
Modeling Agent-Environment Interactions in Large-Scale
Multi-Agent Based Simulation Systems

Mohammad Al-Zinati
Jordan University of Science and Technology

Irbid, Jordan
mhzinati@just.edu.jo

Rym Wenkstern
The University of Texas at Dallas

Richardson, Texas
rymw@utdallas.edu

ABSTRACT
In this paper we present the Action-Potential/Result (APR) model
for agent-environment interactions in Multi-Agent Based Simu-
lation systems (MABS) involving thousands of perception-based
agents executing on a single host. The environment structure is par-
titioned into cells which are managed by specialized agents called
controller and coordinator. The agents send their stimuli to the con-
troller managing the cell in which they are situated. The controller
assesses the received agent stimuli as well as user-triggered and
events propagation stimuli. It combines them, attempts to resolve
potential conflicts, communicates with adjacent controllers and
the coordinator, and ensures that the updated environment state
is communicated back to its agents. The APR model has been im-
plemented as a component of the DIVAs framework and can be
reused with minimal changes for the construction of agent-based
simulations with DIVAs. Experimental results show a significant
improvement in scalability over conventional centralized solutions.

CCS CONCEPTS
• Computing methodologies → Agent / discrete models;

KEYWORDS
Multi-Agent Simulation Systems; Interaction Model

ACM Reference Format:
MohammadAl-Zinati and RymWenkstern. 2019.ModelingAgent-Environment
Interactions in Large-Scale Multi-Agent Based Simulation Systems. In Proc.
of the 18th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS,
9 pages.

1 INTRODUCTION
Real-world environments are complex systems which are open [26].
They are inaccessible, i.e., they cannot be observed in their entirety
but partially perceived through sensors (e.g., vision, auditory, olfac-
tory); non-deterministic, i.e., the effect of an action or event on the
environment is not known with certainty in advance; dynamic, i.e.,
the environment constantly undergoes changes as a result of agent
actions or external events; and continuous, i.e., the environment
states are not enumerable.

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The development of realistic large-scale1 Multi-Agent Based Sim-
ulation Systems (MABS) with open environments poses significant
challenges: thousands of virtual agents need to partially perceive
their dynamic surroundings through sensors, deliberate, then act
upon a spatial (i.e., non-grid, non-graph based) environment in
simulated real-time; the virtual agent’s actions have to obey the
physical laws of the environment (e.g., two agents cannot be in the
same position at the same time); and, to improve user experience,
interaction mechanisms with the simulation (e.g., trigger random
explosion, modify agent properties) need to be provided. Moreover,
in order for researchers to benefit from the availability of such
MABS, these systems need to execute on a single computer with
reasonable computational resources.

From an engineering perspective, the construction of MABS
with the features discussed above requires a complete separation
of concerns between agents and the environment. As such, distinct
abstract models for agents and the environment need to be defined
[20, 34, 36]. Years of research and experimentation with various
environment structures led us to conclude that open virtual envi-
ronments are best modeled as multi-agent systems [1]. In order to
tie the agents model with the environment model, it is necessary
to define a model of interaction between these components.

Researchers have proposed models of interaction between agents
and environment [12, 19]. These models are based on Ferber and
Muller’s seminal Influence-Reaction Model (IRM) [8] which posits
that agents influence their environment which in turns reacts to
these influences. Although these formal models have been vali-
dated on small examples, their extension to large scale problems
has not been investigated, and their implementation in large-scale
interactive simulation systems has not been achieved.

In this paper we present the Action-Potential/Result model (APR),
a model of interaction between agents and environments with
decentralized structure. The APR model improves existing IRM-
based models as follows:
(1) It is defined to handle thousands of perception-based virtual

agents situated in a virtual open environment, and executing
on a single computer.

(2) It considers an underlying environment structure which is split
into cells.

(3) The environment is modeled as a multi-agent system where
specialized agents called cell controllers manage individual cells.
Cell controllers are in turn managed by a coordinator ;

(4) The two phased model involves interactions between agents
and controllers, controllers and controllers, and controllers and
coordinator;

1In the remainder of this paper the term large refers to the execution of thousands of
perception-based agents.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

763

(5) It considers interactions with the user of the simulation at run
time by processing externally triggered events;

(6) It has been implemented and thoroughly tested on several large-
scale scenarios.

The DIVAs (Dynamic Information Visualization of Agent systems)
framework [1] provides the basic building blocks, i.e., abstract mod-
els, architectures, software components and libraries for the devel-
opment of a variety of agent-based simulation systems. APR has
been implemented as a core component of DIVAs and can be reused
with minimal changes for the construction of application-specific
agent-based simulations. As such, it allows researchers to shift
their focus from the engineering of complex structural mechanisms
to the specification and simulation of application-specific virtual
agents and environments.

The remainder of this paper is organized as follows: Section
2 discusses related works. Section 3 introduces fundamental con-
cepts. Sections 4 and 5 present the APR model. Section 6 discusses
experimental results.

2 AGENT-ENVIRONMENT INTERACTIONS IN
MABS

Over the past decade, a plethora of application-specific agent-based
simulations systems has been discussed in the literature. These
systems were mainly developed by researchers to validate agent
models and algorithms in various areas such as social sciences
[27, 28, 31, 33], urban planning [11, 13, 25, 37] and transportation
[4–6, 10] to name a few. Naturally, application-specific simulation
systems do not generally account for the separation between agent
and environment concepts and are not concerned with the engineer-
ing of elaborate environment models and interaction protocols to
simulate openness. For most, either the environment has complete
control over the agents’ states, or agents have complete control over
their own state. Only a very few application-specific simulation sys-
tems distinguish between agents and environment [9, 23], but none
discusses agent-environment interaction mechanisms in detail. [23]
discusses High-Density Autonomous Crowds (HiDAC), a crowd
simulator where agents move according to rules of force. In HiDAC,
agents and environment are tightly coupled and the environment
exists as a low-level decision-making process for motion. [9] gives
an overview of the environment model of JASIM, a simulator for
traffic and crowd simulation. JASIM’s environment model is dis-
tinct from the agent model and uses “pipelines" to compute agent
perceptions from a hierarchical or graph-based data structure. It
updates its state, based on the agent actions. JASIM’s environment
is centralized and the processing of agent perception and motion
by the environment decreases the simulation performance.

In addition to application specific simulators, a number of multi-
agent simulation toolkits have been proposed. These toolkits are
intended to ease the development of simulation systems for spe-
cific application domains [14, 24, 35]. While these toolkits offer
integrated graphical environments for the execution of simula-
tions, they are based on simple environment structures (e.g., two-
dimensional grid or graph) with centralized control. Finally, a few
generic agent-based simulation frameworks have been developed
and used by the agent simulation community [17, 22, 30]. While

these frameworks offer libraries of components that can be used
for the construction of simulators, only a few distinguish between
agent and environment concepts [22, 30], but none offers mecha-
nisms to simulate large-scale interactive agent-based simulations
with open, spatial environments.

Among the first attempts at formalizing agent-environment in-
teractions in multi-agent systems is Ferber’s seminal Influence-
Reaction Model (IRM) [7, 8]. The original IRM presents a general
model of action which posits that agents influence their environ-
ment, which in turn reacts to these influences. The first phase
includes agents perceiving, deliberating and executing actions. The
second phase is the environment’s merging and reacting to influ-
ences. IRM was developed to model tropistic and hysteretic agents
evolving in a centralized environment. IRM set the stage for a
research area on agent-environment interactions: in [19] Michel
proposes IRM4S, an adaptation of the original IRM for Multi-Agent
Simulation Systems (MABS). IRM4S introduces a temporal variable
to clarify Ferber’s original action model, and adds environment
influences (e.g., a rolling ball in the environment) in the formalism.
Another variation of IRMwas proposed by Helleboogh et al. [12]. In
this model, the environment is given the responsibility to assess the
effect of influences and, when necessary, replace the original agent
“activities” with ones that do not contradict the physical laws of the
environment. This responsibility creates a strong coupling between
agents and the environment. In [21], Morvan et al. discuss a meta-
model for the specification of multi-level agent-based systems. This
model called IRM4MLS is an extension of Michel’s IRM4S model
and considers cases where agents belong to several levels, (e.g., a
lower-level an automated guided vehicle and higher-level conflict
solver) or emerge from lower levels.

The Influence-Reaction models discussed above define interac-
tion models in the context of a centralized environment structure
which limits scalability. In addition, environments are considered
as reactive systems. Moreover, given the focus on formal model
definitions, the examples provided are simple and there is no evi-
dence of the implementation and validation of the models for large
simulations with open environments.
In this paper we present the Action-Potential/Reaction model (APR)
for agent-environment interactions in large-scale simulation sys-
tems with open environments. APR extends IRM and IRM4S as
follows:

(1) It defines the environment model as a decentralized structure
managed by specialized agents. As such, from a structural per-
spective, the environment is a multi-agent system.

(2) It considers event propagation and interactions with the user
of the simulation at runtime.

(3) It has been implemented and thoroughly tested on several sce-
narios involving thousands of agents situated in open environ-
ments.

As a core component of the DIVAs framework, an overview of
an earlier version of APR was briefly introduced in [1], and an
extension proposed in [3]. However, the core model definition pre-
sented in this paper has not been discussed in any prior publication.

In the following section, we define the fundamental concepts at the
basis of the APR model.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

764

3 APR CONCEPTS
For the sake of illustration, in the remainder of this paper, we use
the example of a social simulation where virtual agents represent
humans situated in a virtual city (See Figure 1). It is important to
note that the purpose of this work is not to discuss a specific appli-
cation or an application-level concern (e.g., virtual agent decision
making) but rather to discuss a core building block necessary for
the construction of large-scale, interactive simulation systems. As
such, our discussion is related to the infrastructure layer (See Figure
1).

3.1 Open Environment Architecture
The open environment model which is at the basis of APR has the
following characteristics [20, 36]: 1) the underlying structure of
the virtual environment’s physical space is partitioned into smaller
areas called cells which carry a portion of the environment state;
2) Each cell is managed by a special-purpose infrastructure agent
called cell controller. A cell controller does not correspond to a
real-world concept but is defined for engineering purposes. A cell
controller’s role is to “manage” a cell. More precisely, it is responsi-
ble for: a) being aware of the virtual agents located in its defined
area; b) providing local virtual agents with the latest environment
state; c) maintaining a non-conflicting state for its cell; and d) in-
teracting with adjacent cell controllers to exchange information
about agents, events and event propagation. Figure 1 shows an
environment structured as a collection of adjacent cells each man-
aged by a cell controller. Cell controllers are in turn managed by a
higher-level specialized agent called coordinator. The coordinator’s
responsibility is to resolve potential conflicts that require a higher-
level of knowledge. During the execution of an application-specific
simulation, the underlying partitioned structure of the environ-
ment and any action executed at the infrastructure level by the
controllers or the coordinator are invisible to the agents and the
user of the simulation.

Figure 1: Environment models at the application and infras-
tructure layers.

3.1.1 Objects and Agent Material Forms. An environment in-
cludes objects and agent material forms (e.g., body). For the purpose

of this paper, environment objects are considered to be stationary
(e.g., house, tree) whereas agent material forms (e.g., bodies, vehi-
cles) are moving objects. Since objects and agent material forms
can be highly detailed with complicated shapes, the processing
of these entities may take a prohibitive amount of time. In order
to lower the computation time, an object or agent material form
is approximated by its bounding volume [29], i.e., the shape (e.g.,
box, cylinder, sphere) with minimum volume surrounding all of the
object’s or agent material form’s points.

In APR, agents and objects are defined by their states. In the
case of the social simulation example, the agent state includes: the
aдentID, its type (e.g., human, vehicle),position,headinд, f ieldsO f
Perception, velocity, sensorTypes (e.g., vision, auditory, olfactory),
status (e.g., alive or dead), scale , boundinдShape (e.g., box, cylinder,
sphere) and stimulus . The object state includes the objectID, type ,
position, scale , boundinдShape and rotation.

3.1.2 Agent Perception. During the execution of the simulation,
agents are not aware of the underlying partitioned structure of the
environment. They assume that wherever they are, they will receive
accurate information about their surroundings. Agents are equipped
with sensors which filter the environmental data and determine
what the agents can precisely perceive [15, 16]. To avoid processing
large amount of unperceivable data, controllers are responsible for
providing each agent with environment data comprising only the
states of cells intersecting the agent’s range of perception.

3.1.3 Events and Event Propagation. Events allow the model-
ing of environmental effects that may not be the direct result
of virtual agent actions. These effects can be pivotal to the out-
come of a simulation and introduce an enhanced sense of realism.
Events are introduced into the simulation either through user in-
tervention (e.g., trigger a bomb, move or resize an object during
the simulation), virtual agent action (e.g., scream), or environment
object manipulation (e.g., a building collapses). Simulated events
propagate over time and space and their effects may cross cell
boundaries and span multiple cells. In the APR model, events are
defined by their states. In the case of the social simulation exam-
ple, the event state includes the eventID, type (e.g., bomb, fire-
works), oriдin, timeO f Occurrence , intensity, properties (e.g., visi-
ble, audible, smellable), currentPropertyStatus (e.g., current visible,
audible, smellable radius), propertyPropaдationSpeed (e.g., speed
of sound propagation), propertyMaximumRanдeO f Detection (e.g.,
maximum visible distance)and propertyAдe . A detailed discussion
on event propagation can be found in [29].

3.1.4 Special Cases. The decentralized environment structure
leads to several special cases that require special handling. These
include the following.
An agent body spans multiple cells. In this case, the cell which
contains the most of the agent’s bounding volume is assigned the
responsibility to manage the agent. In case of an even span, an
implementation mechanism automatically assign an agent to a spe-
cific cell.
An agent is located in one cell but its actions will take place
in another cell. In this case, the agent’s intention to act is pro-
cessed by the cell in which its physical body is located but its state
is updated by the cell containing its final position.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

765

Environment

nd New State
Send New

State

Receive
StimuliReceive

Stimuli

Agenti Stimulus (api)

User Generated
Stimulus(apu)

C2C Messages

Decide
Decide

Agenti

Perceive Send

Combine
StimuliCombine

StimuliSend Receive

Controller
Knowledge Base

Cell Event Propagation
Stimulus (ape)

Combine
Stimuli

Decide

raw sensory
data

Combine
Sensory data

Decide

Agent
Knowledge Base

percept

action potential (api)

Transfer Agents

new state
Modify Cell

State

Cell Controller Ck

Update
Knowledge

knowledge

Decide

Deliberate

Deliberate

Controllerk

Stimulus (statek)

Update

Coordinator

Send Receive

Update

Figure 2: Agent-Environment Interactions in APR

An environment object spans multiple cells. In this case, we
chose to store the object details in all intersecting cells. This decision
results in storing redundant information but saves on processing.

3.2 APR Concept Definition
Action Potential An action potential is the expected result of an
action that is intended to be executed. The intention of acting upon
the environment can originate from the agents, environment ob-
jects, environment events and/or the user of the simulation. Since
there is no guarantee that actions will be allowed by the environ-
ment or that their result will happen as anticipated, actions only
have the potential to occur. The concept of action potential is similar
to the concept of influence in IRM4S. We use the term action poten-
tial to minimize confusion: the word influence is commonly defined
as the “act of producing an effect" [18] whereas in IRM models, it
is used to refer to intentions which do not produce effects.
Stimulus A stimulus is the transmission of a signal which prompts
an activity in the receiver. Stimuli are classified based on their origin:
1) agent stimuli; 2) external (user-invoked) stimuli; 3) controller-to-
controller stimuli; and 4) environment stimuli. In APR, the agents
stimulate the environment by transmitting their action potentials;
the user stimulates the environment by transmitting their intent
to change simulation properties at run-time, and the environment
stimulates the environment by sending potential effects of propa-
gating events. In turn, the environment stimulates the agents by
sending its latest state.
Action Outcome An action outcome is the result of an action
within a certain context.
Action Impact It is the difference between the previous state and
the current state of the environment that occurs as a result of some
action.

4 APR MODEL OVERVIEW
As mentioned in Section 2, the APR model is built on the concepts
defined by IRM and IRM4S and as such, it also follows a two phased
approach [29]. In APR, the phases are called agent phase and environ-
ment phase (see Figure 2). To ensure that no agent or cell controller

advances in simulated time beyond the others, the APR model is
driven by a continuous time tick initiated at the completion of each
phase and cycling repeatedly. A simulation cycle corresponds to
the completion of both the agent and the environment phases.

The Agent Phase
In this phase, agents perceive their surroundings, deliberate, update
their states and stimulate their environment (see Figure 2). A vir-
tual agent perceives the environment through multiple senses (e.g.,
vision, hearing, smell) [15]. Each sensor receives the environment
state and executes a specialized algorithm to determine what is
perceived by the agent in the form of raw sensory data. Follow-
ing this step, the agent combines the raw sensory data received
from the multiple sensors and uses its predefined knowledge to
convert the combined data into useful knowledge and percepts. Us-
ing its current percepts and knowledge, the agent decides the next
course of actions and determines the action potential which is then
transmitted as an agent stimulus. This stimulus is synchronously
communicated to the cell controller managing the cell in which the
agent is situated.

The Environment Phase
In this phase, cell controllers receive stimuli, deliberate, communi-
cate, update and send their states to their agents. A cell controller
combines the agent, user triggered, and cell event propagation stim-
uli and decides which action potentials are legal with respect to the
rules and constraints of the environment.

Given the level of attention given to agents and agentmodeling in
the literature, in the following section we focus on the environment
component and give a detailed discussion of the environment phase.

5 THE APR MODEL
In this section, we discuss the APR environment phase. We start by
defining the sets needed for the specification of the environment
functions, then proceed with a detailed definition of the environ-
ment functions.

5.1 Environment Model
The input and output sets required for the definition of the envi-
ronment functions are given in Table 1. The environment state
is defined in terms of its cells’ states. At time t − 1, cellk ’s state
Σk (t − 1) includes the parameters given in Table 2.

5.2 Environment Functions
During the environment phase, each cell controller executes three
main functions: Combine− muli , Decide and Modi f y (See Algo-
rithm 1). Each of these functions is executed concurrently by the
controllers. In the discussion, we use the term agent to refer to the
agent’s material form which is situated in the environment.

5.2.1 CombineStimuli. Through the execution of Combine−
Stimuli , a controller Ck combines various stimuli affecting its cell
with the intent of resolving as many Action Potential (AP) conflicts
as possible locally.Ck starts by processing external events affecting
cellk by executing ProcessEvents . This function combines the APs
of the user triggered event (e.g., trigger a bomb), the propagating

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

766

Table 1: Set Definition

Env : Set of cells
Σ : Environment State
Σk : cellk ’s state
Ok : Set of objects fully or partially contained in cellk
Ak : Set of agents located in cellk
Ak→k : Set of agents located in cellk and whose actions are

intended to take place in cellk
Ak→{x } : Set of agents located in cellk and whose actions are

intended to take place in adjacent cells x
A{x }→k : Set of agents located in adjacent cells x and whose

actions are intended to take place in cellk
Axk : Set of agents who do not belong to cellk but whose

bounding boxes cross cellk ’s boundaries
Xk : Set of external events triggered by the user of the

simulation in cellk
UOk : Set of environment object manipulations performed

by the user for objects partially or fully located in cellk
Πk : Set of propagating events for cellk
Πk→k : Set of propagating events occurring in cellk and re-

sulting in a propagation in cellk
Πk→{x } : Set of propagating events occurring in cellk and

resulting in a propagation in adjacent cells x
Π{x }→k : Set of propagating events occurring in adjacent

cells x and resulting in a propagation in cellk
Ek : Environment events resulting from the combination

of user triggered and propagating events in cellk

Table 2: Environment State

ak (t − 1) : the state of agents located in cellk
axk (t − 1) : the state of the agents who do not belong to cellk

but whose bounding boxes cross cellk ’s boundaries
ok (t − 1) : the state of the objects fully or partially contained

in cellk
ϵk (t − 1) : the state of the event resulting from the combina-

tion of user triggered and propagating events in cellk
πk (t) : the action potentials of events that will propagate

within cellk and/or to cellk at time t

events and the object manipulations (e.g., object rotation, re-sizing,
translation) to determine: a) the combined event state at time t ;
b) the object states at time t ; c) the APs of the propagating events
within the cell at time t + 1, and d) the APs of the propagating
events leaving the cell at time t + 1.

Ck proceeds by executing PreProcessAдentAPs . The purpose of this
function is for Ck to make use of its local knowledge to determine
which agents located in its cell have the potential to realize their
action-potentials (APs) in the cell and which will likely execute
their APs elsewhere. The information about each agent is stored
in preProcessinдDetails which includes the agent state and the
updated APs (after pre-processing).

In PreProcessAдentAPs , cell controller Ck addresses straightfor-
ward cases and also special cases such as:

Algorithm 1: Environment Phase
input : for each cellk : Σk (t − 1), χk .stimuli(t, χk .ap),

υok .stimuli(t,υok .ap), ak .stimuli(t,ak .ap)
output : for each cellk : Σk (t)
begin

for each cellk ∈ Env , in parallel do
CombineStimuli (Σk (t − 1), χk .stimuli(t, χk .ap),
υok .stimuli(t,υok .ap), ak .stimuli(t,ak .ap):

ϵk (t), πk→k (t + 1), πk→{x }(t + 1), ok (t),
ak→k .preProcessinдDetails(t),

ak→{x } .preProcessinдDetails(t))

Decide (Σk (t − 1), ϵk (t), ok (t),
ak→k .preProcessinдDetails(t),
ak→{x } .preProcessinдDetails(t),

a {x }→k .preProcessinдDetails(t),
πk→k (t + 1), πk→{x }(t + 1) :

ak→k .actionOutcome(t),a {x }→k .actionOutcome(t),
ϵk (t),ok (t), πk→k (t + 1), πk→{x }(t + 1))

Modify(Σk (t − 1),ak→k .actionOutcome(t),
a {x }→k .actionOutcome(t), ϵk (t),ok (t), πk→k (t + 1),

πk→{x }(t + 1) :
Σk (t))

Case 1: An agent AP is supposed to take place in another cell but
an object in cellk prevents the agent frommoving to that cell. In the
scenario shown in Figure 3, PreProcessAдentAP computes the esti-
mated updated AP forA and stores it inA1→1

1→2.preProcessinдDetails .

2

1

3

0-1-2-3 321

2

1

3

0-1-2-3 321

cell1 cell2 cell1 cell2

A A A A

Original agent stimuli After preProcessAgentStimuli

ak(t-1) ak.preProcessingDetails(t)ak.stimuli(t)

Figure 3: PreProcessAдentAPs - Case 1

Case 2: Agents have conflicting APs within the cell. For example, in
Figure 4 agentA intends to move to position (1, 3) in cell2 whereas a
faster agent B decided to move to position (−0.25, 3). The controller
determines that the potential positions of agents A and B are re-
spectively (−1, 3) and (−0.5, 2) and stores the updated information
in A1→1

1→2.preProcessinдDetails and B
1→1
1→1 .preProcessinдDetails .

Controller Ck proceeds by sending the pre-processing information
of the agents that may leave cellk to all the controllers managing
the cells that may be crossed.

Finally, Ck receives information about the agents which might
move to cellk .

5.2.2 Decide. Through the execution of Algorithm 2,Ck deter-
mines which APs can be combined locally and which need to be

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

767

2

1

3

0-1-2-3 321

2

1

3

0-1-2-3 321

cell1 cell2 cell1 cell2
A A

B

B A

B

B

A

Original agent stimuli After preProcessAgentStimuli

ak(t-1) ak.preProcessingDetails(t)ak.stimuli(t)

Figure 4: PreProcessAдentAPs - Case 2

passed on to the coordinator (due to limited knowledge) for further
processing.

Algorithm 2: Decide
input :Σk (t − 1), ϵk (t), ok (t),

ak→k .preProcessinдDetails(t),
ak→{x } .preProcessinдDetails(t),
a {x }→k .preProcessinдDetails(t), πk→k (t + 1),

πk→{x }(t + 1)
output :ak→k .actionOutcome(t),a {x }→k .actionOutcome(t),

ϵk (t), ok (t), πk→k (t + 1), πk→{x }(t + 1)
begin

ProcessAgentAPs (Σk (t − 1),
ak→k .preProcessinдDetails(t),
ak→{x } .preProcessinдDetails(t),

a {x }→k .preProcessinдDetails(t), ϵk (t), ok (t),
πk→k (t + 1), πk→{x }(t + 1):

@
(1)

ak→k .actionOutcome(t),

ak→k .unresolvedAPs(t), ak→{x } .unresolvedAPs(t),
a {x }→k .unresolvedAPs(t), πk→k (t + 1),

πk→{x }(t + 1), ϵk (t), ok (t))

Send
(coordinator ,ak→k .unresolvedAPs(t),ak→{x } .unresolvedAPs,
a {x }→k .unresolvedAPs(t))

Wait

DecideCoordinator
(ak→k .unresolvedAPs(t),ak→{x } .unresolvedAPs(t),
a {x }→k .unresolvedAPs(t) :
@
(2)

ak→k .actionOutcome(t),a {x }→k .actionOutcome(t))

Receive (coordinator , (@
(2)

ak→k .actionOutcome(t),a {x }→k .actionOutcome(t)))

ak→k .actionOutcome(t) ←
⋃
(@
(1)

ak→k .actionOutcome(t), @
(2)

ak→k .actionOutcome(t))

Ck starts by executing ProcessAдentAPs . This function uses the
preProcessinдDetails of all agents entering, remaining in or in-
tending to leave cellk . Through the execution of ProcessAдentAPs ,
Ck performs several tasks:

1. It determines the action outcomes for those agents within its
cell who are not in conflict or whose conflict can be fully resolved
locally.
2. For all agents that intend to leave cellk , Ck makes provision
for the worst case scenario where their APs may not take place
elsewhere. The assumption that these agents may remain in cellk
can result in situations of conflict within the cell. In this case, Ck
resolves in advance the potential conflicts and computes estimated
APs for the case where these agents remain in the cell.
3. For all agents that intend to traverse (e.g., enter or go through)
cellk , Ck assumes the best case scenario, i.e., that the traversal will
take place. Ck resolves any potential conflicts within its cell and
determines the estimated agent’s APs. For example, in Figure 5,
agents B and C are in cell2. Given that B may or may not be in
conflict withA,C may or may not be in conflict with B. In this case,
A1→2
1→2.unresolvedAPs(t) = (2, 3) and

B2→2
2→2 .unresolvedAPs(t) = (3.5, 0.5) and

C2→2
2→2 .unresolvedAPs(t) = (1.5, 1)

2

1

3

0-1-2-3 321

cell1 cell2

Before processAgentStimuli After processAgentStimuli

B

B
A

C

C

2

1

3

0-1-2-3 321

cell1 cell2
B

B
A

C

C

ak k.unresolvedStimuli(t) ak x.unresolvedStimuli(t)

ak(t-1) ak.preProcessingDetails(t)

A A

Figure 5: ProcessAдentAPs - Case 3

For all the cases based on assumptions (i.e., agents leaving or enter-
ing), controller Ck requests feedback from the coordinator which
has a broader knowledge of the state of the environment.

5.2.3 Decide-coordinator. In this phase, the coordinator receives
the list of unresolved APs from the cell controllers. It deliberates
and returns the action outcomes to the appropriate cell controllers.
The deliberation involves determining the unresolved AP of highest
priority, i.e., the one which has the highest impact on other APs.
Once this AP is identified and resolved, the coordinator performs an
impact analysis to determine which unresolved APs are impacted
by the resolution. It proceeds by resolving the next unresolved
AP of highest priority. This process is followed until all APs are
resolved. The AP prioritization process is context-dependent and
needs to be defined by domain experts for specific simulations.

Finally, the coordinator returns the action outcomes to the con-
trollers. At this stage, each cell controller knows which agents will
be in its cell at time t .

5.2.4 Modify. Each cell controller executes the Modi f y func-
tion to change the states of its cell. A controller Ck executes the
following steps:
1. It requests that the state of agents incoming to cellk at time t to
be sent.
2. It proceeds by computing the states of its agents at time t by
applying their action outcome to their states at time t − 1.
3. Following this step, it determines which agent bounding volumes

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

768

cross multiple cells. For these special cases, it exchanges those
agent’ states with adjacent controllers.
4. It exchanges with other cell controllers the set of event APs
propagating to their cells boundaries at time t + 1 (π{k }→x (t + 1)).
Then, it combines the received event APs with the local event APs
propagating within its boundaries at time t + 1 (πk→k (t + 1)) to
determine the set of event APs within its cell at time t +1 (πk (t +1)).
5. For each agent ai within its cell, Ck computes the set of cells
that are perceivable by ai . Then, it subscribes ai to receive the
updated states of those perceivable cells. This information is used
later to pass onto each agent the state of cells in its subscription list.
This drastically reduces the amount of environmental information
passed onto an agent for perception.

To compute the agent’s cell subscription list, it is necessary to
implement a method for each agent that calculates the area of the
environment it can perceive. For instance, in the example illustrated
in Figure 6, the region that is visible by agent A (also know as its
vision cone) is defined by its: 1) field of view; 2) maximum visible
distance; 3) heading; and 4) position. This information is used to
define the angular extents on each axis within which the agent can
perceive information about the environment. The visible region
is used by the cell controller to determine which cells an agent is
capable of perceiving. In this example, the visible region of agent
A intersects with cell1, cell2, cell4, and cell5. Hence, c4 subscribes
agent A to receive the states of cell1, cell2, cell4, and cell5 at the
end of the environment phase.

0-1-4-6 6421 3 5-2-3-5

-1

-2

1

0

2

3

-3

cell1 cell2

cell4

cell3

cell5 cell6

A

ak (t) Vision cone

Visible distance = 3

Field of view = 90◦

Field of view = 30◦

Visible distance = 1.75

Heading = (1, 0, 1)

Heading = (1, 0, 0)

Figure 6: Agent subscription

6. Finally, controllerCk updates the state of its cell to the new state
at time t .

Modi f y is followed by sending the updated cell states to agents
according to their cells’ subscriptions. The subscribed cells’ states
are combined into a single environment state that is sent onto the
subscribed agent to compute its perception. This mechanism hides
the complexity of the partitioned environment from the agent who
considers the environment to be a single and unified area.

6 EXPERIMENTAL RESULTS
The APR model has been fully implemented and tested in various
simulation systems [2, 15, 32]. The implementation of this core
model allowed the execution of thousands of perception-based

Figure 7: 3D visualization of the agents in the virtual city

virtual agents evolving an open, spatial environment on a single
PC. To the best of our knowledge, no existing MABS provides this
capability.
In this section, we discuss experiments conducted on environment
structures consisting of 1, 2, 4, 8, 16 ,32, 64 and 128 cells.

6.1 Experiment Setting
The experiments discussed in this section were run on a social
simulation system developed using the DIVAs framework. In the
simulation, virtual agents representing humans are situated in a
virtual city consisting of 850 environment objects of various types
(e.g., houses, buildings, trees, traffic lights, benches, etc. (see Fig-
ure 7). Virtual agents perceive their surroundings through vision,
auditory and olfactory sensors. They execute complex path-finding
algorithms to reach various destinations within defined constraints.
Initially, agents are scattered in various areas. In this section we
limit our discussion to the evaluation of the environment phase.

Using the simulator, we ran experiments and evaluated the APR
model with respect to: the 1) time elapsed for the environment phase.
This time corresponds to the duration needed to complete the en-
vironment phase in each simulation cycle, and is measured in mil-
liseconds; and 2) CPU utilization, i.e., the percentage of CPU used by
the simulation. We ran this experiment 10 times and with 500, 1000,
1500, 2000, 2500, 3000, and 3500 virtual agents using environment
structures of 1, 2, 4, 8, 16 ,32, 64 and 128 equally sized cells.

It is important to note that the DIVAs simulation microkernel
sets the simulation cycle time to 150 milliseconds. This represents
the time needed by the visualizer to display the simulation without
delay. In case the simulation cycle (environment and agent phase)
finishes its execution in less than 150 milliseconds, the simulation
cycle time is delayed until it reaches the 150milliseconds time limit.
This is necessary to ensure a consistent visualization of the simu-
lation. The social simulation system was executed on a multicore
PC (Intel Core i7 980X CPU (3.33GHz), 12.00 GB, 64-bit Windows
7) and is implemented in Java (version 1.7.0, 64-bit). In the simula-
tion, controllers are run as threads. Therefore, the computer can
efficiently run a certain number of threads concurrently before the
context switching overhead leads to a performance degradation. In
this experiment, controllers ran on a thread execution pool and the
total number of worker threads was set to 12 which corresponds to
the number of logical cores available on the computer.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

769

0

50

100

150

200

250

300

500 1000 1500 2000 2500 3000 3500

EL
A

P
SE

D
 T

IM
E

(m
s)

NUMBER OF AGENTS

ENVIRONMENT PHASE

1 Cell 2 Cell 4 Cell 8 Cell 16 Cell 32 Cell 64 Cell 128 Cell

Figure 8: Average env. phase time with 500, 1000, 1500, 2000,
2500, 3000, 3500 agents and using 1, 2, 4, 8, 16 ,32, 64, 128 cells

0

10

20

30

40

50

60

500 1000 1500 2000 2500 3000 3500

C
P

U
 %

NUMBER OF AGENTS

CPU UTILIZATION

1 Cell 2 Cell 4 Cell 8 Cell 16 Cell 32 Cell 64 Cell 128 Cell

Figure 9: Average CPU utilization with 500, 1000, 1500, 2000,
2500, 3000, 3500 agents and using 1, 2, 4, 8, 16 ,32, 64, 128 cells

6.2 Results & Evaluation
6.2.1 Elapsed time for the environment phase. Figure 8 shows

that, irrespective of the number of simulated agents, the elapsed
time for the environment phase decreases asymptotically as the
number of cells increases until reaching the size of 32 cells. Then,
the elapsed time continues to slightly decrease until reaching 64
cells. The improvement in the elapsed time is accomplished by: 1)
utilizing additional number of threads to run the increased num-
ber of controllers; and 2) the reduced cell size that minimizes the
number of agent APs combined within each cell. After this point,
the elapsed time starts to slightly increase again in case of 128 cells.
This phenomenon is explained by the additional costs incurred by
the very large number of cells in the 128 cell environment structure.
These costs include: 1) the thread context switching overhead re-
sulting from the increased number of controllers; 2) the additional
processing required to process a larger number of agent APs leaving
their cells (due to their smaller cell sizes); and 3) the additional cost
required by controllers to provide their agents with environmental
data needed to compute their perception. Finally, the results show
that for all simulated scenarios, the 64 cell environment structure
requires the least time to complete the environment phase and
therefore represents the optimal environment structure.

6.2.2 CPU utilization. Figure 9 shows the CPU utilization by the
simulation. The results show that the 1, 2, and 4 cell structures have
the highest CPU utilization in the case of low number of agents. For
instance, in case of simulating 1000 agents, the CPU utilizations for
the 2 and 4 cell structures are 26%, and 23% respectively. On the other
hand, the CPU utilizations for the 64 and 128 cell structures are 14%
and 17% respectively. However, as the number of agents increases,

0

50

100

150

200

250

300

350

400

450

500

500 1000 1500 2000 2500 3000 3500

EL
A

P
SE

D
 T

IM
E

NUMBER OF AGENTS

TOTAL SIMULATION CYCLE

1 Cell 2 Cell 4 Cell 8 Cell 16 Cell 32 Cell 64 Cell 128 Cell

Figure 10: Total cycle timewith 500, 1000, 1500, 2000, 2500, 3000,
3500 agents and using 1, 2, 4, 8, 16 ,32, 64, 128 cells

the CPU utilization for the 1, 2, 4 and 8 cell structures decreases and
reaches a minimum for 3500 agents. As discussed in Section 6.1, the
overall cycle time is set to a maximum of 150 milliseconds. In the
case of 500 agents, all environment structures complete their cycles
before the allotted 150milliseconds (see Figure 10). However, in the
case of 3000 agents, the cycle time for the 1, 2, and 4 cell structures
far exceeds the 150 milliseconds limit while for the 32, 64, and 128
cell structures it is under 150milliseconds (see Figure 10). Therefore,
within the same period of time, the simulations using the 32, 64, and
128 cell structures execute more cycles and consequently utilize
more CPU than the 1, 2, and 4 cell environments.

Finally, the results in Figure 9 show that in the case of 3500
agents, the 32, 64, and 128 cell environments have the highest
CPU utilizations. Nevertheless, the 64 cell environment has has
the lowest total simulation cycle time (see Figure 10). This implies
that the 64 cell structure better utilizes the available computational
resources and may be the best configuration.

7 CONCLUSION
In this paper, we presented APR, an agent-environment interac-
tion model for MABS with open environments. APR is based on
the general IRM principle and improves existing IRM-based mod-
els by considering the environment as a multi-agent system. The
decentralized structure and control of the environment and the
interaction model allow the execution of thousands of agents on a
single computer. In addition, APR considers event propagation and
user triggered events during the simulation.

The APR model has been implemented as a generic module in
the DIVAs framework. The module provides the full interaction
mechanisms and workflow as well as abstract methods that can
be instantiated for domain-specific action combinations. Although
the environment phase involves complex processing, the virtual
agents are unaware of the partitioned structure of the environment.
The experimental results show that the agent and environment
phases are completed in far less than the required 150 milliseconds
simulation cycle for simulations involving 2500 and 3500 virtual
agents situated in a 64 cell environment structure.

The APR main limitation is the pre-defined static partition of
the environment. In cases where agents are concentrated in a few
cells, the cycle is delayed and the performance decreases. Moreover,
the definition of one coordinator may result in a bottleneck when
agents continuously cross cells. In [3], we proposed an adaptive
environment model, but much work is needed to assess this model.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

770

REFERENCES
[1] M. Al-Zinati, F. Araujo, D. Kuiper, J. Valente, and R. Z.Wenkstern. 2013. DIVAs 4.0:

A Multi-Agent Based Simulation Framework. In Proceedings of the 17th IEEE/ACM
International Symposium on Distributed Simulation and Real Time Applications
(DS-RT 2013). Delft, Netherlands, 105–114.

[2] Mohammad Al-Zinati and Rym Wenkstern. 2015. MATISSE 2.0: A Large-Scale
Multi-Agent Simulation System for Agent-based ITS. In Proceedings of the 2015
IEEE/WICIACM International Conference on Intelligent Agent Technology (lAT’ 15).
Singapore, Singapore, 328–335.

[3] Mohammad Al-Zinati and Rym Zalila-Wenkstern. 2014. A self-organizing model
for decentralized virtual environments in agent-based simulation systems. In
International conference on Autonomous Agents and Multi-Agent Systems, AAMAS
’14, Paris, France, May 5-9, 2014. Paris, France, 1583–1584.

[4] Ana LC Bazzan. 2005. A distributed approach for coordination of traffic signal
agents. Autonomous Agents and Multi-Agent Systems 10, 1 (2005), 131–164.

[5] Kurt Dresner and Peter Stone. 2008. A multiagent approach to autonomous
intersection management. Journal of artificial intelligence research 31 (2008),
591–656.

[6] Samah El-Tantawy, Baher Abdulhai, and Hossam Abdelgawad. 2013. Multiagent
reinforcement learning for integrated network of adaptive traffic signal con-
trollers (MARLIN-ATSC): methodology and large-scale application on downtown
Toronto. IEEE Transactions on Intelligent Transportation Systems 14, 3 (2013),
1140–1150.

[7] Jacques Ferber. 1999. Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison Wesley.

[8] Jacques Ferber and Jean-Pierre Müller. 1996. Influences and Reaction : a Model of
Situated Multi-agent Systems. In Proceedings of the 2nd International Conference
on Multi-agent Systems (ICMAS-96). The AAAI Press, Soraku-gun, Kyoto, Japan,
72–79.

[9] Stéphane Galland, Nicolas Gaud, Jonathan Demange, and Abderrafiaa Koukam.
2009. Environment model for multiagent-based simulation of 3D urban systems.
In Proceedings the 7th EuropeanWorkshop on Multiagent Systems (EUMAS09). Ayia
Napa, Cyprus.

[10] Stephane Galland, Luk Knapen, Nicolas Gaud, Davy Janssens, Olivier Lamotte,
Abderrafiaa Koukam, Geert Wets, et al. 2014. Multi-agent simulation of individ-
ual mobility behavior in carpooling. Transportation Research Part C: Emerging
Technologies 45 (2014), 83–98.

[11] Veronika Gaube and Alexander Remesch. 2013. Impact of urban planning on
household’s residential decisions: An agent-based simulation model for Vienna.
Environmental Modelling & Software 45 (2013), 92–103.

[12] AlexanderHelleboogh, Giuseppe Vizzari, Adelinde Uhrmacher, and FabienMichel.
2007. Modeling dynamic environments in multi-agent simulation. Autonomous
Agents and Multi-Agent Systems 14, 1 (2007), 87–116.

[13] Qingxu Huang, Dawn C Parker, Tatiana Filatova, and Shipeng Sun. 2014. A review
of urban residential choice models using agent-based modeling. Environment
and Planning B: Planning and Design 41, 4 (2014), 661–689.

[14] Franziska Klügl, Rainer Herrler, andManuel Fehler. 2006. SeSAm: implementation
of agent-based simulation using visual programming. In Proceedings of the 5th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS2006). Hakodate, Japan, 1439–1440.

[15] Dane M Kuiper and Rym Z Wenkstern. 2015. Agent vision in multi-agent based
simulation systems. Autonomous Agents and Multi-Agent Systems 29, 2 (2015),
161–191.

[16] Dane M Kuiper and Rym Z Wenkstern. 2015. Agent vision in multi-agent based
simulation systems. Autonomous Agents and Multi-Agent Systems 29, 2 (2015),
161–191.

[17] Sean Luke, Claudio Cioffi-Revilla, Liviu Panait, Keith Sullivan, and Gabriel Catalin
Balan. 2005. MASON: A Multiagent Simulation Environment. Simulation 81, 7
(2005), 517–527.

[18] Merriam-Webster. 2018. Merriam-Webster Dictionary. (2018).
[19] Fabien Michel. 2007. The IRM4S Model: The Influence/Reaction Principle for

Multi-Agent Based Simulation. In Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems (AAMAS2007). Honolulu,
Hawaii, 133.

[20] RymMili, Gary Leask, Uttama Shakya, and Renee Steiner. 2004. Architectural De-
sign of the DIVAs Environment. In Proceedings of the First international conference
on Environments for Multi-Agent Systems (E4MAS04). New York, NY.

[21] Gildas Morvan, Alexandre Veremme, and Daniel Dupont. 2010. IRM4MLS: The
Influence Reaction Model for Multi-Level Simulation. In Proceedings of Interna-
tional Workshop on Multi-Agent Systems and Agent-Based Simulation (MABS 2010).
Toronto, Canada, 16–27.

[22] Michael J. North, Nicholson T. Collier, Jonathan Ozik, Eric R. Tatara, Charles M.
Macal, Mark J. Bragen, and Pam Sydelko. 2013. Complex adaptive systems
modeling with Repast Simphony. Complex Adaptive Systems Modeling 1 (2013),
3.

[23] Nuria Pelechano, Jan M. Allbeck, and Norman I. Badler. 2007. Controlling indi-
vidual agents in high-density crowd simulation. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, (SCA 2007). San
Diego, California, USA, 99–108.

[24] Alexander Repenning, Andri Ioannidou, and John Zola. 2000. AgentSheets:
End-User Programmable Simulations. Journal of Artificial Societies and Social
Simulation 3, 3 (2000).

[25] Andreas Rienow and Dirk Stenger. 2014. Geosimulation of urban growth and
demographic decline in the Ruhr: a case study for 2025 using the artificial intelli-
gence of cells and agents. Journal of Geographical Systems 16, 3 (2014), 311–342.

[26] Stuart J. Russell and Peter Norvig. 2010. Artificial Intelligence - AModern Approach
(Third ed.). Prentice-Hall, Egnlewood Cliffs.

[27] Emilio Serrano, Pablo Moncada, Mercedes Garijo, and Carlos A Iglesias. 2014.
Evaluating social choice techniques into intelligent environments by agent based
social simulation. Information Sciences 286 (2014), 102–124.

[28] Flaminio Squazzoni, Wander Jager, and Bruce Edmonds. 2014. Social simulation
in the social sciences: A brief overview. Social Science Computer Review 32, 3
(2014), 279–294.

[29] Travis Steel, Dane Kuiper, and Rym Zalila-Wenkstern. 2010. Context-Aware
Virtual Agents in Open Environments. In Proceedings of the Sixth International
Conference on Autonomic and Autonomous Systems (ICAS 2010). IEEE, Cancun,
Mexico, 90 – 96.

[30] P. Taillandier, D.A. Vo, E. Amouroux, and A. Drogoul. 2012. GAMA: a simulation
platform that integrates geographical information data, agent-based modeling
and multi-scale control. Principles and Practice of Multi-Agent Systems 7057 (2012),
242–258.

[31] Warren Thorngate. 2014. Minding Norms: Mechanisms and Dynamics of Social
Order in Agent Societies (Oxford Series on Cognitive Models and Architectures)
by Rosaria Conte, Giulia Andrighetto and Marco Campennl (eds.). Journal of
Artificial Societies and Social Simulation 17, 3 (2014).

[32] Behnam Torabi, Rym Z Wenkstern, and Mohammad Al-Zinati. 2018. An Agent-
Based Micro-Simulator for ITS. In Proceedings of the 21st IEEE International
Conference on Intelligent Transportation Systems (IEEE ITSC 2018). Maui, Hawaii,
USA, 2556–2561.

[33] Neal Wagner and Vikas Agrawal. 2014. An agent-based simulation system for
concert venue crowd evacuation modeling in the presence of a fire disaster. Expert
Systems with Applications 41, 6 (2014), 2807–2815.

[34] Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques
Ferber. 2005. Environments for Multiagent Systems: State-of-the-Art and Re-
search Challenges. In Environments for Multi-Agent Systems, First Interna-
tional Workshop, E4MAS 2004, New York, NY, USA, July 19, 2004, Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel (Eds.). LNAI, Vol. 3374. Springer.

[35] U. Wilensky. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling, Northwestern University.
Evanston, IL. (1999). Accessed March 2017.

[36] Rym Zalila-Mili, Renee Steiner, and E. Oladimeji. 2006. DIVAs: Illustrating an Ab-
stract Architecture for Agent-Environment Simulation Systems. Multiagent and
Grid Systems. Special issue on Agent-Oriented Software Development Methodologies
2, 4 (January 2006), 505–525.

[37] Honghui Zhang, Xiaobin Jin, Liping Wang, Yinkang Zhou, and Bangrong Shu.
2015. Multi-agent based modeling of spatiotemporal dynamical urban growth in
developing countries: simulating future scenarios of Lianyungang city, China.
Stochastic environmental research and risk assessment 29, 1 (2015), 63–78.

Session 3C: Engineering Multiagent Systems 1 AAMAS 2019, May 13-17, 2019, Montréal, Canada

771

	Abstract
	1 Introduction
	2 Agent-Environment Interactions in MABS
	3 APR Concepts
	3.1 Open Environment Architecture
	3.2 APR Concept Definition

	4 APR Model Overview
	5 The APR Model
	5.1 Environment Model
	5.2 Environment Functions

	6 Experimental Results
	6.1 Experiment Setting
	6.2 Results & Evaluation

	7 Conclusion
	References

