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ABSTRACT
A goal of Interactive Machine Learning is to enable people without

specialized training to teach agents how to perform tasks. Many

of the existing algorithms that learn from human instructions are

evaluated using simulated feedback and focus on how quickly the

agent learns. While this is valuable information, it ignores impor-

tant aspects of the human-agent interaction such as frustration. To

correct this, we propose a method for the design and verification

of interactive algorithms that includes a human-subject study that

measures the human’s experience working with the agent. In this

paper, we present Newtonian Action Advice, a method of incorpo-

rating human verbal action advice with Reinforcement Learning in

a way that improves the human-agent interaction. In addition to

simulations, we validated the Newtonian Action Advice algorithm

by conducting a human-subject experiment. The results show that

Newtonian Action Advice can perform better than Policy Shaping,

a state-of-the-art IML algorithm, both in terms of RL metrics like

cumulative reward and human factors metrics like frustration.
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1 INTRODUCTION
A challenge of Interactive Machine Learning (IML) is to design

algorithms that learn from human feedback rather than simulated

input, i.e. oracles. Several factors must be accounted for to elicit

human feedback from non-experts, including: 1) how people intu-

itively teach and 2) what aspects of interaction foster a positive
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(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
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human experience. Creating a positive human interaction is nec-

essary because people will not use an algorithm that creates a

poor experience. Unfortunately, many existing IML algorithms are

evaluated solely using oracles, assuming oracle and human input

are equivalent [2, 4, 19, 23]. Oracle evaluations result in valuable

information about the theoretical efficiency of an algorithm, but

ignore important aspects of the human-agent interaction such as

how humans react to the agent. For example, an oracle will never

get frustrated with the agent. We suggest that validating interaction

algorithms with oracles and analyzing traditional Reinforcement

Learning metrics such as cumulative reward is only the first step.

The next validation step should be measuring peoples’ experiences

using human factors metrics, such as frustration. This work demon-

strates a template for IML algorithm design and verification in

which researchers: 1) design for a positive human experience, 2)

test the algorithm with oracles, and 3) verify the algorithm with a

human-subject experiment measuring human factors.

This paper introduces an algorithm, Newtonian Action Advice,

which incorporates a human’s verbal action advice with RL (“Move

right. Go down.”). The algorithm leverages a simple physics model

to provide an agent that acts in a way people expect and find non-

frustrating. We validated our algorithm by first constructing oracles

to simulate human feedback to compare Newtonian Action Advice

(NAA) with Policy Shaping and Bayesian Q-learning. In addition

to the simulations, we conducted a human-subject experiment in

which participants trained both NAA and Policy Shaping agents,

and then reported on the experience of working with both agents.

For equivalent human input, Newtonian Action Advice performs

better than Policy Shaping, both in terms of RL metrics like cumu-

lative reward and human factors metrics like frustration.

2 BACKGROUND
2.1 Reinforcement Learning (RL)
RL is a form of machine learning influenced by behavioral psy-

chology in which an agent learns what actions to take by receiving

rewards or punishments from its environment [21, 24]. The probabil-

ity people will repeat an action in a given circumstance is increased

or decreased if they receive positive or negative reinforcement.

Most RL algorithms are modeled as Markov Decision Processes

(MDPs), which learn policies by mapping states to actions such

that the agent’s expected reward is maximized. An MDP is a tuple

(S,A,T ,R,γ ) that describes S , the states of the domain; A, the ac-
tions the agent can take; T , the transition dynamics describing the

probability that a new state will be reached given the current state
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and action; R, the reward earned by the agent; and γ , a discount
factor in which 0 ≤ γ ≤ 1.

Bayesian Q-Learning (BQL) is an MDP-based RL algorithm in

which the utility of state-action pairs are represented as probabilis-

tic point estimates of the expected long term discounted reward [3].

BQL was used as the underlying RL algorithm for both the Policy

Shaping and NAA interaction methods in this work.

2.2 Learning from Critique and Advice
Two methods of human instruction that can be used to train IML

algorithms are critique and advice. Critique is positive or negative

feedback provided in response to an agent’s previous actions; e.g. a

person saying “good” or “bad”. Advice is when a person tells the

agent what action to take next; e.g. “move left.”

Critique was initially used directly as a reward signal [6], but it

was later shown [8, 27] that it is more efficient to use critique as

policy information. Policy Shaping is an interaction algorithm that

enables a human teacher’s critique to be incorporated into a BQL

agent as policy information [4] and was used in this work.

Various forms of advice have been developed in other work,

including linking one condition to each action [14], linking a condi-

tion to rewards [13], and connecting objects to actions [11]. Several

connect conditions to higher-level actions that are defined by the

researcher instead of primitive actions [7, 12, 14]. Argall et al. [1]

creates policies using demonstrations and advice. Meriçli et al. [16]

parses language into a graphical representation and finally to prim-

itive actions. Maclin et al. [14] has the person provide a relative

preference of actions. Sivamurugan and Ravindran [20] explored

learning multiple interpretations of instructions. Tellex et al. [25]

represents natural language commands as probabilistic graphical

models.

Mostmethods are permanently influenced by the advice. Kuhlmann

et al. [12] can adjust for bad advice by learning biased function ap-

proximation values that negate the advice. Maclin et al. [14] uses a

penalty for not following the advice that decreases with experience.

The Newtonian Action Advice developed in this paper differs be-

cause the advice can be overwritten by new, contradictory advice

in the future. This makes NAA more forgiving to an imperfect user

compared to other algorithms including Policy Shaping.

Many researchers incorporate advice using IF-THEN rules and

formal command languages [12, 14]; if the state meets a condition,

then the learner takes the advice into account. Formal command

languages and IF-THEN rules require advice that is state specific

and contains numbers. Similar to this work, the advice in Argall et al.

[1] does not require people to give specific numbers for continuous

state variables, but uses a set of predefined advice operators.

Most IML studies rely on oracle simulations rather than human-

subject experiments. There are some studies that use human sub-

jects such as Cederborg et al. [2], which investigated how to inter-

pret silence while learning from critique with Policy Shaping. How-

ever, studies like this elicit human instruction in a non-interactive

manner and use the instruction offline to train agents. Such studies

demonstrate valuable algorithmic information, yet they analyze

objective ML metrics while ignoring the human experience. One

of our goals is to show the necessity of interactive human-subject

experiments that measure human factors.

2.3 Natural Language Processing (NLP)
The two NLP tools used in this work were Automatic Speech Recog-

nition (ASR) and sentiment analysis. ASR software transcribes the

human teacher’s verbal instructions to written text. The human-

subject experiment in this work used Sphinx ASR software [5].

Sentiment analysis is an NLP tool used to classify movie, book,

and product reviews into positive and negative [18]. Sentiment anal-

ysis has not been widely applied to action selection. One method

we previously developed for using sentiment analysis is to classify

natural language advice into advice of ‘what to do’ and warnings of

‘what not to do’ [11]. Many approaches to learning from language

instruction require people to provide instructions using specific

words, often in a specific order or format [16]. Thomason et al. [26]

worked to get around limitations like keyword search by creating

an agent that learns semantic meaning from the human. In this

work we created a method of using sentiment analysis to filter

verbal critique into positive and negative, which furthers the goal

of allowing people to provide verbal instructions without being

limited to a specific dictionary of words.

This work uses Stanford’s deep learning sentiment analysis

software [15], which uses Recursive Neural Tensor Networks and

the Stanford Sentiment Treebank [22]. The Stanford Sentiment

Treebank is a set of labeled data corpus of fully-labeled parse

trees trained on the dataset of movie reviews from rottentoma-

toes.com [17].

Algorithm 1 Newtonian Action Advice algorithm

1: procedure NAA
2: for each time step do
3: Listen for human advice

4: if human advice given then
5: newAdvice(state,advice)

6: action = actionSelection()
7: Take action, get reward

8: Update BQL policy with reward

9: procedure newAdvice(state,advice)
10: advice JustGiven ← True
11: adviceDict[state] = advice
12: currentAdvice = advice
13: procedure actionSelection(state)
14: if advice JustGiven == True then
15: chosenAction ← currentAdvice
16: timesNewAdviceFollowed+ = 1

17: if state < adviceDict then
18: adviceDict[state] = chosenAction

19: if timesNewAdviceFollowed >= Sdes then
20: advice JustGiven = False
21: timesNewAdviceFollowed = 0

22: else if state ∈ adviceDict then
23: chosenAction = adviceDict[state]
24: else
25: chosenAction = BQLactionSelect(state)

26: return chosenAction
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Figure 1: Simple Force Model. Actions are an external force
acting on the agent, and ‘friction’ determines the amount of
time the action will be followed after the advice is given.

3 NEWTONIAN ACTION ADVICE
Newtonian Action Advice is an interaction algorithm we designed

to enable an RL agent to learn from human action advice. The

theory is a metaphor of Newtonian dynamics: objects in motion

stay in motion unless acted on by an external force. In the NAA

model, a piece of action advice provided by the human acts as an

external force on the agent. Once a person provides advice (ex: “Go

right”), the agent will immediately move in the direction of the

external force, superseding the RL agent’s normal action selection.

The model contains natural friction that ‘slows down’ the agent’s

need to follow the human’s advice; this ensures that after some

amount of time, the agent will resume the RL algorithm’s action

selection. Imagine a kid on roller skates has been gently pushed

in one direction - the push is advice and friction will eventually

bring the kid to a stop so she’s no longer following the advice. In

the NAA algorithm, the friction brings the advice to a stop and lets

the kid (agent) choose its own action after the advice has ‘run out’.

The advice does not necessarily need to specify directional motion.

Newtonian Action Advice was designed to behave in a manner

that is intuitive for the human teacher. The force model allows each

piece of advice to be generalized through time. If a person says, “go

right,” the NAA agent will keep moving right until the ‘friction’

causes the agent to resume normal exploration. The simplicity of the

force model is a feature to improve the human experience; people

deal with Newtonian mechanics in their everyday life. For example,

a ball when thrown will rise to a certain height and fall back to the

ground. The motion is predictable, and one does not need physics

training to recognize and expect the motion. We expect that loosely

mimicking this will help create a user-friendly experience.

If advice was followed in a state, the agent will follow the same

advice if the state is seen in the future. This means that a person

will only have to provide advice once for a given situation. Also,

only the latest advice is saved for a state, so people can correct

mistakes or change the policy in real time.

BQL was used as NAA’s underlying RL algorithm. This choice

was primarily made so the NAA algorithm could be more directly

compared to Policy Shaping. The structure of the NAA algorithm

is such that the BQL algorithm could be exchanged for a different

RL algorithm.

At each time step in NAA in algorithm 1, the agent listens for

advice. If advice is given, the agent updates its advice dictionary.

The agent then chooses and takes an action, receives a reward, and

updates the BQL policy. The New Advice procedure adds the new
(state, advice) pair to the agent’s dictionary and sets a parameter

that will tell the Action Selection procedure to follow the new advice.

The Action Selection procedure checks to see whether advice has

recently been given and should still be followed. If the advice is

being generalized through time (due to low friction) and the new

(state, advice) pair has not been added to the dictionary, it will

be added. If this state is revisited in the future, the recent advice

given for a previous state will be applied as if it had been given

for this state, too. The friction timer is then updated. If the timer

indicates that the advice has been followed enough, parameters will

be reset so the agent will return to the BQL’s action selection for

the next time step. If advice has previously been given for this state,

the agent must choose between the human advice and the BQL

suggestion. For this work, we always choose the human’s advice.

If a researcher wants to encourage more exploration, a different

method can be chosen (e.g. an algorithm similar to ϵ − дreedy
applied to human vs. agent action selection instead of exploration

vs. exploitation). However, we have found that following advice in

a probabilistic manner increases frustration since the agent seems

to disregard advice [10]. In the case that no advice has been given

for or generalized to the current state, the action is chosen from

the BQL’s method.

3.1 Combining Supervised and Reinforcement
Learning to allow for personalization by
end-users

When designing an interactive machine learning algorithm, one

first must ask: what is the goal of IML? Is the goal to use human

instruction to decrease training time? Or is the goal to enable people

to teach an agent to perform a task in the way the human intends? If
the goal of IML is to use human instruction to decrease the amount

of time it takes to train the RL agent, then we do not need to care

about the nature of the learned policy. IML can use powerful RL

algorithms that are capable of learning from their environment,

and decrease training time by using human input.

However, if the goal is to get the agent to perform a task that

a non-expert specifies in the way the human wants the task done,
then we have a problem. The policy a RL agent learns is very

sensitive to the reward function. In this work, as well as most IML

research, the reward function is provided by the researcher. Given

a reward function, an RL algorithm will learn a policy to maximize

the reward, but the policy learned may be very alien to a human

mind. The agent will complete the task efficiently, but not in a

way that makes sense to a human. Given a reward function and

human input, the RL algorithm may initially learn a policy that

conforms to the human’s instructions, but eventually learn a policy

that solely maximizes cumulative reward. This satisfies a goal of

decreasing training time since the human will have shown the

RL agent high-earning states earlier than it would have explored,

but the policy may still be baffling to a non-expert. The human

teacher may think their instructions were disregarded in the long-

term, creating feelings of frustration and powerlessness when they

cannot directly control the agent’s policies.

NAA combats this problem by combining supervised and rein-

forcement learning to allow for personalization by end-users. A

human provides information that is used to create policies that

are static to the agent (supervised), but can be overwritten by the

human. The agent uses RL to determine the best course of action
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for parts of the state space in which human advice is not given.

Not only does this enable the agent to use human input to decrease

training time, it also empowers the human to customize how the

agent performs the task. It is possible the learned policy will be

near-optimal instead of optimal from an objective analysis of the

cumulative reward; but the agent’s performance will be in greater

accordance with the human teacher’s instructions, which will in-

crease the human’s satisfaction with the agent’s performance.

3.2 Choosing the friction parameter
When calculating the algorithm’s ‘friction’ parameter, it is bene-

ficial to think of the parameter as the number of time steps each

piece of advice should persist for, Sdes . Increasing Sdes causes each
piece of advice to be followed for a longer time, which causes a

metaphorically lower friction in the model.

Let (Sdes , Smin , Smax ) be the (desired, minimum, maximum)

number of steps advice should persist for with units of steps. Let

(∆tdes ,∆tmin ,∆tmax ) be the (desired, minimum, maximum) time

between given advice in seconds.U (steps/second) is the domain

update rate. Equations 1-3 show how to calculate the minimum,

maximum, and desired values of the friction parameter. Two items

should be noted for Smin . First, the value of ∆tmin has a lower

bound based on human limitations. It is nonsensical to provide

advice that only lasts for a fraction of a second; if ∆tmin is too

small, it may occur that the agent follows the advice for such a

short amount of time that it is not perceivable by the human. We

suggest ∆tmin ≥ 0.5(seconds). Second, the advice must last for at

least one time step, so Smin ≥ 1(step). Depending on the domain,

task, and nature of the actions, we suggest a starting value of ∆tdes
to be between 2-8 seconds.

Sdes = ∆tdes ∗U (1)

Smin = ∆tmin ∗U (2)

Smax = ∆tmax ∗U (3)

Equation 4 shows the bounds on the friction parameter. The

value of Smin has the potential to run into a hard boundary based

on human limitations, while Smax is a flexible boundary based on

desired behavior.

(1step) ≤ Smin ≤ Sdes ≤ Smax (4)

Instead of calculating the friction parameter using the desired

time between when advice is given, the average duration of each

action can be used. Let ∆a(actions) be the desired number of actions

between when advice is given. spaavд is the average number of

steps it takes to complete an action in units of (steps/action). tpaavд
(seconds/action) is the average time it takes to complete an action. If

the human teacher is instructing the agent to take primitive actions,

then spaavд = 1(step). If the human is providing instructions for

higher order actions, then spaavд ≥ 1(step). An action must last for

the duration of at least one time step, so ∆a ≥ 1. Equations 5 and 6

show expressions for Sdes depending on whether the researcher

has easier access to spaavд or tpaavд .

Sdes = ∆a ∗ spaavд (5)

Sdes = ∆a ∗ tpaavд ∗U (6)

If primitive actions are being used, it is likely that the ideal Sdes
parameter will be fairly large because the human teacher will want

a given piece of advice to be followed for several consecutive time

steps. If higher order actions are being used, a smaller Sdes may be

beneficial because it will already take the agent several time steps

to carry out the higher order action.

4 EXPERIMENTAL METHOD

Figure 2: Radiation World Initial Condition

We validated our NAA algorithm first with oracles to test the

theoretical performance of the algorithm, and then with a human-

subject experiment to compare the human teacher’s experience

with another IML algorithm, Policy Shaping.

Both the simulations and human-subject experiment used the

same task domain. Oracles and human participants were required

to teach agents to rescue a person in Radiation World, a game

developed in the unity minecraft environment (Figure 2). In the

experimental scenario, there has been a radiation leak and a person

is injured and immobile. The agent must find the person and take

him to the exit while avoiding the radiation. In the Radiation World

map, the light gray represents walls and dark gray is open space

where the agent can move.

4.1 Constructing Oracles
We first tested the Newtonian Action Advice algorithm with simu-

lations that used a constructed oracle to simulate human feedback.

Each oracle was instantiated with a probability, padvice , that deter-
mined how often to check for advice from the oracle. We provided

the advice for the oracles to test several cases, including maximum

friction, two cases of minimal advice, and decreased friction.

The same oracle method and advice dictionary were used to test

the Policy Shaping agent. The advice dictionary was converted to

critique for the Policy Shaping agent in the following manner: if

the agent took the advised action for the state, the critique was

positive; otherwise, the critique was negative.

4.2 Human-Subject Experiment
We conducted a repeated measures human-subject experiment in

which we investigated the effect of two different interaction meth-

ods, NAA and Policy Shaping, on the human’s experience of teach-

ing the agent. Both agents learned from verbal instruction, which

was transcribed to text using ASR software. After language process-

ing, the human instructions were sent to an interaction algorithm

(Policy Shaping or NAA).
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a: Extensive advice given to simulation to
avoid radiation.

b: Minimal advice given to simulation to
complete task with minimal steps.

c: Minimal advice given to simulation to
avoid radiation.

Figure 3: Advice oracles were instantiated with.

a: The amount of advice provided impacts
reward. (advice given 0, 20, 50, and 90% of
the time)

b: Friction parameter impacts reward. (ad-
vice given 20, 50, 90% of the time)

c: Policy Shaping with critique given 98% of
the timeperformsworse thanNAAwith 20%
advice.

Figure 4: Cumulative reward comparisons

The Policy Shaping agent learned by incorporating a human

teacher’s positive and negative critique. People were instructed to

provide critique in response to the agent’s actions. We used senti-

ment analysis as a filter to enable people to provide verbal critique

without restricting their vocabulary. For example, a participant

could give varied critique such as, “That’s great,” or “That is a bad

idea.”

The NAA agent learned from a human teacher’s action advice.

Participants were instructed to tell the agent to move in a desired

direction. For example, if participants wanted the agent to move

right, they should say, “right.” The only four words the participants

used while training the NAA agent were, “up,” “down,” “left,” and

“right.” These four directions were grounded to the agent’s actions.

The experiment collected data from 24 participants, with an age

range of 18-62 years old. The experiment randomly split participants

into two groups. The first group trained the Policy Shaping agent

first, and the second group trained the NAA agent first. Participants

were told to stop training when either the agent was performing

as intended or the participant wanted to stop. After participants

finished training an agent, they filled out a questionnaire concern-

ing the experience. In the questionnaires, the participants scored

frustration, perceived performance, transparency, immediacy, and

perceived intelligence. For example, immediately after training an

agent, the participants were asked to score the intelligence of the

agent on a continuous scale from [0:10]. A value of 0 indicated that

the agent was not intelligent, while 10 meant very intelligent. The

same scale of [0:10] was used for additional human factors metrics

including performance, frustration, transparency, and immediacy.

Values of 0 corresponded to poor performance, low frustration, non-

transparent use of feedback, and a slower response time. Values

of 10 meant excellent performance, high frustration, clear use of

feedback, and an immediate response time, respectively. A statisti-

cal analysis determined if there was a significant difference in the

human experience between the two interaction methods.

5 RESULTS AND DISCUSSION
5.1 Oracle Results

5.1.1 Test 1: No generalization through time (extreme friction).
We simulated how the percentage of time advice is followed impacts

performance. In this simulation, the NAA agent did not generalize

a given piece of advice to other states immediately after the advice

was given, meaning that one piece of advice counted for only one

time step (maximum friction with S = 1(step)). The oracle was built
with advice given for every square in the grid (Figure 3a).

Incorporating human instruction by using the Newtonian Action

Advice algorithm allows the RL agent to achieve a higher level of

performance in many fewer episodes than without human input.

As advice is given for a greater number of individual times steps

(increasing from 20% to 90%), the agent accumulates more reward
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and completes each episode with fewer actions (Figure 4a). The

case with no human input is shown as BQL on the figures.

5.1.2 Test 2: Minimal Advice - shortest path. The minimal advice

to take the shortest path (which takes the agent next to the radiation)

is comprised of only two pieces of action advice equivalent to a

human saying, “First move down. Then go right.” The minimal

advice used to create the oracle in this case is represented in Figure

3b. Given only two pieces of advice, the NAA agent was able to

complete the episode in 10 steps achieving a reward of 102.0 every

single episode. The NAA agent was set to follow each piece of

advice for S = 5(steps) before returning to the BQL baseline action

selection.

The NAA model with a decreased friction parameter allows a

human teacher to say “down, right,” instead of, “down, down, down,

down, down, right, right, right, right, right.” It makes for a better

and more intuitive experience to provide less instruction and not

have to constantly repeat advice.

5.1.3 Test 3: Minimal Advice - avoiding radiation. The minimal

advice to take a path that avoids the radiation is comprised of

only four pieces of action advice equivalent to a human saying,

“First move right. Then go down. Move left then immediately right
after rescuing the injured person.” This advice, which was used to

construct the oracle for this case, can be seen in Figure 3c. Given

only four pieces of advice, the NAA agent was able to complete

the episode in 12 steps achieving a reward of 100.0 every single

episode. The NAA agent was set to follow each piece of advice for

S = 5(steps) before returning to the BQL baseline action selection.

This case is an example of the optimal vs. customized discussion

in Section 3.1. The learned policy was near-optimal instead of op-

timal from an objective analysis of the cumulative reward since

the path to avoid the radiation was slightly longer, but the agent’s

performance was in accordance with the human teacher’s advised

path.

5.1.4 Test 4: Generalization through time (friction effect). We

studied how the algorithm performs as the friction of the NAA

model is decreased (increased S parameter). Both minimal advice

tests have shown that a small amount of advice paired with a low-

ered friction can enable the NAA agent to perform optimally or

near-optimally from the first episode. To test the friction effect, we

built an oracle with the same advice given for every square as the

extreme friction oracle (Figure 3a).

When advice is given 20% of the time, the agent with a lower

friction S = 5(steps) initially performs better than a higher fric-

tion S = 1(step). However, in later episodes the agent with lower

friction earns a lower cumulative reward while taking more steps

to complete each episode compared to the high friction agent. In

general, these results indicate that, while lowering the friction can

increase initial performance, it can also cause a lower-performing

policy to be learned by the agent.

But what is really going on in this case? We have seen in both

minimal advice tests that minimal advice paired with a lowered

friction enables the agent to perform optimally or near-optimally

from the very first episode. Why would providing more advice

(padvice = 20%) harm the agent’s performance, particularly when

the extreme friction case showed that increasing advice increases

performance? The core issue is a limitation of the oracle. At every

time step, the oracle listens for advice with a probability of 20%.

This is not how a human would provide advice. The decreased per-

formance in this case occurs when the agent spends time repeatedly

banging into walls after advice has been generalized to a wall state

instead of the oracle providing advice for that state. The probability

padvice = 20% is low enough that this behavior is not corrected for

many episodes. Human teachers who observed this behavior would

quickly provide an extra piece of advice to make sure the agent did

not fruitlessly waste time. When people decrease advice, they tend

to limit themselves to the most important pieces of advice, such as

the minimal advice cases. The oracle has no way to know which

advice is the most important, and so provides advice in a way that

is not indicative of human behavior.

A possible solution to this problem is to build more elaborate

oracles that more accurately represent human behavior. There are

three main issues with this approach: 1) the use of and response

to an algorithm will vary across individuals, so multiple contradic-

tory oracles would need to be constructed, 2) an oracle’s ability to

provide a type of input does not mean a human is likely or able to

provide that input in reality, and 3) it is very unlikely that even the

most elaborate oracle could simulate the human’s response to the

agent, such as frustration. A more practical solution to this problem

is to test algorithms with human-subject experiments.

This case shows why IML researchers should verify interaction

algorithms with human-subject experiments in addition to simula-

tions. If we had analyzed these results without understanding the

limitations of the oracle, we might have discarded parameteriza-

tions using a lower friction.

5.1.5 Test 5: Comparison of Newtonian Action Advice and Policy
Shaping. Figure 4c shows that, given equivalent input, Newtonian

Action Advice can learn faster using less human instruction than

Policy Shaping. Even when Policy Shaping used advice 98% of the

time, it learned slower than the NAA agent that was using input

only 20% of the time. The oracle used the same setup as the extreme

friction and friction effect cases (Figure 3a).

When learning from human teachers in practice, however, the

performance of each agent is entirely dependent on the instruction

provided by the person. Neither agent is guaranteed to perform

better than the other. If the human provides no instructions, the

Policy Shaping and NAA agents perform equally since they both

reduce to a BQL algorithm. In order to investigate how the perfor-

mance of the agents varied with real human teachers, as well as

how the human experience was impacted by interacting with each

agent, we conducted a human-subject experiment.

5.2 Human Subject Results
This section will summarize the results from the human-subject

experiment and provide further evidence of why it is necessary

to use human-subject studies instead of relying only on oracle

simulations. An in-depth analysis of the human factors reasoning

about why people prefer NAA to Policy Shaping is found in the

associated publications ( Krening and Feigh [9, 10]).

Immediately after training each agent, participants were asked

to score aspects of their experience training the agent, including

frustration, perceived performance, transparency, immediacy, and
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Figure 5: Comparison of the Subjective Human Factors Met-
rics from the Human-Subject Study.

perceived intelligence (Figure 5). Paired t-tests were conducted for

each metric in which the null hypothesis was the pairwise differ-

ence between the two paired groups had a mean equal to zero. We

found that all measured aspects of the human experience differed

significantly between the two agents (Table 1). For all metrics ex-

cept frustration, a higher value indicates a better experience (more

intelligent, more transparent, responds immediately to instruction,

and better performance). Low values indicate low frustration, less

intelligent, less transparent, slow response to instruction, and worse

performance.

Table 1: Results of Statistical Tests on Subjective and Objec-
tive Metrics from the Human-Subject Study

Subjective Metrics Accept/Reject p

Frustration Reject 0.0046

Transparency Reject 1.3738e-05

Perceived Intelligence Reject 1.4192e-04

Perceived Performance Reject 0.0350

Immediacy Reject 2.0291e-06

Objective Metrics Accept/Reject p

Training Time (s) Reject 7.6406e-04

Avg Reward Reject 3.3849e-07

Avg Number Inputs Accept 0.2627

Avg Number Steps Reject 0.0037

In summary, compared to Policy Shaping participants found the

Newtonian Action Advice agent to be:

• More intelligent

• Less frustrating

• Clearer in terms of how the agent used human input

• More immediate in terms of using human input

• Better able to complete the task as the person intended

In addition to creating a better human experience, the NAA agent

also performed better than Policy Shaping in terms of objective

RL metrics (Figure 6). Paired t-tests were run on training time and

average reward, while Wilcoxon Signed Rank tests were performed

on the number of inputs and steps (Table 1). The average training

time (defined as the amount of time the person trained the agent)

and number of steps the agent took to complete each episode were

smaller for NAA. The average reward was higher for NAA than

Policy Shaping. However, the average number of inputs provided by
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Figure 6: Comparison of the Objective Metrics from the
Human-Subject Study.

the human teachers was statistically equal for the two interaction

algorithms.

The nature of the agent’s response to the human’s instruction

created significantly different human experiences between the two

agents. Consider that both agents used the same underlying BQL al-

gorithm, and so would perform equally with no human input. Also,

people provided a statistically equal number of instructions for both

agents, so both were equally effortful for the person. And yet, the

peoples’ perceptions of the agents differed across all subjective met-

rics, including frustration, perceived intelligence, and transparency.

A thorough analysis of the participants’ responses in Krening and

Feigh [10] shows that the main factors that influenced the partici-

pants’ frustration levels were whether the agent’s behavior made

the person feel powerless, whether the agent’s choices were trans-

parent, the complexity of the instruction format, and whether the

agent immediately acted on the person’s instructions. The objective

metrics like training time and reward were not factors mentioned

by the participants. This tells us that the human experience can-

not be improved solely by designing algorithms to optimize the

objective metrics that are available in oracle testing.

Think of control systems for a minute. Control systems usually

contain a controller and observer. An observer estimates values of

the state space like position and velocity so the controller knows

where the agent is and what it has to do to reach a goal. If a con-

trol system does not observe part of the state space, like velocity,

the controller may push the system to move dangerously fast or

mathematically diverge to infinity and “blow up”. IML verification

that only uses oracle simulations is like a control system that is not

fully-observed; the human experience is “blowing up” because it is

never observed by researchers, and so algorithms are not designed

to correct for the human experience. To correct this, we need to

observe the human experience by performing human-subject ex-

periments that analyze human factors such as frustration. Then, we

need to use the results from the human participants to influence

the design of algorithms for a better human experience. If people

dislike interacting with an agent, they will not continue to use that

agent.

6 CONCLUSIONS
This paper presented Newtonian Action Advice, a method to inte-

grate a human’s interactive action advice (ex: “move left”) with RL.

The results show that Newtonian Action Advice can perform better

than Policy Shaping, both in terms of RL metrics like cumulative
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reward and human factors metrics like frustration. NAA can learn

faster using less human instruction than Policy Shaping. NAA cre-

ates a better human experience than Policy Shaping. Compared to

Policy Shaping, participants found the NAA agent to be less frus-

trating, clearer and more immediate in terms of how the agent used

human input, better able to complete the task as the participant

intended, and more intelligent.

This work also acts a template for the design and verification

of IML algorithms that includes: 1) designing for a positive human

experience, 2) testing the algorithm with oracles, and 3) verifying

the algorithm with a human-subject experiment measuring human

factors. In order to create algorithms people will enjoy interacting

with, we must move beyond oracle simulations to test agents in

human-participant studies measuring human factors.
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