case
of the shared reward network evolution (see Section 2.5 for details).

Training was done via joint optimization of network parameters
via SGD and hyperparameters/reward network parameters via evo-
lution in the standard PBT setup. Gradient updates were applied
for every trajectory up to a maximum length of 100 steps, using a
batch size of 32. Optimization was via RMSProp with epsilon=10−5,
momentum=0, decay rate=0.99, and an RL discount factor of 0.99.
The baseline cost weight (see Mnih et al. [42]) was fixed at 0.25, and
the entropy cost was sampled from LogUniform(2 × 10−4,0.01) and
evolved throughout training using PBT. The learning rates were all
initially set to 4 × 10−4 and then allowed to evolve.

PBT uses evolution (specifically genetic algorithms) to search
over a space of hyperparameters rather than manually tuning or
performing a random search, resulting in an adaptive schedule of
hyperparameters and joint optimization with network parameters
learned through gradient descent [30].

Therewas amutation rate of 0.1when evolving hyperparameters,
using multiplicative perturbations of ±20% for entropy cost and
learning rate, and additive perturbation of ±0.1 for reward network
parameters. We implemented a burn-in period for evolution of 4 ×
106 agent steps, to allow network parameters and hyperparameters

4Similar to as in [11], we distinguish between an “agent” which acts in the environment
according to some policy, and a “learner” which updates the parameters of a policy.
In principle, a single agent’s policy may depend on parameters updated by several
separate learners.
5We can imagine that the reward weights are simply another set of optimization
hyperparameters since they enter into the loss.
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Figure 3: (a) Agents assigned and evolved with individual reward networks. (b) Assortativematchmaking, which preferentially
plays cooperators with other cooperators and defectors with other defectors. (c) A single reward network is sampled from the
population and assigned to all players, while 5 policy networks are sampled and assigned to the 5 players individually. After the
episode, policy networks evolve according to individual player returns, while reward networks evolve according to aggregate
returns over all players.

to be used in enough episodes for an accurate assessment of fitness
before evolution.

2.4 Random vs. assortative matchmaking
Matches were determined according to two methods: (1) random
matchmaking and (2) assortative matchmaking. Randommatchmak-
ing simply selected uniformly at random from the pool of agents
to populate the game, while cooperative matchmaking first ranked
agents within the pool according to a metric of recent cooperative-
ness, and then grouped agents such that players of similar rank
played with each other. This ensured that highly cooperative agents
played only with other cooperative agents, while defecting agents
played only with other defectors. For Cleanup, cooperativeness
was calculated based on the amount of steps in the last episode the
agent chose to clean. For Harvest, it was calculated based on the
difference between the the agent’s return and the mean return of
all players, so that having less return than average yielded a high
cooperativeness ranking. Cooperative metric-based matchmaking
was only done with either individual reward networks or no re-
ward networks (Figure 3b). We did not use cooperative metric-based
matchmaking for our multi-level selection model, since these are
theoretically separate approaches.

2.5 Individual vs. shared reward networks
Building on previous work that evolved either the intrinsic reward
[29] or the entire loss function [27], we considered the reward
network weights to be hyperparameters that could be evolved in
parallel with the policy parameters (Figure 3a). Distinct from these
methods, we separately evolved the reward network within its
own population, thereby allowing different modules of the agent to
compete only with like components. This allowed for independent
exploration of hyperparameters via separate credit assignment of
fitness, and thus considerably more of the hyperparameter land-
scape could be explored compared with using only a single pool.
In addition, reward networks could be randomly assigned to any
policy network, and so were forced to generalize to a wide range
of policies. In a given episode, 5 separate policy networks were
paired with the same reward network, which we term a shared re-
ward network. In line with [30], the fitness determining the copying
of policy network weights and evolution of optimization-related
hyperparameters (entropy cost and learning rate) were based on
individual agent return. By contrast, the reward network parame-
ters were evolved according to fitness based on total episode return
across the group of co-players (Figure 3c).
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Figure 4: Total episode rewards, aggregated over players. (a), (b): Comparing retrospective (backward-looking) reward evolution
with assortative matchmaking and PBT-only baseline in (a) Cleanup and (b) Harvest. (c), (d): Comparing prospective (forward-
looking)with retrospective (backward-looking) reward evolution in (c) Cleanup and (d)Harvest. The black dotted line indicates
performance from [28]. The shaded region shows standard error of the mean, taken over the population of agents.

This contribution is distinct from previous work which evolved
intrinsic rewards [e.g. 29] because (1) we evolve over social features
rather than a remapping of environmental events, and (2) reward
network evolution is motivated by dealingwith the inherent tension
in ISDs, rather than merely providing a denser reward signal. In
this sense it’s more akin to evolving a form of communication for
social cooperation, rather than learning reward-shaping in a sparse-
reward environment. We allow for multiple agents to share the
same components, and as we shall see, in a social setting, this winds
up being critical. Shared reward networks provide a biologically
principled method that mixes group fitness on a long timescale
and individual reward on a short timescale. This contrasts with
hand-crafted means of aggregation, as in previous work [5, 38].

3 RESULTS
As shown in Figure 4, PBT without using an intrinsic reward net-
work performs poorly on both games, where it asymptotes to 0
total episode reward in Cleanup and 400 for Harvest (the number
of apples gained if all agents collect as quickly as they can).

Figures 4a-b compare random and assortative matchmaking with
PBT and reward networks using retrospective social features. When

using random matchmaking, individual reward network agents per-
form no better than PBT at Cleanup, and only moderately better
at Harvest. Hence there is little benefit to adding reward networks
over social features if players have separate networks, as these tend
to be evolved selfishly. The assortative matchmaking experiments
used either no reward network (u(f) = 0) or individual reward net-
works.Without a reward network, performance was the same as the
PBT baseline. With individual reward networks, performance was
very high, indicating that both conditioning the internal rewards
on social features and a preference for cooperative agents to play to-
gether were key to resolving the dilemma. On the other hand, shared
reward network agents perform as well as assortative matchmaking
and the handcrafted inequity aversion intrinsic reward from [28],
even using random matchmaking. This implies that agents didn’t
necessarily need to have immediate access to honest signals of other
agents’ cooperativeness to resolve the dilemma; it was enough to
simply have the same intrinsic reward function, evolved accord-
ing to collective episode return. Videos comparing performance of
the PBT baseline with the retrospective variant of shared reward
network evolution can be found at https://youtu.be/medBBLLM4c0
and https://youtu.be/yTjrlH3Ms9U.
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Figures 4(c) and (d) compare the retrospective and prospective
variants of reward network evolution. The prospective variant,
although better than PBT when using a shared reward network,
generally results in worse performance and more instability. This is
likely because the prospective variant depends on agents learning
good value estimates before the reward networks become useful,
whereas the retrospective variant only depends on environmentally
provided reward and thus does not suffer from this issue. Inter-
estingly, we observed that the prospective variant does achieve
very high performance if gradients are allowed to pass between
agents via the value estimates V E

j (data not shown); however, this
constitutes centralized learning, albeit with decentralized execution
(see [15]). Such approaches are promising but less consistent with
biologically plausible mechanisms of multi-agent learning which
are of interest here and so were not pursued.

We next plot various social outcome metrics in order to better
capture the complexities of agent behavior (see Figure 5). Equality
is calculated as E(1−G(R)), whereG(R) is the Gini coefficient over
individual returns. Figure 5b demonstrates that, in Harvest, having
the prospective version of reward networks tends to lead to lower
equality, while the retrospective variant has very high equality.
Equality in Cleanup is more unstable throughout training, since
it’s not necessarily optimal, but tends to be lower overall than for
Harvest, even when performance is high, indicating that equality
might be harder to achieve in different games. Tagging measures
the average number of times a player fined another player through-
out the episode. The middle panel of Figure 5b shows that there
is a higher propensity for tagging in Harvest when using either a
prospective reward network or an individual reward network, com-
pared to the retrospective shared reward network. This explains
the performance shown in Figure 4, as being tagged results in a
very high negative reward. Tagging in the Cleanup task is overall
much lower than in Harvest. Sustainability measures the average
time step on which agents received positive reward, averaged over
the episode and over agents. We see in the bottom panel of 5b
that having no reward network results in players collecting apples
extremely quickly in Harvest, compared with much more sustain-
able behavior with reward networks. In Cleanup, the sustainability
metric is not meaningful and so this was not plotted.

Finally, we can directly examine the weights of the final retro-
spective shared reward networks which were best at resolving the
ISDs. Interestingly, the final weights evolved in the second layer
suggest that resolving each game might require a different set of
social preferences. In Cleanup, one of the final layer weights v2
evolved to be close to 0, whereas in Harvest, v1 and v2 evolved
to be of large magnitude but opposite sign. We can see a similar
pattern with the biases b. We interpret this to mean that Cleanup re-
quired a less complex reward network: it was enough to simply find
other agents’ being rewarded as intrinsically rewarding. In Harvest,
however, a more complex reward function was perhaps needed
in order to ensure that other agents were not over-exploiting the
apples. We found that the first layer weights W tended to take on
arbitrary (but positive) values. This is because of random match-
making: co-players were randomly selected and thus there was
little evolutionary pressure to specialize these weights.

4 DISCUSSION
Real environments don’t provide scalar reward signals to learn
from. Instead, organisms have developed various internal drives
based on either primary or secondary goals [2]. Here we examined
intrinsic rewards based on features derived from other agents in
the environment, in order to establish whether such social signals
could enable the evolution of altruism to solve intertemporal social
dilemmas. In accord with evolutionary theory [1, 43], we found that
naïvely implementing natural selection via genetic algorithms did
not lead to the emergence of cooperation. Furthermore, assortative
matchmaking was sufficient to generate cooperative behavior in
cases where honest signals were available. Finally, we proposed
a new multi-level evolutionary paradigm based on shared reward
networks that achieves cooperation in more general situations.

We demonstrated that the reward network weights evolved dif-
ferently for Cleanup versus Harvest, indicating that the two tasks
necessitate different forms of social cooperation for optimal per-
formance. This highlights the advantage of evolving rather than
hand-crafting the weighting between individual reward and group
reward, as optimal weightings cannot necessarily be anticipated
for all environments. Evolving such weightings thus constitutes a
form of meta-learning, wherein an entire learning system, including
intrinsic reward functions, is optimized for fast learning [13, 53].
Here we have extended these ideas to the multi-agent domain.

Why does evolving intrinsic social preferences promote coop-
eration? Firstly, evolution ameliorates the intertemporal choice
problem by distilling the long timescale of collective fitness into
the short timescale of individual reinforcement learning, thereby
improving credit assignment between selfish acts and their tempo-
rally displaced negative group outcomes [28]. Secondly, it mitigates
the social dilemma itself by allowing evolution to expose social
signals that correlate with, for example, an agent’s current level of
selfishness. Such information powers a range of mechanisms for
achieving mutual cooperation like competitive altruism [24], other-
regarding preferences [8], and inequity aversion [12]. In accord,
laboratory experiments show that humans cooperate more readily
when they can communicate [32, 46].

The shared reward network evolution model was inspired by
multi-level selection; yet it does not correspond to the prototypical
case of that theory since its lower level units of evolution (the policy
networks) are constantly swapping which higher level unit (reward
network) they are paired with. Nevertheless, there are a variety
of ways in which we see this form of modularity arise in nature.
For example, free-living microorganisms occasionally form multi-
cellular structures to solve a higher order adaptive problem, like
slime mold forming a spore-producing stalk for dispersal [58], and
many prokaryotes can incorporate plasmids (modules) found in
their environment or received from other individuals as functional
parts of their genome, thereby achieving cooperation in social
dilemmas [20, 40]. Alternatively, in humans a reward network may
represent a shared “cultural norm”, with its fitness based on cultural
information accumulated from the groups in which it holds sway.
In this way, the spread of norms can occur independently of the
success of individual agents [3].

Note that in this work, we have assumed that agents have perfect
knowledge of other agents’ rewards, while in real-world systems
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Figure 5: Social outcome metrics for (a) Cleanup and (b) Harvest. Top: equality, middle: total amount of tagging, bottom: sus-
tainability. The shaded region shows the standard error of the mean.

Figure 6: Distribution of layer 2 weights and biases of
evolved retrospective shared reward network at 1.5 × 108
training steps for (a) Cleanup, and (b) Harvest.

this is not typically the case. This assumption was made in order to
disentangle the effects of cultural evolution from the quality of the
signals being evolved over. Natural next steps include adding partial
observability or noise to this signal (to make it more analogous

to, for instance, a smile/frown or other locally observable social
signals), identifiability across episodes, or even deception.

The approach outlined here opens avenues for investigating
alternative evolutionary mechanisms for the emergence of coop-
eration, such as kin selection [19] and reciprocity [56]. It would
be interesting to see whether these lead to different weights in a
reward network, potentially hinting at the evolutionary origins of
different social biases. Along these lines, one might consider study-
ing an emergent version of the assortative matchmaking model
along the lines suggested by [25], adding further generality and
power to our setup. Finally, it would be fascinating to determine
how an evolutionary approach can be combined with multi-agent
communication to produce that most paradoxical of cooperative
behaviors: cheap talk.
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