
Bayesian Reinforcement Learning in Factored POMDPs
Sammie Katt

Northeastern University

Boston, MA, USA

katt.s@husky.neu.edu

Frans A. Oliehoek

Delft University of Technology

Delft, Netherlands

f.a.oliehoek@tudelft.nl

Christopher Amato

Northeastern University

Boston, MA, USA

c.amato@northeastern.edu

ABSTRACT
Model-based Bayesian Reinforcement Learning (BRL) provides a

principled solution to dealing with the exploration-exploitation

trade-off, but such methods typically assume a fully observable

environments. The few Bayesian RL methods that are applicable in

partially observable domains, such as the Bayes-Adaptive POMDP

(BA-POMDP), scale poorly. To address this issue, we introduce the

Factored BA-POMDP model (FBA-POMDP), a framework that is

able to learn a compact model of the dynamics by exploiting the

underlying structure of a POMDP. The FBA-POMDP framework

casts the problem as a planning task, for which we adapt the Monte-

Carlo Tree Search planning algorithm and develop a belief tracking

method to approximate the joint posterior over the state and model

variables. Our empirical results show that this method outperforms

a number of BRL baselines and is able to learn efficiently when the

factorization is known, as well as learn both the factorization and

the model parameters simultaneously.
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1 INTRODUCTION
Robust decision-making agents in any non-trivial system must rea-

son over uncertainty in various dimensions such as action outcomes,

the agent’s current state and the dynamics of the environment. The

outcome and state uncertainty are elegantly captured by Partially
Observable Markov Decision Processes (POMDPs) [21], which enable

reasoning in stochastic, partially observable environments. How-

ever, POMDP solution methods typically assume complete access

to the system dynamics, which unfortunately are often not readily

available. When such a model is not available, the problem turns

into a partially observable RL (PORL) task, where one must trade

off exploration and exploitation of current knowledge While recent

model-free, deep RL approaches [30, 41, 46] have shown impressive

results on complex tasks, this progress has been driven by improve-

ments to function approximation. These methods often require

millions of samples and combining them with effective exploration,

although a topic of some studies [3, 5, 33], generally is difficult.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
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A rather different approach is taken by model-based Bayesian

reinforcement learning (BRL) methods [11, 39]. These methods

explicitly maintain distributions over the possible models of the

environment, and use this knowledge to select actions that, theo-

retically, can optimally trade off exploration and exploitation. As a

result, BRL methods can be very sample efficient.

However, the number of BRL methods that are applicable to par-

tial observable settings are few, and those that do exist are limited in

their scalability. For instance, the Bayes-Adaptive POMDP [39] (BA-

POMDP), for which we developed an efficient Monte-Carlo Tree

Search (MCTS) planner, BA-POMCP [22], models the environment

in a tabular fashion. The fact that this approach is based on flat

state representations, however, is a bottleneck for scalability. Here,

we propose a method to overcome this bottleneck by exploiting

structure in the dynamics of factored POMDPs [6, 15].

Specifically, we formalize the Factored Bayes-Adaptive POMDP

(FBA-POMDP), which models the dynamics of partially observable

environments through graphical models that exhibit structure, as

opposed to tables. The FBA-POMDP framework casts the PORL

problem as a planning task, for which we develop FBA-POMCP,

a MCTS algorithm that is able to tackle problems of non-trivial

length and sizes. Lastly, maintaining a distribution over a potentially

large space of factored POMDP models is a challenge. To combat

this issue efficiently, we propose a sample-based mechanism to

reinvigorate the distribution over graphical models. We show the

favorable theoretical guarantees of this approach and demonstrate

empirically that we outperform current state-of-the-art methods

on three domains, one of which causes previous methods based on

the tabular BA-POMDP to fail to learn at all.

2 BACKGROUND
We first provide a summary of the background literature. This

section is divided into an introduction to POMDPs and BA-POMDPs,

typical solution methods, and factored models.

2.1 The POMDP and BA-POMDP
The POMDP [21] is a general model for decision-making in stochas-

tic and partially observable domains, with execution unfolding over

(discrete) time steps. At each step the agent selects an action that

triggers a state transition in the system, which generates a reward

and observation. The observation is perceived by the agent and the

next time step commences. Formally, a POMDP is described by the

tuple ⟨S,A,Ω,D,R,γ ,h⟩, where S is the set of states of the environ-

ment; A is the set of actions; Ω is the set of observations; D is the

‘dynamics function’ that describes the behavior of the system in the

form of transition and observation probabilities D(s ′,o |s,a); R is

the immediate reward function R(s,a) that describes the reward of
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selecting a in s ; γ ∈ (0, 1) is the discount factor; and h is the horizon

of an episode in the system.

This formulation of the dynamics generalizes the usual formu-

lation with separate transition T and observation functions O :
D(s ′,o |s,a) = T (s ′ |a, s)O(o |s,a, s ′). We employ this notation for

brevity reasons but used the separation in our implementation.

The agent has no direct access to the system’s state, so it can

only rely on the action-observation history up to the current step t :

ht = ⟨®a
t
0
, ®ot

0
⟩, where ®at

0
and ®0t

0
respectively are the vector of actions

and observations from time step 0 to t . When there is no confusion

possible, we will also omit the super and subscripts. The agent can

use this history to maintain a probability distribution over the state,

also called a belief, b(s). The belief is updated at every step through

the belief update τ : (b,a,o) → b ′. When the dynamics D are given,

the probability of a new state s ′ after action a and observation o
can be computed with the Bayes’ Rule:

b ′(s ′) = τ (b,a,o)(s ′) ∝
∑
s

D(s ′,o |s,a)b(s) (1)

The goal of the agent in a POMDP is to find a policy π — a mapping

from any belief b to an action a — that maximizes the expectation

over the cumulative (discounted) reward, also called the return.

Such a policy is called an optimal policy π∗.
In the Partially Observable Reinforcement Learning setting (PORL)

the dynamics are not known and the belief over states cannot be

maintained. The typical Bayesian approach to solving such an RL

problem is to maintain a probability distribution over the unknown

model, p(D), and select actions with respect to the uncertainty

over D. A distribution over D can be represented by a Dirichlet

distribution for each ⟨s,a⟩ pair. More specifically, each transition

⟨s ′,o, s,a⟩ is associated with a count χs
′o

sa , and the collection of all

counts, χ , describes a probability distribution over the dynamic

function D of the POMDP: p(Dsa ) = χsa .
Conceptually, if both the visited states and observations were

known, then the agent could ‘count’ the number of occurrences of

each transition by incrementing χ . Over time the counts χ would

grow and the belief over the dynamics would converge to the true

dynamics. However, the states are hidden to the agent, and thus

there is uncertainty over the true counts. Fortunately, this uncer-

tainty can be captured using regular POMDP formalisms.

The Bayes-Adaptive POMDP (BA-POMDP) [39] is a POMDP

in which the counts χ are part of the hidden state space. More

formally, if X denotes the space of count collections χ , then the

BA-POMDP is defined as the tuple ⟨S̄,A,Ω, D̄, R̄,γ ,h⟩ with (hyper-)

state space S̄ = S × X . While the observation and action space

remain unchanged, a hyper state in the BA-POMDP consists of a

domain state and a count collection that represents the belief over

the dynamics of the POMDP p(D), s̄ = ⟨s, χ⟩. The reward function

depends only on the underlying POMDP state: R̄(s̄,a) = R(s,a) and
is typically considered known (although could be learned using sim-

ilar methods). The dynamics function of the BA-POMDP describes

the probability D̄(s ′, χ ′,o |s, χ ,a). This factorizes in the probabil-

ity of the new domain state and observation p(s ′,o |s, χ ,a) and the

update of the counts p(χ ′ |s, χ ,a, s ′,o). The former probability is

defined by the ratio of the counts, which also corresponds to the

expected categorical according to χsa :

p(s ′,o |s, χ ,a) = pχ (s
′,o |s,a) =

χs
′o

sa∑
s ′o χ

s ′o
sa

(2)

Rewarding p(χ ′ |s, χ ,a, s ′,o), there is only one new possible set of

counts χ ′, given the previous counts χ and transition ⟨s ′,o, s,a⟩:

the one that has χs
′o

sa incremented by 1. More formally, we let δs
′o

sa
denote a vector of the length of χ containing all zeros except for the

position corresponding to ⟨s,a, s ′,o⟩, where it is 1, and we let Ia (b)
denote the Kronecker Delta function function that indicates (is 1 iff)

a = b. Then we denote the count update functionU(χ , s,a, s ′,o) =

χ + δs
′o

sa and can rewrite p(χ |s, χ ,a, s ′,o) = Iχ ′(U(χ , s,a, s
′,o)). As

a result the dynamics of the BA-POMDP resolves to:

D̄(s ′, χ ′,o |s, χ ,a) =
χs
′o

sa∑
s ′o χ

s ′o
sa
Iχ ′(U(χ , s,a, s

′,o)) (3)

Lastly, the BA-POMDP requires a prior
¯b0(s, χ ), the initial joint

belief over the domain state and dynamics. Typically the prior over

D can be described with a single set of counts χ0, and the prior

reduces to
¯b0(s, χ ) = Iχ (χ0)b0(s), where b0(s) is the distribution

over the initial state of the underlying POMDP.

2.2 Learning by Planning in BA-POMDPs
The BA-POMDP casts the PORL problem as a planning task in a

large POMDP where the unknown dynamics are part of the hid-

den state space. An optimal solution to the BA-POMDP solves the

exploration-exploitation trade-off of the underlying RL problem in

a principled way (analogous to the observable case [50]).

Unfortunately, the countably infinite state space poses a chal-

lenge to offline solution methods due to the curse of dimensionality.

As such, previous work has resorted to online solutions. We ex-

tended Partially ObservableMonte-Carlo Planning (POMCP) [8, 42],

a Monte-Carlo Tree Search (MCTS) based algorithm, to the BA-

POMDP [22], and will build on this to solve FBA-POMDPs.

At each time step, POMCP incrementally constructs a look-

ahead action-observation tree using Monte-Carlo simulations of

the POMDP. Each simulation starts by sampling a state from the

belief, and traverses the tree by picking actions according to the

Upper Confidence Bound (UCB [2]), and simulating interactions

according to the POMDP model. Upon reaching a leaf-node, the

tree is extended with a node for that particular history and the

algorithm then propagates the accumulated reward back up into

the tree, updating the statistics in each visited node. The action

selection terminates by picking the action at the root of the tree

that has the highest average return.

The modifications to BA-POMCP, the application POMCP to BA-

POMDPs, are two-fold: (1) a simulation starts by sampling a hyper-

state ⟨s, χ⟩ at the start and (2) the simulated experiences follows

the dynamics of the BA-POMDP: the domain state-observation pair

is generated according to χ , which in turn are then used to update

χ . Given enough simulations, BA-POMCP converges to the optimal

solution with respect to the belief it is sampling states from [22].

2.3 Belief tracking
While the state space is countably infinite, the number of reachable

states at any given time t is limited by the prior b0(s, χ ) and history
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⟨®at
0
, ®ot

0
⟩. As a result, one can update this belief in closed form by

iterating over all possible next states using the dynamics of the BA-

POMDP [39]. This quickly becomes infeasible and is only practical

for small environments and horizons. More common approaches

approximate the belief with particle filters [44]. There are several
methods to update the particle filter, of which rejection sampling has
traditionally been used for (BA-)POMCP. Here we use Importance
sampling [14], however, as it has been shown to be superior in

terms of the chi-squared distance [9].

In importance sampling the belief is a weighted particle filter,

where each particle x is associated with a weightwx that represents

its probability p(x)= wx∑K
i=1

wi
. Importance sampling computes the

new belief given an action a and observation o with respect to

the model’s dynamics, b ′ = τ (¯b,a,o), in three steps. First, each

particle is updated using the transition dynamics s̄ ′ ∼ D̄(·|s̄,a),
and then weighted according to the observation dynamics w ′ =
w · D̄(o |s̄,a, s̄ ′)1. Note that the sum of weights of the belief after

this step Lt=
∑
wt
i represents the likelihood of the belief update at

time t . The likelihood of the entire belief given the observed history

ht can be seen as the product of the likelihood of each update step

Lht = L
tLht−1 . Third and last, the belief is resampled, as is the

norm in sequential importance sampling.

In between episodes, assuming termination is observable, the

agent’s belief over the domain state s is reset. However note that,
in BA-POMDPs, the belief over the model (counts χ ) is retained. In
practice, using particle filters as a belief, this results in resetting the

domain state in each particle with a sample from b0(s).

2.4 Factored Models
The dynamics of the POMDP can represented more compactly

by exploiting conditional independence between variables. If we

factorize the state space into n features S = {S1, . . . , Sn }, and the

observation space into m features Ω = {Ω1, . . . ,Ωm } then the

Factored POMDP (F-POMDP) [7] represents the dynamics D as

a collection of Bayes-Nets (BN) G, one for each action Ga
. A BN

consists of topology over a set of nodes, which describes the directed

edges between the nodes, and a set of Conditional Probability Tables
(CPTs). The CPTs describe the probability distribution over the

values of the nodes given their parent values where we denote θ
as the parameters of the CPTs of graphs in G, one for each action.

This is illustrated in Figure 1, which shows the topology of the

dynamics of a single action of a POMDP with three state features

and 2 observation features.

We adopt the notation that given some state s , the probability of

the valuev(x) of some feature x is given by θ (v(x)|PV xa (s)), where
PV xa (s) returns the parent values of feature x given action a. The
dynamics of the F-POMDP, is then the joint of all features:

D(s ′,o |s,a) =
∏

x ∈S∪Ω
θ (v(x)|PV xa (s)) (4)

The literature contains methods that attempt to exploit the fac-

torization in F-POMDPs [7, 13, 15, 16, 28, 31, 43, 47, 49]. These

1
Note that this utilizes the assumed factorization of the dynamics into a transition and

observation function

s1

s2

s3

s ′
1

s ′
2

s ′
3

o1

o2

Figure 1: A graph that represents the dynamics associated
with a particular action

methods, however, operate under the assumption that the dynam-

ics are known a priori and hence cannot be applied to applications

where this is not the case.

3 BAYESIAN RL IN FACTORED POMDPS
The BA-POMDP provides a Bayesian framework for RL in POMDPs,

but is unable to describe (or exploit) structure that many real world

applications exhibit. The representation scales poorly and learns

slowly, as the number of parameters grows quadratically in the state

space (O(|S |2 |A| |Ω |)) and only one (count) is updated after each

observation. Here we introduce the Factored BA-POMDP (FBA-

POMDP), the Bayes-Adaptive framework for the factored POMDP,

that is able to learn and exploit structure in the environment.

3.1 The Factored BA-POMDP
If the structureG of a F-POMDP is known a priori, but its parameters

θ are not, then one could consider a Bayes-Adaptive model with

counts Ûχ to describe Dirichlet distributions over the CPTs.
Known structure: We refer the count associated with value v

of a feature x given action a and input state s as Ûχ (v |PV xa (s)). The
dynamics of this framework is a function of the state, action and

counts collection p(s ′, Ûχ ′,o |s, Ûχ ,a), which factorizes into the proba-

bility of a state-observation pairp Ûχ (s
′,o |s,a), and the counts update

p( Ûχ ′ | Ûχ , s ′,o, s,a). The probability of the new state and observation

corresponds to the joint expectation of all features:

p Ûχ (s
′,o |s,a) =

∏
x ∈S∪Ω

p Ûχ (v(x)|PV
xa (s)) (5)

p Ûχ (v |PV
xa (s)) =

Ûχ (v |PV xa (s))∑
v Ûχ (v |PV

xa (s))
(6)

p( Ûχ ′ | Ûχ , s ′,o, s,a) corresponds to updating the counts as is the

case in the BA-POMDP, denoted (U( Ûχ , s,a, s ′,o)). Here, as opposed
to affecting just a single parameter, it increments a count per node.

Unknown structure: It is unrealistic to assume that the topol-

ogy G of the dynamics is known. Instead, the Factored BA-POMDP
(FBA-POMDP) also considersG as part of the hidden state. First we

define G = {G1 . . .G |A |} as the set of possible graph topologies for

all actions. Then the FBA-POMDP is a POMDP with the state space

S̄ = S × G × ÛX , with S as the domain state space of the underlying

POMDP and ÛX as the space of all possible count collections Ûχ .
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A (hyper-) state in the FBA-POMDP thus contains a domain state,

|A| graph topologies and counts to describe a Dirichlet distribution

over all CPTs, s̄ = ⟨s,G, Ûχ⟩. The dynamics function must then have

the form of D̄(s̄ ′,o |s̄,a) = p(⟨s ′,G ′, Ûχ ′⟩,o |⟨s,G, Ûχ⟩,a). This joint
distribution can be factored into the state-observation pair transi-

tion p(s ′,o |⟨s,G, Ûχ⟩,a), the counts update p( Ûχ ′ |⟨s,G, Ûχ⟩,a, s ′,G ′,o)
and the topologies update term p(G ′ |⟨s,G, Ûχ⟩,a, s ′,o). The first two
terms have already been discussed above (eq. (5) andU). The latter

term, under the common assumption that the (structure of the) un-

derlying POMDP dynamics does not change over time, reduces to

the Kronecker Delta function IG′(G). This results in the following

formal definition of the FBA-POMDP as tuple ⟨S̄,A,Ω, D̄, R̄,γ ,h⟩:

• A, γ , h: Identical to the underlying POMDP.

• R̄(s̄,a) = R(s,a) ignores the counts and reduces to the reward
function of the POMDP similar to the BA-POMDP.

• Ω̄: {Ω0 × · · · ×Ωm }; the set of possible observations defined

by their features.

• S̄ : {S0 × · · · ×Sn } ×G × ÛX ; the cross product of the domain’s

factored state space and the set of possible topologies, one

for each action a, and their respective Dirichlet distribution

counts.

• D̄; The dynamics function over that describes the probabil-

ities of transitioning from one hyper state s̄ = ⟨s,G, Ûχ⟩ to
another while generating observation o

D(s̄ ′,o |s̄,a) = p Ûχ (s
′,o |s,a)I Ûχ ′(U( Ûχ , s,a, s

′,o))IG′(G) (7)

as described above

Lastly we require a prior, a joint distribution, over the FBA-

POMDP state space
¯b0(⟨s,G, Ûχ⟩). In many applications the depen-

dence relationships between features is known a priori for large

parts of the domain. For the unknown parts, one could consider a

uniform distribution, or distributions that favor few edges.

3.2 Solving FBA-POMDPs
The FBA-POMDP itself is a large POMDP. A solution to this task

consists of a method for maintaining the belief
¯b and a policy that

picks actions with respect to this belief. An optimal solution to the

FBA-POMDP is guaranteed to be as sample efficient as possible,

maximizing the expected returnV ∗(¯b)with respect to the uncertainty
over the dynamics of the F-POMDP. For now we assume the belief is

given, and focus on developing a planner to generate the policy.

While the representation of the dynamics has changed from ta-

bles to graphs, solution methods for the FBA-POMDP, with its large

state space, face similar challenges as those for BA-POMDPs: There-

fore we draw inspiration from the successful BA-POMDP planning

algorithm, BA-POMCP. Recall that the extension of POMCP to BA-

POMCP (section 2.2) was summarized by two key parts: sampling

both counts χ and a domain state from the belief at the start of

each iteration, and simulating interactions with the environment

according to the sampled χ . We propose a similar extension for the

factored case, and call it Factored BA-POMCP (FBA-POMCP).

A simulation in the FBA-POMCP begins with sampling a FBA-

POMDP hyper-state s̄ = ⟨s,G, Ûχ⟩. The algorithm then traverses

through the tree picking actions according to UCB, and simulating

interactions according to Ûχ (illustrated in algorithm 1). A simulated

step first samples a state-observation pair given the current state

Algorithm 1 FBA-POMCP-step

Input s̄ = ⟨s,G, Ûχ⟩: hyper-state, a: simulated action

Output s̄ ′: new FBA-POMDP state, o: simulated observation

1: s ′,o′ ∼ p Ûχ (·|s,a)
2: // increment the associated CPT counts, skip if root-sampling

3: Ûχ ′ ←U( Ûχ , s,a, s ′,o)
4: G ′ ← G
5: return ⟨s ′,G ′, Ûχ ′⟩,o

and action according to p Ûχ (·|s,a) (line 1), then updates the counts

(line 3). Modifications developed specifically for the BA-POMCP,

such as root-sampling and expected-transitions, can be applied to

FBA-POMCP too. We refer to the original paper for details [22].

3.3 Belief tracking & Particle Reinvigoration
The previous two sections introduced the FBA-POMDP, a large

POMDPwith Bayes-Nets as part of the state space, and the planning

method FBA-POMCP to solve it. Here, we discuss how to maintain

the belief. Recall that this belief
¯b(s̄) is a probability distribution

over the FBA-POMDP state, which contains the underlying POMDP

state s ∈ S , a set of graph topologies to describe its structure G ∈
G, and a collection of counts to describe the Dirichlets over the

CPTs Ûχ ∈ ÛX . It is not practical to maintain a distribution over all

possible topologies G, so closed-form approaches are infeasible.

Instead, we adopt the particle filter approach that is successful for

BA-POMDPs, where now each particle contains ⟨s,G, Ûχ⟩. Given
an action a and observation o, the belief update, ¯b ′ = τD̄ (

¯b,a,o),
is fully specified by the FBA-POMDP dynamics D̄. However, D̄
assumes that the topology of the underlying POMDP does not

change (p(G ′ |s̄,a, s ′,o) = IG′(G) from eq. (7)) and, as a result, it

would never modify the topologies in the particles.

Because of this and particle degeneracy, traditional particle fil-

ter belief update schemes tend to converge to a single structure,

leading to poor performance. To tackle this issue, we propose a

Markov-Chain Monte-Carlo (MCMC) [17] based sampling scheme

to occasionally reinvigorate the belief with new particles according

to the (observed) history s̄ ∼ p(⟨s,G, Ûχ⟩|⟨®a, ®o⟩, ¯b0).

First we re-introduce the notation ®xtr which describes the se-

quence of values of x (a state, action or observation) from time step

r to t , with the special case xt , which corresponds to the value at

time step t . For brevity we also use ‘model’ and the tuple ⟨G, Ûχ⟩ in-
terchangeably here, as they both describe the dynamics of a POMDP.

Lastly, we refer to T as the last time step in our history, and add

that ®x without subscripts is short for the complete sequence ®xT
0
.

The distribution p(⟨s,G, Ûχ⟩|⟨®a, ®o⟩, ¯b0) is complex for multiple

reasons. First, computing it typically involves integrating out the

hidden state sequence. Second, it contains graphs, over which dis-

tributions are hard to represent. We propose to sample from this

distribution through Gibbs sampling [32, 40], which approximates

a joint distribution by sampling variables from their conditional dis-

tributions with the remaining variables fixed: we can sample from

p(x ,y) by picking some initial x , and then continuously sample

y ∼ p(y |x) and x ∼ p(x |y). Here x=®s and y=⟨G, Ûχ⟩, and we sample:

i. ®s ∼ p(·|G, Ûχ , ⟨®a, ®o⟩, ¯b0), a state sequence

ii. G, Ûχ ∼ p(·|⟨®s, ®a, ®o⟩, ¯b0), a model
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State sequence sampling i.:We approach this task as sampling

from a Hidden Markov Model, where the dynamics are determined

by the model ⟨G, Ûχ⟩ and action history ®a. Due to the Markov prop-

erty, p(®s |G, Ûχ , ⟨®a, ®o⟩, ¯b0) decomposes into

p(s0 | ¯b0, ⟨®a
T
0
, ®oT

0
⟩,G, Ûχ )

∏
t=0...T

p(st |st−1, ⟨®a
T
t , ®o

T
t ⟩,G, Ûχ ) (8)

from which we aim to sample s0 . . . sT hierarchically. For this

we require to know p(st |st−1, ⟨®a
T
t , ®o

T
t ⟩,G, Ûχ ), which we compute

through message passing [35]. The forward message pass αt (st ) =
p(st |st−1,at ,ot ,G, Ûχ ) for t > 0 can directly be inferred using the

Bayes’ Rule (with α0 = ¯b0(s)). The backward-message βt (st ) is
computed recursively from t = T − 1 . . . 0:

βt−1(s) =
∑
s ′

p Ûχ (s
′,ot |s,at ) · βt (s

′) (9)

where βT is initiated with ones.

Model sampling ii.: Sampling a model from the conditional dis-

tribution p(G, Ûχ |⟨®s, ®a, ®o⟩, ¯b0) is split into two steps. We first (a) sam-

ple topologiesG ∼ p(·|⟨®s, ®a, ®o⟩, ¯b0) using Metropolis-Hastings [32].

The second step (b) computes the collection of counts given the

topologies, prior and history: Ûχ ∼ p(·|⟨®s, ®a, ®o⟩,G, ¯b0). This is a de-

terministic function that takes the prior Ûχ0 of G and counts the

transitions in the history ⟨®s, ®a, ®o⟩. For the former sample step, (ii.
a) G ∼ p(·|⟨®s, ®a, ®o⟩, ¯b0), we adopt a Metropolis-Hastings scheme.

Metropolis-Hastings samples some distribution p(x) using a pro-
posal distribution q(x̃ |x) and a acceptance test operation. The ac-

ceptance probability of x̃ is defined as
p(x̃ )q(x̃ |x )
p(x )q(x |x̃ ) . More specifically,

given some initial value x , Metropolis-Hastings consists of:

(1) sample x̃ ∼ q(x̃ |x)

(2) with probabilityMH -Accept =
p(x̃ )q(x̃ |x )
p(x )q(x |x̃ ) we set x ← x̃

(3) store x and go to (1)

Let us take p(x) = p(G |⟨®s, ®a, ®o⟩, ¯b0) and q to be domain spe-

cific but symmetrical
2
, then we derive the following Metropolis-

Hastings step for (ii. a):

MH -Accept =
p(G̃ |⟨®s, ®a, ®o⟩, ¯b0)���q(x̃ |x)

p(G |⟨®s, ®a, ®o⟩, ¯b0)���q(x |x̃)

=

p(⟨®s, ®a, ®o ⟩,G̃ | ¯b0)

(((((p(⟨®s, ®a, ®o ⟩ | ¯b0)

p(⟨®s, ®a, ®o ⟩,G | ¯b0)

(((((p(⟨®s, ®a, ®o ⟩ | ¯b0)

=
p(⟨®s, ®a, ®o⟩, G̃ | ¯b0)

p(⟨®s, ®a, ®o⟩,G | ¯b0)
(10)

Where q cancel out due to symmetry assumptions and the first

step applies the Bayes-rule: p(G |⟨®s, ®a, ®o⟩, ¯b0) =
p(⟨®s, ®a, ®o ⟩,G | ¯b0)

p(⟨®s, ®a, ®o ⟩ | ¯b0)
.

Equation (10) is the likelihood ratio between the two graph

structures. It has been shown that the likelihood p(⟨®s, ®a, ®o⟩,G | ¯b0),

given some mild assumptions (such as that the prior is a Dirichlet),

is given by the Bayesian-Dirichlet (BD) score metric [19]. Given

some initial set of prior counts for G, Ûχ0, and a ⟨®s, ®a, ®o⟩ dataset, we
denote Nnev

as the number of occurrences of v of node n given

2
We followed the common approach where proposal method q(G) either adds or
removes an edge inG . The prior over the domain specifies the set of edges that are

considered by q .

parent values e and compute the score as follows:p(⟨®s, ®a, ®o⟩,G | ¯b0) =∏
n

∏
e

Γ( Ûχne
0
)

Γ( Ûχne
0
+ Nne )

∏
v

Γ( Ûχnev
0
+ Nnev )

Γ( Ûχnev
0
)

(11)

Where we abuse notation and denote the total number of counts,∑
v
Ûχnev , as Ûχne (and similarly Nne =

∑
v
Nnev

). This formula is

also used to compute p(⟨®s, ®a, ®o⟩, G̃ | ¯b0).

Given this acceptance probability, Metropolis-Hastings can sam-

ple a new set of graph structures G with corresponding counts

for the CPTs Ûχ . This particular combination of MCMC methods —

Metropolis-Hastings in one of Gibbs’s conditional sampling steps

— is also referred to as MH-within-Gibbs and, has been known to

converge to the true distribution even if the Metropolis-Hastings

part only consist of one sample per step [23, 24, 27, 36, 45].

Particle Reinvigoration procedure: The overall particle rein-
vigoration procedure, assuming some initial ⟨G, Ûχ⟩, is summarized

as follows:

1. sample from HMM: ®s ∼ p(·|⟨®a, ®o⟩,G, Ûχ , ¯b0) (i.)

2. sample from MH: G ∼ p(·|⟨®s, ®a, ®o⟩, ¯b0) (using BD-score) (ii.a)
3. compute counts: Ûχ ∼ p(·|⟨®s, ®a, ®o⟩,G, ¯b0) (ii.b)
4. add ⟨s,G, Ûχ⟩ to belief and go to 1

It is not necessary to do this operation at every time step. In-

stead, the log-likelihood L of the current belief is a useful metric

to determine when to resample, which fortunately is a by-product

of importance sampling during the belief update. The total accumu-

lated weight, denoted as ηt =
∑
wi
t (the normalization constant) is

the likelihood of the belief update at time step t . Starting with L=0

at t=0, we maintain the likelihood over time Lt = Lt−1 + logηt
and reinvigorate the posterior b(⟨s,G, Ûχ⟩|⟨®a, ®o⟩, ¯b0) whenever the

L drops below some threshold.

3.4 Theoretical guarantees
Here we consider two theoretical aspects of our proposed solution

method. The first part shows guarantees on the planning method

given a particular belief, whereas the second part is concerned with

guarantees on the belief itself.

We first note that FBA-POMCP converges to the optimal solution

with respect to the belief:

Theorem 1. Given a belief b(s,G, Ûχ ), FBA-POMCP converges to

an ϵ-optimal value function of a FBA-POMDP: V (b,a)
p
−→ V ∗(b,a),

where ϵ = precision
1−γ .

Proof (sketch). Analysis from [42] prove that the value func-

tion constructed by POMCP, given some suitable exploration con-

stant, converges to the optimal value function with respect to the

initial belief. Work on BA-POMCP [22] extends the proofs to the

BA-POMDP. Their proof relies on the fact that the BA-POMDP is

a POMDP (that ultimately can be seen as a belief MDP), and that

BA-POMCP simulates experiences with respect to the dynamics D̄.
These notions are analogue to our construction of the FBA-POMDP

and we can directly apply the proofs to our solution method. □

In the second result we make a claim about the quality of the

belief. Previous work on importance sampling and particle filters

have shown the consistency of sequential importance sampling
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that is used as the belief update [40]. Here we show that the novel

particle reinvigoration method is consistent too.

Theorem 2. Given the observed history ht = ⟨®a
t
0
, ®ot

0
⟩ and the

prior belief b0(s,G, Ûχ ) in the FBA-POMDP constructed from a POMDP,
the samples taken from the MH-within-Gibbs-reinvigoration method
converge to the true distribution p(s,G, Ûχ |ht ,b0) in the limit.

Proof. This follows directly from the convergence properties

of the MCMC sampling methods. The method is an instance of

MH-within-Gibbs, where Gibbs is applied on the level to repeatedly

sample a model and state history conditioned on the other. The

state sequence is sampled directly from the conditional distribution

(given the model), and the model is sampled using Metropolis-

Hastings. AsMH-within-Gibbs is shown to be consistent [1, 36], our

reinvigoration scheme converges to the true posterior distribution.

□

First note that the consistency claims on Metropolis-Hastings

only hold if the proposal distribution gives a non-zero probability

of moving to instances (here graph topologies) that have non-zero

probability in the target [32]. By proposing to either add or re-

move any edge of interest, this condition is easily satisfied. Second,

Metropolis-Hastings notoriously comeswith an initial burn-in phase
where one should ignore samples that were collected before the

stationary distribution is reached. In practice, we avoid this phase

but minimize the loss of accuracy by exploiting the fact that our

initially sampled topology is taken from the current belief, assum-

ing it is close to a local mode [32]. Lastly, these results hold only in

the limit of infinite samples and therefore, under finite samples, the

results may still be far for optimal. In the next section we provide

an empirical evaluation and show that even with relatively few

samples this approach significantly outperforms other methods.

4 EXPERIMENTS
Here we provide an empirical evaluation of our approach on three

domains. Factored Tiger, an extension of the well-known Tiger

problem [21], demonstrates the need to identify and exploit irrele-

vant features. Second a Gridworlddomain, inspired by navigational

tasks, which has an additional planning challenge of long trajec-

tories without feedback. Lastly, arguably the hardest out of three

learning problems is Collision Avoidance taken from [26], where

the agent must infer the dynamics of an object of which the location

is never observed with high confidence.

4.1 Domains
The Tiger domain describes a scenario where the agent is faced

with the task of opening one out of two doors. Behind one door

lurks a tiger, a danger and reward of −100 that must be avoided,

while the other door opens up to a bag of gold for a reward of 10.

The agent can choose to open either doors (which ends the episode)

or to listen for a signal: a noisy observation for a reward of −1.

This observation informs the agent of the location of the tiger with

85% accuracy. In the Factored Tiger domain we increase the state

space artificially by adding seven uninformative and stationary

binary state features. The challenge for a learning agent is to infer

the underlying dynamics in the significantly large domain.

In this particular case, the agent is unsure about the observation

function. In particular, the prior belief of the agent assigns 60%

expected probability to hearing the tiger correctly, as opposed to

the true 85% probability. The prior belief over the structure of the

observation model is uniform: each edge from any of the eight

state features to the observation feature has a 50% chance of being

present in a particle in the initial belief.

Gridworld is a two-dimensional grid in which the agent starts

in the bottom left corner and must navigate to a goal cell. The goal

cell is chosen from a set of candidates at the start of an episode, and

can be fully observed by the agent. The agent additionally observes

its own location with a noisy sensor. The agent can move in all

four directions, which are generally successful 95% of the attempts.

There are, however, specific cells that significantly decrease the

chance of success to 15%, essentially trapping the agent. The target

of the agent is to reach the goal as fast as possible.

In this domain we assume no prior knowledge of the location

or the number of ‘trap’ cells and the prior assigns 95% probability

of transition success on all cells. The observation model in this

domain is considered known. Here we factor the state space into

the index of the goal state and the (x ,y) position of the agent

(s = ⟨x ,y,дoal-index⟩) and assume the agent knows that its next

location is dependent on the previous. However, half of the graph

structures in the prior also include the value of the goal cell as

feature to model the agent’s transition function.

In Collision Avoidance the agent pilots a plane that flies from
right to left (one cell at a time) in a 5 by 5 grid. The agent can

choose to stay level for no cost, or move either one cell diagonally

with a reward of −1. The episode ends when the plane reaches the

last column, where it must avoid collision with a vertically moving

obstacle (or face a reward of −1000). The obstacle movement is

stochastic, and the agent observes its coordinate with some noise.

While we assume the agent knows the observation and transition

model of the plane, the agent initially underestimates the movement

strategy of the obstacle: it believes it will stay put 90% of the time

and move either direction with 5% probability each, while the actual

probabilities are respectively 50% and 25%. The agent knows that

the location of the obstacle in the next state depends on its previous

location, but otherwise assigns a uniform prior distribution over

the topology of the obstacle feature.

4.2 Experimental Setup
The analysis provides an ablation study that includes a comparison

with BA-POMCP, a current state-of-the-art method. We study the

choice of model, type of belief update and planner (table 1). We

consider the BA-POMDP and FBA-POMDP models, importance

sampling with and without reinvigoration belief tracking methods,

and POMCP variants plus a baseline planners.

While a simple look-ahead method is the most common solution

for these frameworks, it performs poorly on the relatively lengthy

problems in our experiments. For an interesting comparison, we

propose a more sophisticated Thompson-Sampling-inspired plan-

ner (TSI) instead. TSI runs POMCP on a single hyper-state from

the belief, assuming the sampled domain state is the true current

state and that the sampled model defines the true POMDP.
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Figure 2: Return of flat vs factored models on Factored Tiger (left), Gridworld (middle) and Collision Avoidance (right)
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Figure 3: Return of POMCP versus TSI on Factored Tiger (left), Gridworld (middle) and Collision Avoidance (right)

Table 1: Design choices for the solution method

model: BA-POMDP FBA-POMDP

belief update: importance sampling i.s. + reinvigoration

planner: TSI POMCP

Our method uses POMCP with importance sampling and rein-

vigoration applied to the Factored BA-POMDP. Methods that we

compare against are FBA-POMCP, which excludes reinvigoration,

and the agent known-structure with the same configurations as

FBA-POMCP, but with complete knowledge on the structure of the

dynamics a priori. We also consider the tabular BA-POMCP and

the methods BA-TSI and FBA-TSI which apply the TSI planner on

respectively the BA-POMDP and FBA-POMDP models. FBA-TSI

includes reinvigoration to ensure fair comparison.

Due to the wide range of the reward functions, we ran the experi-

ments up to 100000 times in order to produce statistically significant

results. The shades in the figures indicate the 95% confidence bound

on the reported returns. In these experiments, the parameters of

the planning and belief update methods per domain are consistent

across methods and described in table 2. The parameters were cho-

sen to keep run time acceptable, and a complete real-time step (both

planning and updating the belief) takes less than 2 seconds on aver-

age in all our experiments. All methods employ the (F)BA-POMCP

modifications root-sampling and expected-transitions [22].

Table 2: Parameters per domain (sim refers to simulations)

domain # sims # particles L threshold UCB const

f-tiger 4096 1024 −50 100

gridworld 2048 512 −500 1

collision 256 128 −500 1000

4.3 Results
We present the results in two sets of figures, one with the focus on

model comparison and the effect of reinvigoration (Figure 2), and

the other with a focus on the planning method (Figure 3).

Model comparison: The Factored representation is able to cap-

ture the dynamics with fewer parameters and, as a result, our

method and the known-structure agent consistently outperforms

the tabular BA-POMCP method (Figure 2). While none of the meth-

ods have converged on the Gridworld problem (center image) yet,

BA-POMCP is clearly the slowest learner. This is also shown in the

Collision Avoidance domain (right), where the learning rate of our

method is the highest, and BA-POMCP’s is the lowest. Specifically

chosen to represent a problem with relatively compact underly-

ing dynamics, the BA-POMCP is unable to learn in the Factored

Tiger problem (left), whereas the known-structure agent and our

method are able to distinguish the important features and the belief

approaches the real model within 100 episodes.

Reinvigoration:A practical issue of particle filters is quality de-

generacy. This is particularly obvious in the Factored Tiger problem,
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as FBA-POMCP (red line) plummets after 50 episodes. Qualitative

analysis shows that in the most likely scenarios FBA-POMCP per-

forms on par with the other two factored approaches. However,

occasionally due to poor luck, the belief converges to a posterior

that concentrates on a topology where there is no edge between

tiger-location-feature and the observation feature, and as a result

the agent is unable to represent the true model. In those runs, the

agent can only open a door randomly, leading to an average re-

turn of −45, which causes the decline in performance. While this

phenomenon also happens in the other domains, the result is less

dramatic, and thus less obvious. One interesting observation is that

reinvigoration not only outperforms no-reinvigoration, but can also

be superior to an agent that knows the correct structure a priori

(the blue line known-structure for the Collision Avoidance domain).

Closer inspection revealed that while reinvigoration is meant to

tackle structure degeneracy, it also produces a good approximation

of the counts. Given the small number of particles (128), the distri-

bution after reinvigoration represents the belief more closely than

regular importance sampling does in this domain.

Planner comparison: Figure 3 compares the performance of

the POMCP planner (our method and BA-POMCP) with the base-

line TSI planner (FBA-TSI and BA-TSI). The gap in performance (in

favor of POMCP) indicates the importance of considering the joint

uncertainty over the state and model parameters during planning,

as opposed to picking an action optimal with respect to a sample

of the belief. In Gridworld (center image) this uncertainty is ar-

guably the least important, as similar states (agent coordinates) and

models lead to similar policies, and thus the difference (although

significant) are less pronounced. The results on Collision Avoid-

ance, however, demonstrates the need to consider the full posterior

more clearly: FBA-TSI performs as poorly as BA-POMCP, while we

know the quality of its belief is on par with our method. Lastly,

the Factored Tiger problem reveals the true nature of the TSI, as

both approaches fail horribly. Since the TSI samples a single hyper-

state and completely ignores the uncertainty over the current state,

the optimal policy is to simply open a specific door, leading to an

expected return of −45.

5 RELATEDWORK
Much of the recent work in Reinforcement Learning in partially

observable environments has been in applications of Deep Rein-

forcement Learning to POMDPs. To tackle the issue of remem-

bering past observations, researchers have employed Recurrent

networks [18, 51]. Others have introduced inductive biases into

the network in order to learn a generative model to imitate belief

updates [20]. While Deep Reinforcement Learning approaches are

able to tackle large-scale problems, these approaches often require

millions of interactions with the real world. Another of their main

drawbacks is that they do not address the fundamental challenge

of the exploration-exploitation trade-off in POMDPs.

More traditional approaches including the U-Tree algorithm [29]

(and its modifications), EM-based algorithms such as [25] and policy

gradient methods [4], typically do not suffer from the same lack of

sample efficiency. They too, however, have similar issues solving

the exploration-exploitation trade-off.

Bayesianmethods are a good fit for domain where solutions must

be learned quickly, as they both address exploration-exploitation

in a principled fashion, and allow the user to utilize domain knowl-

edge in the form of a prior distribution. The Infinite-POMDP [12]

(iPOMDP), for example, models the probability distribution over the

dynamics as a posterior over the space of HMMs. In doing so, the

iPOMDP additionally relaxes the assumption that the state space is

known, tackling an even more general setting. This complicates the

specification of a prior, making it more difficult to encode knowl-

edge. Other BRL methods solve the case of continuous state space,

taking on Gaussian assumptions over the dynamics [10, 37].

Work on generalization inmodel-based BRLmethods include [34],

which introduces ‘tied’ parameters, hard-coded sets of states to

share transition probabilities. This idea is extended [48] to main-

taining a weighted mixture of increasingly ‘tied’ models. The FBA-

MDP [38] learns the transition model as a set of BNs and has been

the inspiration of the MH part of our reinvigoration method.

6 CONCLUSION
This paper pushes the state of the art in model-based Bayesian

reinforcement learning for partially observable settings. As we

demonstrated, such methods can exploit prior information to allow

for learning in hundreds rather than millions of episodes. Despite

their advantage, previous model-based BRL methods for partially

observable settings, such as the BA-POMDP, faced a scalability

bottleneck due to their tabular nature.

To overcome this bottleneck we introduced the FBA-POMDP

framework, which exploits factored representations to compactly

describe the belief over the dynamics of the underlying POMDP.

And in order to effectively solve the FBA-POMDP, we introduced

a novel particle reinvigorating algorithm to track the complicated

belief and paired it with FBA-POMCP, a new Monte-Carlo Tree

Search-based planning algorithm. We proved that this method,

in the limit of infinite samples, is guaranteed to converge to the

optimal policy with respect to the initial belief. In an empirical eval-

uation we demonstrated that our structure-learning approach is

roughly as effective as learning with given structure in two domain,

and, surprisingly, even more effective on the collision avoidance

domain. The results also show the significance of representing and

recognizing independent features, as our method either outper-

forms BA-POMDP based agents or is able to learn in scenarios

where tabular methods are not feasible at all.

In order to further scale these methods up future work can take

several interesting directions. For domains too large to represent

with Bayes Networks one could investigate other models to cap-

ture the dynamics. For domains that require learning over long

sequences, reinvigoration methods that scale more gracefully with

history length would be desirable
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