
Complexity of Manipulation in Premise-Based
Judgment Aggregation with Simple Formulas

Robert Bredereck
TU Berlin

Berlin, Germany
robert.bredereck@tu-berlin.de

Junjie Luo
University of Chinese Academy of Science

Beijing, China
luojunjie@amss.ac.cn

ABSTRACT

Judgment aggregation is a framework to aggregate individual opin-
ions on multiple, logically connected issues into a collective out-
come. It is open to manipulative attacks such as Manipulation
where judges cast their judgments strategically. Previous works
have shown that most computational problems corresponding to
these manipulative attacks are NP-hard. This desired computa-
tional barrier, however, often relies on formulas that are either of
unbounded size or of complex structure.

We revisit the computational complexity for a large class of Ma-
nipulation problems in judgment aggregation, now focusing on
simple and realistic formulas. We restrict all formulas to be clauses
that are (positive) monotone, Horn-clauses, or have bounded length.
For basic variants of Manipulation, we show that these restric-
tions make several variants, which were in general known to be
NP-hard, polynomial-time solvable. Moreover, we provide a P vs.
NP dichotomy for a large class of clause restrictions (generalizing
monotone and Horn clauses) by showing a close relationship be-
tween variants of Manipulation and variants of Satisfiability.
For Hamming distance based Manipulation, we show that NP-
hardness even holds for positive monotone clauses of length three,
but the problem becomes polynomial-time solvable for positive
monotone clauses of length two.

ACM Reference Format:

Robert Bredereck and Junjie Luo. 2019. Complexity of Manipulation in
Premise-Based Judgment Aggregation with Simple Formulas. In Proc. of the

18th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION

Alice is the head of a committee deciding on financial support
for new startup companies. For her decisions, she uses publicly
available evaluations of experts (judges) with respect to a set of
basic features such as cult potential (c), marketability (m), high
profitability (h), and strong competitors’ existence (s). As a brilliant
mathematician and economist, Alice developed a model that can
reliably predict the success of the startup by putting the features
into logical relation. For example, she defined two further composed
features “market entering potential” as e := ¬s ∨ c and “short-term
risk” as r := ¬m ∨ ¬h. Her first idea was to make her decisions
based on the majority on each feature, but she recognizes that she
may obtain the following evaluations from three experts:

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,

Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

expert 1: s ∧ ¬c ∧ m ∧ h ∧ ¬e ∧ ¬r
expert 2: s ∧ c ∧ ¬m ∧ h ∧ e ∧ r
expert 3: ¬s ∧ ¬c ∧ m ∧ ¬h ∧ e ∧ r

where the majority opinions are: s , ¬c ,m, and h, but also e = ¬s ∨c
and r = ¬m ∨ ¬h; an obviously paradox situation. Alice does a
quick literature review and identifies her aggregation problem as
“judgment aggregation” and the observed paradox as a variant of the
well-known doctrinal paradox [16]. To avoid this paradox and since
the experts are anyway better in evaluating basic features than
evaluating composed features, she decides to adapt the concept
of premise-based judgment aggregation rules [9] for her decision
process: Basic features form the premises, composed features are
conclusions (which logically connect premises). The aggregation
process is performed only on the premises and conclusions are
deduced from them. That is, the outcome in the above example is s ,
¬c ,m, h, and, hence, also ¬e and ¬r .

Alice is happy with the aggregation process, but she is worried
about the reliability of the results. For example, what if an expert
made a mistake? Can she compute efficiently whether a set of im-
portant features remains stable even if some expert provided a
wrong evaluation? What if an expert evaluated strategically or un-
truthfully due to bribery or lobbyism? Is it difficult for an expert to
compute a successful strategy? Since Alice has only little knowledge
about computer science, she consults Bob, her favorite algorithms
and complexity expert. Bob does a quick literature review and iden-
tifies all questions posed by Alice as variants of Manipulation,
which are computationally intractable.

Although the intractability of strategic evaluation and bribery
seems to be good news, Alice is skeptical about the relevance of
these results for her application. In her model, all formulas are
length-two Horn clauses. All intractability results found by Bob,
however, use rather complex or long formulas as conclusions, and,
hence, do not apply in her situation. So Alice asks Bob to revisit the
respective computational complexity results with respect to simple
formulas as they occur in her model.

In this paper, we take up Bob’s task and provide a fine-grained
computational complexity analysis of Manipulation for judge-
ment aggregation with simple formulas.

Related work. We refer to recent surveys [5, 11, 15, 17, 18] for a
detailed overview on judgment aggregation. Dietrich and List [10]
introduced strategic behavior to judgment aggregation. Following
Bartholdi III et al. [1, 2], intractability of manipulative attacks is
usually seen as “barrier against manipulation” and, hence, a desired
property. Endriss et al. [12] were the first who analyzed the compu-
tational complexity of strategic behavior in judgment aggregation
and showed that it isNP-hard for a judge to decide whether she can

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

819

cast a judgment set that influences the collective outcome in a ben-
eficial way (assuming Hamming distance based preferences over
judgment sets), even for the simple premise-based majority rule.
Baumeister et al. [3, 4] continued this line of research and extended
the results to the more general uniform premise-base judgment
aggregation rules, and also initiated the analysis of further variants
of strategic behavior for judgment aggregation, including further
variants of Manipulation or cases where an external agent in-
fluences the structure (Control) or the opinions of the judges
(Bribery), showing NP-hardness for most considered problems.
For more details, we refer to a recent survey on strategic behavior
in judgment aggregation [6]. Our work also fits well into the line
of research initiated by the seminal paper of Faliszewski et al. [13]
showing that the barrier against manipulative attacks sometimes
disappears in context of restricted domains. In context of voting
one usually considers restricted preference domains whereas we
focus on restricted formulas.

Organization and Contributions.We analyze the computational
complexity of variants of Manipulation in premise-based judg-
ment aggregation with simple formulas. In particular, we consider
Horn clauses (implication-like conclusions which for instance are
fundamental in logic programming [8, 19]), (positive) monotone
clauses, and clauses of bounded length. In Section 2 we describe
the formal model and introduce our notation. In Section 3 we re-
visit the computational complexity for basic variants of Manipu-
lation, showing that the restriction to clauses makes several vari-
ants, which were in general known to be NP-hard [4], polynomial-
time solvable. Our first main result is a P vs. NP dichotomy for a
large class of clause restrictions (generalizing monotone and Horn
clauses) by showing a close relationship between variants of Ma-
nipulation and variants of Satisfiability. For details, we refer to
Table 5 in our conclusion (Section 5). We revisit Hamming distance
based Manipulation in Section 4. Our second main result is that
for positive monotone clauses the problem becomes polynomial-
time solvable for clauses of length ℓ = 2 but remains NP-hard
when ℓ = 3. This is particularly surprising since Satisfiability is
trivial for positive monotone clauses even for unbounded length.
The latter result is reached by showing NP-hardness of a natural
variant of Vertex Cover which we believe to be interesting on its
own. The NP-hardness also holds for monotone or Horn clauses
of length ℓ = 2. Due to the lack of space, many proofs (of results
marked with (⋆)) are deferred to the full version of this paper.

2 MODEL AND PRELIMINARIES

We adopt the judgment aggregation framework described by Bau-
meister et al. [4] and Endriss et al. [12] and slightly simplify it for
premise-based rules.

Premise-Based Judgment Aggregation. The topics to be evalu-
ated are collected in the agenda Φ = Φp ⊎Φc that consists of a finite
set of premises Φp (propositional variables) as well as a finite set
of conclusions Φc (propositional formulas built from the premises
using standard logical connectivities ¬,∨, and∧).1 The agenda does

1This implies that the agenda is closed under propositional variables, that is, if ϕ is a
formula in the agenda, then so is every propositional variable occurring within ϕ .

not contain any doubly negated formulas and is closed under com-
plementation, that is, ¬α ∈ Φ if and only if α ∈ Φ. An evaluation
on the agenda is expressed as a judgment set J ⊆ Φ. A judgment
set is complete if each premise and conclusion is contained either
in the negated or non-negated form and consistent if there is an
assignment that satisfies all formulas simultaneously. The set of all
complete and consistent subsets of Φ is denoted by J(Φ).

Let N = {1, ...,n} be a set of n > 1 judges. A profile is a vector
of judgment sets J = (J1, . . . , Jn) ∈ J(Φ)n . We denote by (J−i , Ji

′)

the profile that is like J , except that Ji has been replaced by Ji
′.

A judgment aggregation procedure for agenda Φ and judges N =
{1, ...,n} is a function F : J(Φ)n → 2Φ that maps a profile J to a
single judgment set, which is called a collective judgment set.

The probably most natural procedure is the majority rule, where
an element in the agenda is contained in the collective judgment
set if and only if it is contained in more than half of judgment sets
in profile J . Dietrich and List [9] introduced the quota rule as a
generalization of the majority rule.

Definition 2.1 (Uniform Premise-based Quota Rule for q ∈ [0, 1)).
A uniform premise-based quota rule UPQRq : J(Φ)n → 2Φ divides
the premises Φp into two disjoint subsets Φq and Φq̄ , each contain-
ing every premise either in the negated or non-negated form. For
each J ∈ J(Φ)n the outcome UPQRq (J) is the collective judgment
set that contains every premise from Φq that appears at least qn
times in the profile J , every premise from Φq̄ that appears more
than n − qn times in the profile, as well as all conclusions that are
satisfied by these premises.

In order to analyze the influence of judges on the outcome, we call
a variable x decided by judge i if the judge can change the outcome
with respect to x by changing Ji , that is, x ∈ UPQRq (J) ∩ Ji and
¬x ∈ UPQRq (J−i , ((Ji \ {x}) ∪ {¬x})) or ¬x ∈ UPQRq (J) ∩ Ji and
x ∈ UPQRq (J−i , ((Ji \ {¬x}) ∪ {x})).
The following example formally restates the introductory example.
Example. The premise set Φp contains two parts Φq = {s, c,m,h}
and Φq̄ = {¬s,¬c,¬m,¬h}. The conclusion set Φc contains ¬s ∨ c ,
¬m ∨ ¬h and their negations. The profile is given as follows:

Judgment Set s c m h ¬s ∨ c ¬m ∨ ¬h

J1 1 0 1 1 0 0
J2 1 1 0 1 1 1
J3 0 0 1 0 1 1
UPQR1/2 1 0 1 1 ⇒ 0 0
In the table we use 1 or 0 to represent whether the formula is

in the judgment set or not. As an example, J1 = {s,¬c,m,h,¬(s ∨
c),¬(¬m ∨¬h)}. Since in this example q = 1/2, we first have that s ,
¬c ,m and h are included in the outcome UPQR1/2(J1, J2, J3). Or we
just say s = 1, c = 0,m = 1 and h = 1. Then we get that ¬s ∨ c = 0
and¬m∨¬h = 0, whichmeans¬(s∨c) and¬(¬m∨¬h) are included
in the outcome. In this example variables c andm are decided by
the third judge but s and h are not decided by the third judge.
Clause restrictions. We restrict the conclusions to be clauses (de-
fined as disjunctions of literals). We define classes of clause restric-
tions based on a classification with respect to the number of positive
and negative literals in a clause and consider a restricted variant of
Satisfiability.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

820

Definition 2.2. A clause set C is called a standard-form clause

set if C is a union of some S ji , where S
j
i is the set of clauses which

contain exactly i literals and exactly j of them are negative. Denote
S0
k and Skk asM+k andM−

k .

Definition 2.3. Given a set C of clauses, C-Sat is the problem of
deciding whether a given formula C1 ∧ . . . ∧ Cm with Ci ∈ C is
satisfiable or not.

This classification is useful as most clause classes we care about
can be defined as the union of some S ji . For example, positive mono-
tone clauses can be denoted by

⋃
i S

0
i =

⋃
i M
+
i , Horn clauses can

be denoted by
⋃
j≥i−1 S

j
i =

⋃
i (M

−
i ∪ Si−1

i), and 3-CNF clauses can
be denoted by

⋃
S
j
3. 3-Sat corresponds to

⋃
S
j
3-Sat.

3 BASIC MANIPULATION PROBLEMS

In this section, we analyze the computational complexity of prob-
lems modeling simple variants of strategic behavior of some judge.
The core idea is that a judge might cast an untruthful judgment
set in order to influence the collective judgment set towards some
desired judgment set. Note that we provide alternative, simpler (yet
equivalent) problem definitions compared to those known from the
literature [4].2 In contrast to Baumeister et al. [4] who focus on the
assumption on the preferences of the manipulator over all possible
outcomes, which requires rather technical concepts of preference
relations between judgment sets, we take a different approach and
directly model the requirements on the preferred outcome. For
example, the simplest variant of manipulation from Baumeister
et al. [4], UPQR-U-Possible-Manipulation, actually models the
question whether the collective outcome is “robust against one
judge providing a faulty judgment set” as asked by Alice in the
introduction. Formally, we consider the following problems.
UPQR Manipulation basic variants (Problem names from[4] listed below.)

Input: An agenda Φ, a profile J = (J1, . . . , Jn) ∈ J(Φ)n , the
consistent (possibly incomplete) desired set J ⊆ Jn , and a rational
threshold q ∈ [0, 1).
UPQR Robustness Manipulation (=UPQR-U-Possible-Manipulation[4])

Question: ∃J∗ : UPQRq (J) ∩ J , UPQRq (J−n , J∗) ∩ J?
UPQR Possible Manipulation (=UPQR-CR-Possible-Manipulation[4])

Question: ∃J∗ : (UPQRq (J−n , J∗) ∩ J) \ (UPQRq (J) ∩ J) , ∅?
UPQR Necessary Manipulation (=UPQR-CR-Necessary-Manipulation[4])

Question: ∃J∗ : UPQRq (J) ∩ J ⊊ UPQRq (J−n , J∗) ∩ J?
UPQR Exact Manipulation (=UPQR-TR-Necessary-Manipulation[4])

Question: ∃J∗ : J ⊆ UPQRq (J−n , J∗)?
Intuitively, the manipulator only cares about the formulas in

the desired set J . UPQR Robustness Manipulation asks whether
the manipulator can achieve a different outcome with respect to J .
UPQR Possible Manipulation asks whether the manipulator can
achieve an outcome that contains a formula from J which is not
contained in the truthful outcome. UPQR Necessary Manipula-
tion asks whether the manipulator can achieve an outcome that

2Our problem definitions slightly differ from those in the literature as we put the thresh-
old value q as part of the input. For our polynomial-time algorithms, the quota is only
interesting for computing which premises can be decided by the manipulator. Thus,
it has no influence on the computational complexity. Our hardness reductions usually
assume that q = 1/2, but they can all be adapted to work for any rational quota q .

contains a formula from J which is not contained in the truthful out-
come, and meanwhile contains all formulas that are in both J and
the truthful outcome. UPQR Exact Manipulation asks whether
the manipulator can achieve an outcome that contains all formulas
from J .

Baumeister et al. [4] showed that all the four variants of UPQR
Manipulation with the desired set being incomplete are NP-com-
plete. However, a complex formula in conjunctive normal from is
needed in the conclusion set in these reductions. In the following,
we give a more refined analysis by considering how restricting
the conclusions to different standard-form clause sets influences
the computational complexity of UPQR Manipulation for all four
basic variants.

3.1 Tractable Cases of Manipulation

We start our analysis with UPQR Robustness Manipulation and
UPQR Possible Manipulation which turn out to be linear-time
solvable when the conclusions are just simple clauses.

Lemma 3.1 (⋆). UPQR Robustness Manipulation and UPQR

Possible Manipulation with conclusions being clauses are solvable

in linear time.

Corollary 3.2. UPQR Robustness Manipulation and UPQR

Possible Manipulation with conclusions chosen from monotone

clauses or Horn clauses are solvable in linear time.

Next, we show that UPQRNecessaryManipulation boils down
to solving a related Satisfiability problem.

Lemma 3.3. UPQR Necessary Manipulation and UPQR Exact

Manipulation with conclusions from clause set C can be solved by

solving at most |Φc | instances of C-Sat.

Proof. We show the result for UPQR Necessary Manipula-
tion. The result for UPQR ExactManipulation can be proven sim-
ilarly. In UPQRNecessaryManipulationwe should find amanipu-
lated judgment set J∗ such that UPQRq (J)∩J ⊊ UPQRq (J−n , J∗)∩J .
That is, themanipulated result UPQRq (J−n , J∗) should not only con-
tain one more target conclusion C∗ ∈ J \ UPQRq (J), but also con-
tain all formulas inQ0 = UPQRq (J) ∩ J . So the problem is to check
whether there exists a conclusion C∗ ∈ J \ UPQRq (J) such that a
setQ = Q0∪{C∗} of conclusions can be satisfied by just controlling
the values of variables which are decided by the manipulator.

We can simply try all possibleC∗ ∈ J \UPQRq (J) and for eachC∗

check whether all conclusions in Q = Q0 ∪ {C∗} can be satisfied as
follows. Every conclusion in Q is either a clause from C or a nega-
tion of a clause fromC . To satisfy a negative clause (conjunction of
literals) the values of all variables in this clause are fixed. For all neg-
ative clauses in Q , we first check whether they are consistent. This
can be done in linear time. If all negative clauses inQ are consistent,
then we get the value for all variables in them. Then, we need to
check for every such variable whether the value is either the orig-
inal value before the manipulation or the variable is decided by the
manipulator. Otherwise, these negative clauses can not be satisfied.
After this, we only need to check whether the remaining positive
clauses in Q can be satisfied. Since all clauses in Q are chosen from
C , the remaining problem forms an instance of C-Sat. □

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

821

Table 1: Instance of UPQR Necessary Manipulation with conclusion set C = M+k1+1 ∪M−
k2

for the proof of Lemma 3.7.

Judgment Set x1 . . . xn y1 y2 . . . yk2 C+i ∨ y1 C−
i ¬y1 ∨ . . . ∨ ¬yk2

J1 1 . . . 1 1 1 . . . 1 1 0 0
J2 0 . . . 0 0 1 . . . 1 0 1 1
J3 0 . . . 0 1 0 . . . 0 1 1 1
UPQR1/2 0 . . . 0 1 1 . . . 1 ⇒ 1 1 0

Corollary 3.4. If C-Sat is in P, then UPQR Necessary Manip-

ulation and UPQR Exact Manipulation with conclusions from C
are in P.

From Corollary 3.4, we know that when C-Sat is in P, the cor-
responding problem UPQR Necessary Manipulation with con-
clusions chosen from C is also in P. In the next section we show
that these two problems are actually polynomial-time equivalent
for many clause classes.

3.2 Intractable Cases of Manipulation:

Manipulation vs. Satisfiability

In this section, we give a full characterization for the computational
complexity of UPQR Necessary Manipulation by showing that
C-Sat and UPQR Necessary Manipulation with conclusions cho-
sen from C are actually equivalent under polynomial-time Turing
reductions when C is a standard-form clause set (see Definition 2.2
for the definition of standard-form clause).

Theorem 3.5. For any standard-form clause set C , UPQR Neces-

sary Manipulation with conclusions from C and C-Sat are equiva-
lent under polynomial-time Turing reductions.

In order to prove Theorem 3.5, we first consider for what kind
of standard-form clause sets C , C-SAT is NP-complete.

Lemma 3.6. (⋆) For a standard-form clause set C , C-SAT is NP-
complete if and only if

(1) there is a pair of i, j with i ≥ 3 and 0 < j < i such that

M+2 ∪M−
2 ∪ S

j
i ⊆ C , or

(2) there is a pair ofk1,k2 withmax{k1,k2} ≥ 3 andmin{k1,k2} ≥
2 such thatM+k1

∪M−
k2

⊆ C .

Combining Theorem 3.5 and Lemma 3.6 we get a full charac-
terization for the computational complexity of UPQR Necessary
Manipulation with conclusions chosen from a standard-form
clause set C .

According to the definition, an instance of UPQR Necessary
Manipulation with conclusions chosen fromC is a yes-instance if
and only if there is one target conclusion C∗ ∈ J \ UPQRq (J) such
that C∗ and all formulas in Q0 = UPQRq (J) ∩ J can be included in
the manipulated outcome at the same time. Note that we already
know that all formulas inQ0 are in the original outcome UPQRq (J),
which means that all formulas inQ0 can be satisfied at the the same
time. The question is whether it is possible to satisfy one more
clause C∗ < Q0. Therefore, Theorem 3.5 implies that this additional
information does not help to efficiently determine whether all con-
clusions inQ = Q0 ∪ {C∗} can be satisfied at the same time. This is
the main idea for the proofs of the following Lemmas 3.7 and 3.9.

According to Lemma 3.6, we need to consider two cases. We first
prove a weaker version of Theorem 3.5 in the following.

Lemma 3.7. If (M+k1
∪M−

k2
)-Sat is NP-complete, then UPQR Nec-

essary Manipulation with conclusions chosen from a closely related

standard-form clause set C = M+k1+1 ∪M−
k2

is NP-complete.

Proof. We first show the result for q = 1
2 . We present a poly-

nomial-time reduction from (M+k1
∪M−

k2
)-Sat to UPQR Necessary

Manipulation with conclusions chosen fromC . Given an instance

C+1 ∧ . . . ∧C+m1 ∧C−
1 ∧ . . . ∧C−

m2

of (M+k1
∪M−

k2
)-Sat, where C+i ∈ M+k1

and C−
i ∈ M−

k2
, we construct

an instance of Manipulation as in Table 1. The agenda contains
all variables x1, . . . ,xn that appear in the (M+k1

∪M−
k2
)-Sat instance

and their negations. In addition, we create y1, . . . ,yk2 and their
negations in premises. Then we add C+i ∨ y1 for 1 ≤ i ≤ m1, C−

i
for 1 ≤ i ≤ m2, ¬y1 ∨ . . . ∨ ¬yk2 and their negations as conclu-
sions. The set of judges is N = 1, 2, 3. The manipulator is the third
judge and his desired set J consists of all positive conclusions. The
manipulator is decisive for variables x1, . . . ,xn and y1.

Since all positive conclusions except for ¬y1 ∨ . . . ∨ ¬yk2 are
already in the truthful outcome UPQR1/2(J), to make a success-
ful manipulation, the manipulator has to make the manipulated
outcome contain all positive conclusions. Specifically, for conclu-
sion ¬y1 ∨ . . . ∨ ¬yk2 , since yj = 1, j ≥ 2 can not be changed by
the manipulator, the manipulator has to set y1 = 0. Then, to satisfy
all remaining conclusions C+i ∨ y1 and C−

i is equivalent to setting
values for x1, . . . ,xn to satisfy C+1 ∧ . . . ∧C+m1 ∧C−

1 ∧ . . . ∧C−
m2 .

For other rational quota q and any fixed numberm ≥ 3 of judges,
this proof still works with minor modifications as follows. The
agenda remains the same, and the judgment set of the manipulator
is equal to J3. For other judges, the first ⌊mq⌋ judgment sets are
equal to J1, and the remaining judgment sets are equal to J2. □

As a corollary, we get that the respective Manipulation prob-
lems “corresponding to” 3-Sat andMonotone-Sat areNP-complete.

Corollary 3.8. UPQR Necessary Manipulation with conclu-

sions chosen from ∪jS
j
3 or from ∪∞

k=1(M
+
k ∪M−

k) is NP-complete.

Note that in Lemma 3.7 the two clause setsM+k1
∪M−

k2
(in Satis-

fiability) andM+k1+1 ∪M−
k2

(in Manipulation) are not the same.
This leaves a gap when conclusions of UPQR Necessary Manipu-
lation are chosen fromM+2 ∪M−

3 (or equivalentlyM+3 ∪M−
2): We

cannot adopt Lemma 3.7, since the corresponding Satisfiability
problem is (M+1 ∪M−

3)-SAT (or (M+2 ∪M−
2)-SAT) which is not NP-

complete (cf. Lemma 3.6). Next we close this gap by giving a more

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

822

involved reduction to show the NP-hardness for the case when
conclusions are chosen fromM+2 ∪M−

3 .

Lemma 3.9. UPQR Necessary Manipulation with conclusions

chosen from (M+2 ∪M−
3) is NP-complete.

Proof. We show the result forq = 1
2 . For other values ofq the re-

sult can be shown by the same reduction with minor modifications.
We present a polynomial-time reduction from (M+2 ∪M−

3)-SAT.
Given an instance f1 ∧ f2 of (M+2 ∪ M−

3)-SAT, where f1 is a
conjunction of clauses of the form “xi1∨xi2 ” fromM+2 with xi1 ,xi2 ∈

{x1, . . . ,xn } and f2 is a conjunction of clauses of the form “¬xi1 ∨
¬xi2 ∨¬xi3 ” fromM−

3 with xi1 ,xi2 ,xi3 ∈ {x1, . . . ,xn }, we construct
an instance of UPQR Necessary Manipulation with conclusions
chosen fromM+2 ∪M−

3 as follows (see also Table 2).
• For every original variable xi , 1 ≤ i ≤ n create the premises
xi , yi , zi (and their negations).

• Create two premises w and v (and their negations), and
create the clausew ∨v (and its negation) in the conclusions.

• For every original clause xi1 ∨xi2 in f1, create the clause zi1 ∨
zi2 (and its negation) in the conclusions. Note that original
variables xi , 1 ≤ i ≤ n are replaced by premises zi , 1 ≤ i ≤ n.

• For every original clause ¬xi1 ∨¬xi2 ∨¬xi3 in f2, create the
clause¬xi1 ∨¬xi2 ∨¬xi3 (and its negation) in the conclusions.

• For each i with 1 ≤ i ≤ n, create four clauses xi ∨yi , yi ∨ zi ,
¬xi ∨ ¬yi ∨ ¬w and ¬yi ∨ ¬zi ∨ ¬w (and their negations)
in the conclusions.

The set of judges is N = 1, 2, 3. The manipulator is the third
judge and his desired set J consists of all positive conclusions. The
manipulator is decisive for all variables except for v . We now show
that f1 ∧ f2 is satisfiable if and only if the manipulation is feasible.

⇒ Assume that f1 ∧ f2 is satisfiable, then there is a value assign-
ment x∗i , 1 ≤ i ≤ n such that all clauses in f1∧ f2 are satisfied. So the
manipulator can set xi = zi = x∗i , 1 ≤ i ≤ n to satisfy conclusions
¬xi1 ∨¬xi2 ∨¬xi3 and zi1 ∨ zi2 . All remaining positive conclusions
can be satisfied by settingw = 0 and yi = −x∗i for 1 ≤ i ≤ n. Thus
the manipulation is feasible. Recall that the manipulator is decisive
for all variables except for v .

⇐ Assume that the manipulation is feasible. Since all positive
conclusions, except for w ∨ v , are already in the truthful out-
come UPQR1/2(J), the manipulation is feasible means that there
is a value assignment for all variables with v = 0 (since v is not
by the manipulator) such that all positive conclusions can be sat-
isfied. Specifically, for conclusion w ∨ v , since v = 0 can not be
changed by the manipulator, the manipulator has to set w = 1.
Then ¬xi ∨¬yi ∨¬w and ¬yi ∨¬zi ∨¬w are equivalent to ¬xi ∨¬yi
and ¬yi ∨ ¬zi , respectively. Together with xi ∨ yi and yi ∨ zi , we
have

(¬xi ∨ ¬yi) ∧ (xi ∨ yi) ⇒ xi = −yi ,

(¬yi ∨ ¬zi) ∧ (yi ∨ zi) ⇒ yi = −zi .

This means in this value assignment xi = zi . Since all conclu-
sions ¬xi1 ∨ ¬xi2 ∨ ¬xi3 and zi1 ∨ zi2 can be satisfied by this value
assignment with xi = zi , we have that f1 ∧ f2 is satisfiable. □

Due to the limited space, we refer to the full version of this paper
for the remaining part of the proof (the first case in Lemma 3.6) of
Theorem 3.5. In the above two reductions in Lemmas 3.7 and 3.9, to

make a successful manipulation, the manipulator has to make the
manipulated outcome contain all positive conclusions. Thus these
reductions also work for UPQR Exact Manipulation if we choose
the desired set to consist of all positive conclusions.

Proposition 3.10 (⋆). For any standard-form clause set C , UPQR
Exact Manipulation with conclusions chosen fromC andC-Sat are
equivalent under polynomial-time Turing reductions.

4 HAMMING DISTANCE BASED

MANIPULATION

We now move on to UPQR HD Manipulation which is the very
first variant of Manipulation analyzed by Endriss et al. [12] for
the majority threshold q = 1/2. In UPQR HD Manipulation, the
manipulator cares about the number of formulas in the desired set J
achieved by the collective judgment set. The formal definition is
given as follows.
UPQR HD Manipulation
Input: An agenda Φ, a profile J = (J1, . . . , Jn) ∈ J(Φ)n , the
manipulator’s desired consistent (possibly incomplete) set J ⊆ Jn ,
and a uniform rational threshold q ∈ [0, 1).
Question: Does there exist a judgment set J∗ ∈ J(Φ) such that
HD(J ,UPQRq (J−n , J∗)) < HD(J ,UPQRq (J))?
Herein, the Hamming distance HD(J , S) between the possibly

incomplete desired set J and a complete collective judgment set S
is the number of formulas in J which are not contained in S , i.e.
HD(J , S) = |J \ S |.

Without loss of generality, in this section we assume that J =
Jn ∩Φc , that is, the desired set contains all conclusions from Jn but
no premise: Every instance of UPQR HD Manipulation can be
easily transformed into an equivalent instance with J = Jn ∩ Φc
as follows. If for some conclusion φ none of φ and ¬φ appears
in J , then just delete φ and ¬φ from the agenda. If there is some
premise x with x ∈ J (or ¬x ∈ J), we can remove it from J , create
two clauses x∨x ′ and ¬(x∨x ′) in the conclusions and adding x∨x ′
(or ¬(x ∨ x ′)) to J , where x ′ is a dummy variable with x ′ < Ji for
all 1 ≤ i ≤ n. Note that doing so we just add positive monotone
clauses with two literals (x ∨ x ′) into the conclusion set.

Baumeister et al. [4] proved that UPQRHDManipulation isNP-
complete for positivemonotone clauses. In this sectionwe show that
this problem is NP-complete even for positive monotone clauses of
length ℓ = 3 by reducing from a natural variant of Vertex Cover
which could be interesting on its own. When the clause length is
2, we show the problem is in P for positive monotone clauses, but
NP-complete for monotone clauses or Horn clauses.

4.1 Condition for a successful manipulation

In this section we give a sufficient and necessary condition for a
successful manipulation in Lemma 4.2. We first classify all variables
into the following four different classes with respect to different
combinations of its value in the truthful outcome UPQRq (J) and
the judgment set of the manipulator Jn :

(1) P1
1 = {x ∈ Φp | x ∈ Jn ∧ x ∈ UPQRq (J)};

(2) P0
1 = {x ∈ Φp | x < Jn ∧ x ∈ UPQRq (J)};

(3) P0
0 = {x ∈ Φp | x < Jn ∧ x < UPQRq (J)};

(4) P1
0 = {x ∈ Φp | x ∈ Jn ∧ x < UPQRq (J)}.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

823

Table 2: Instance of UPQR Necessary Manipulation with conclusion set C = M+2 ∪M−
3 for the proof of Lemma 3.9.

Judgment Set xi yi zi w v w ∨v ¬xi1 ∨¬xi2 ∨¬xi3 ¬xi ∨ ¬yi ∨ ¬w ¬yi ∨ ¬zi ∨ ¬w xi∨yi yi∨zi zi1 ∨zi2

J1 1 1 1 1 0 1 0 0 0 1 1 1
J2 0 0 0 0 0 0 1 1 1 0 0 0
J3 0 1 1 0 1 1 1 1 1 1 1 1
UPQR1/2 0 1 1 0 0 ⇒ 0 1 1 1 1 1 1

Judgment Set x ∈ P1
1 x ∈ P0

1 x ∈ P0
0 x ∈ P1

0
J−n * * * *
Jn 1 0 0 1
UPQRq (J) 1 1 0 0

Observation 1. Variables from P1
0 ∪ P0

1 are not decided by the

manipulator.

In the following, a variable is called useful if it is decided by the
manipulator and changing its value can make the outcome contain
at least one new conclusion from J \UPQRq (J), where J = Jn ∩Φc

is the manipulator’s desired set. For a variable x ∈ P1
1 , any positive

monotone clause φ containing x is already in J ∩ UPQRq (J), thus
changing the value of x from 1 to 0 cannot make the outcome
contain any new conclusion from J \ UPQRq (J). Therefore, all
useful variables are from P0

0 .

Observation 2. If x is a useful variable, then x ∈ P0
0 .

Definition 4.1. A positive conclusion φ is called good if
φ ∈ J \ UPQRq (J) and is called bad if ¬φ ∈ J ∩ UPQRq (J).

Note that a good (or bad) conclusion is a candidate for decreasing
(or increasing) the Hamming distance HD(J ,UPQRq (J)).

Example. Consider the following profile:

Judg. Set x1 x2 x3 x ′3 x4 x1∨x2 x2∨x3 x3 ∨ x ′3 x3∨x4

J1 1 0 1 1 1 1 1 1 0
J2 0 0 0 0 1 0 0 0 1
J3 1 1 0 0 0 1 1 0 0
UPQR1/2 1 0 0 0 1 ⇒1 0 0 1

Variables x1, x3, and x ′3 are decided by the manipulator, but x1 ∈

P1
1 is not useful since change its value from 1 to 0 would only

exclude x1 ∨ x2 ∈ J from the outcome. Conclusion x2 ∨ x3 is good
since it is in J3\UPQRq (J), and changing x3 from 0 to 1 will make x3
and x2 ∨ x3 included in the outcome. Conclusion x3 ∨ x ′3 is bad
since its negation ¬(x3 ∨ x ′3) ∈ J3 \ UPQRq (J), and changing x3
or x ′3 from 0 to 1 will make x3 ∨ x ′3 included in the outcome, and
hence ¬(x3 ∨ x ′3) is excluded from the outcome.

Nowwe give a sufficient and necessary condition for a successful
manipulation.

Lemma 4.2. An instance of UPQR HD Manipulation with all con-

clusions being positive monotone clauses is a yes-instance if and only

if there is a set S ⊆ P0
0 of useful variables, such that after changing

their values from 0 to 1, the number of good conclusions included

in the outcome is strictly larger than the number of bad conclusions

included in the outcome:

|{φ ∈ J \ UPQRq (J) | Sφ ∩ S , ∅}| >

|{¬φ ∈ J ∩ UPQRq (J) | S¬φ ∩ S , ∅}|,

where Sφ (S¬φ) is the set of variables appearing in clause φ (¬φ).

Proof. According to the definition of useful variables, if an
instance of UPQR HD Manipulation is a yes-instance, then the
manipulator can achieve a better outcome by changing only the
values of useful variables. According to Observation 2, all useful
variables are from P0

0 . To prove this lemma, it suffices to show why
we just need to consider good conclusions and bad conclusions.
If a positive conclusion φ is neither good nor bad, then it must
be ¬φ ∈ J \UPQRq (J) or φ ∈ J ∩UPQRq (J). In both cases we have
that φ ∈ UPQRq (J). Changing the values of variables in P0

0 from 0
to 1 will not change the value of φ (φ is still in UPQRq (J) after this
change). Therefore, we just need to consider the influence on the
number of good conclusions and bad conclusions after changing
the values of useful variables. □

4.2 Positive monotone clauses of length ℓ = 2
In this section we show UPQR HD Manipulation with positive
monotone clauses of length ℓ = 2 is solvable in polynomial time
by a reduction to the Weighted Maximum Density Subgraph
(WMDS) problem. Given an undirected graph G = (V ,E) with
nonnegative rational edge weightsw(e) and vertex weightsw(v),
and a nonnegative rational number k , WMDS asks to decide the
existence of a vertex subsetV ′ ⊆ V with

∑
v ∈V ′ w(v) > 0 such that∑

e ∈E(G[V ′])w(e)∑
v ∈V ′ w(v)

> k,

where G[V ′] is the subgraph induced by V ′. Goldberg [14] shows
that WMDS can be solved in polynomial time by a reduction to the
Minimum Cut problem.

Theorem 4.3. UPQR HD Manipulation with positive monotone

clauses of length ℓ = 2 is solvable in polynomial time.

Proof. According to Lemma 4.2, we need to find a set of useful
variables in P0

0 such that after changing the value of these variables
the number of good conclusions included in the outcome is strictly
larger than the number of bad conclusions included in the outcome.
Every good conclusion φ ∈ J \ UPQRq (J) contains at least one
variable x such that x ∈ Jn since φ ∈ J ⊆ Jn . Moreover, since
φ < UPQRq (J)we have x < UPQRq (J). Thus φ contains at least one
variable x ∈ P1

0 , which is not decided by the manipulator according
to Observation 1. Hence a good conclusion φ of length 2 contains
at most one variable which is possibly decided by the manipulator.
However, a bad conclusion of length 2 may contain two useful

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

824

P0
0 P1

0

bad good

V w

2
0
1
1
1

Figure 1: Illustration of the constructed weighted graph in the

proof of Theorem 4.3. On the left side a vertex represents a variable

from P 0
0 or P 1

0 . A line between two vertices represents a (good or bad)

conclusion containing the two corresponding variables. We trans-

form it into the vertex weighted graph on the right side, where the

vertex set V corresponds to P 0
0 and the weight w for a vertex v ∈ V

is the difference between the number of bad and good conclusions

that contain the corresponding variable xv .

variables from P0
0 . Thus, if we change the values of a set of variables

from P0
0 and sum up the number of included bad conclusions, then

some bad conclusions will be counted twice. To solve this issue, we
create a weighted graph G = (V ,E) as follows (see also Figure 1):
First, for every useful variable x ∈ P0

0 , create a vertex v ∈ V
and assign it a weight w(v) = nv − pv , where nv is the number
of bad conclusions containing x and pv is the number of good
conclusions containing x . Thus w(v) is the increased Hamming
distance when a single variable x is changed. Second, for every pair
of vertices u and v , create an edge between them if there is a bad
conclusion φ = xu ∨ xv , where xu and xv are the corresponding
variables of u and v .

We first do the following preprocessing. If there is a vertex v ∈

V with w(v) < 0, then changing this variable alone can strictly
decrease the Hamming distance and hence the manipulation is
feasible. If there is an edge e = {u,v} withw(u) = w(v) = 0, then
changing the value ofxu andxv can decrease theHamming distance
by 1 and hence the manipulation is feasible. So in the following we
can assumew(v) ≥ 0 for everyv ∈ V and there is no edge e = {u,v}
with w(u) = w(v) = 0. For any vertex subset V ′ ⊆ V , changing
the value of the corresponding variables can increase the distance
by

∑
v ∈V ′ w(v) − |E(G[V ′])|, where G[V ′] is the subgraph induced

by V ′. If
∑
v ∈V ′ w(v) = 0, then according to the above assumption,

we have |E(G[V ′])| = 0. Therefore manipulation is feasible if and
only if there is a vertex subset V ′ with

∑
v ∈V ′ w(v) > 0 such that∑

v ∈V ′ w(v) − |E(G[V ′])| < 0 or |E(G[V ′])|/
∑
v ∈V ′ w(v) > 1. This

is just an instance of theWMDS problem with edge weight 1, which
can be solved in polynomial time [14]. □

4.3 Positive monotone clauses of length ℓ = 3
In this section we show that UPQR HD Manipulation with pos-
itive monotone clauses of length l = 3 is NP-complete. The main
difference between l = 2 and l = 3 is that when l = 2, every good
conclusion must contain a variable from P1

0 , and hence contains at
most one useful variable from P0

0 . When l ≥ 3, however, in addition
to one variable from P1

0 , a good conclusion can contain two useful
variables from P0

0 . Hence, useful variables are not independent with
respect to good conclusions. See also Figure 2 for the comparison.

P0
0 P1

0

bad good
ℓ = 2

positive
monotone

P0
0

bad good
ℓ = 3

positive
monotone

P0
0 P1

0

bad good

ℓ = 2
monotone

Figure 2: Comparison between different clause classes. A vertex

represents a variable from P 0
0 or P 1

0 , and only variables from P 0
0

could be decided by the manipulator. A line between two vertices

represents a conclusion containing the two corresponding variables.

A line is solid if changing the value of one of its endpoints in P 0
0 will

change the value of this conclusion, while a line is dotted if chang-

ing the value of both endpoints in P 0
0 will change the value of this

conclusion.

Figure 2 shows that when ℓ = 3, then we need to find a vertex
subset of P0

0 to cover more good (red) edges than bad (bold blue)
edges. This leads us to the following closely related graph problem.
Positive Vertex Cover
Input: An undirected graphG = (V ,E+ ∪ E−) with E+ ∩ E− = ∅.
Question: Is there a vertex subset V ′ ⊆ V which covers strictly
more edges in E+ than in E−?

Lemma 4.4 (⋆). Positive Vertex Cover is NP-complete.

Proof Sketch. We construct a reduction from Cubic Vertex
Cover, where given an undirected 3-regular graph and an integer k ,
the task is to determine whether there exists a vertex cover of size at
most k . Given an instance (G0 = (V0,E0),k) of Cubic Vertex Cover.
Denote n = |V0 |. Since a vertex cover needs at least n

2 vertices, we
can assume n

2 ≤ k ≤ n. We create an instance G = (V ,E+ ∪ E−)
of Positive Vertex Cover as follows (see also Figure 3). First,
for every original vertex vi in V0, create a vertex xi in V , and for
every edge {vi ,vj } in E0, create an edge {xi ,x j } in E+. Then, create
three more verticesy1,y2,y3 inV and create edges {xi ,y1}, {xi ,y2}
and {xi ,y3} for every 1 ≤ i ≤ n in E−. Add an edge {y1,y2} in
E+. Next, create vertices z1, . . . , zn−p in V , where p = 3n

4 − k
2 , and

create edges {zj ,y1} and {zj ,y2} for every 1 ≤ j ≤ n − p in E+.
Finally, create vertices w1,w2,w3 in V , and create edges {zj ,w1},
{zj ,w2} and {zj ,w3} for every 1 ≤ j ≤ n − p in E−.

It is easy to see thatw1,w2,w3,y3 and zj with 1 ≤ j ≤ n −p will
never be chosen, so our choice is constrained in {x1, . . . ,xn ,y1,y2}.
We can show that: If the number of vertices chosen from {x1, . . . ,xn }
is less than p, then it is always better to not choose y1 or y2. Other-
wise, it is always better to choose y1 and y2. Now one can verify
this reduction as follows. If there is a vertex cover of size k∗ ≤ k ,
then the corresponding k∗ vertices in V together with y1 and y2
cover more edges in E+ than in E−. Conversely, if there is a vertex
subset V ∗ that covers more edges in E+ than in E−, then V ∗ has
to contain at least p vertices, which means y1,y2 ∈ V ∗. Then we
can argue that the remaining vertices inV ∗ from {x1, . . . ,xn } must

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

825

xi
zj

y1

y2

y3

w1

w2

w3
E0

E− E+ E− E+

Figure 3: Illustration of the constructed instance in the proof

of Lemma 4.4. Bold blue edges are edges in E− and red edges

are edges in E+.

Table 3: Example for

Monotone clause

Judg. Set x1 x2 ¬x1∨¬x2

J1 1 1 0
J2 0 0 1
J3 0 0 1
UPQR1/2 0 0 ⇒1

Table 4: Example for

Horn clause

Judg. Set x1 x2 ¬x1 ∨ x2

J1 1 0 0
J2 0 0 1
J3 1 1 1
UPQR1/2 1 0 ⇒ 0

cover enough edges in E0 such that we can easily extend it to a
vertex cover for G0 of size at most k . □

Now we can show the NP-hardness of UPQR HD Manipula-
tion with positive monotone clauses of length ℓ = 3 by a simple
reduction from Positive Vertex Cover.

Theorem 4.5 (⋆). UPQR HD Manipulation with positive mono-

tone clauses of fixed length l (≥ 3) is NP-complete.

4.4 Monotone or Horn clauses of length ℓ = 2
When clauses are not positive monotone, we can not use the char-
acterization for a successful manipulation given in Lemma 4.2.

For monotone clauses we may have both xi ∨ x j and ¬xi ∨ ¬x j
in the conclusions. As shown in the example in Table 3, conclu-
sion ¬x1 ∨ ¬x2 will be excluded from the outcome only when
both x1 and x2 have been changed. Recall that for positive mono-
tone clauses, changing one variable is enough to include a bad
conclusion (see also Figure 2 for the comparison). So for monotone
clauses we have a new kind of “bad” conclusions.

For Horn clauses, we have conclusions of the form ¬xi ∨ x j .
This allows variables from P1

1 to be useful. To see this, consider the
example in Table 4 where J3 is the manipulator and J = {¬x1 ∨ x2}
is the desired set. Changing the value of x1 ∈ P1

1 from 1 to 0 can
make ¬x1 ∨ x2 included in the outcome. So for Horn clauses we
have a new kind of useful variables.

With these differences, we can show the following theorem.

Theorem 4.6 (⋆). UPQRHDManipulationwithmonotone clauses

or Horn clauses of length l = 2 is NP-complete.

Table 5: Computational complexity of basic variants of Ma-

nipulation.

UPQR-M-Manipulation
M =

Possible /
Robustness

Necessary /
Exact

no restriction NP-c [4] NP-c [4]
standard-form clause set C P (Lem. 3.1) C-Sat (Thm. 3.5

Pro. 3.10)
monotone clauses P (Cor. 3.2) NP-c (Cor. 3.8)
clauses with length ℓ ≤ 3 P (Cor. 3.2) NP-c (Cor. 3.8)
Horn clauses P (Cor. 3.2) P (Cor. 3.4)
positive monotone clauses P (Cor. 3.2) P (Cor. 3.4)

5 CONCLUSION

This paper provides a refined picture in terms of the computational
complexity of different variants of Manipulation in judgment
aggregation. Our results for basic variants of Manipulation are
summarized in Table 5. 3

For UPQR HD Manipulation, we show that NP-hardness holds
even if all conclusions are positive monotone clauses with length
ℓ = 3 but that the problem becomes solvable in polynomial time
when ℓ = 2. For monotone or Horn clauses with ℓ = 2, the problem
is also NP-hard which is in stark contrast to all basic variants of
Manipulation that remain polynomial-time solvable for Horn and
positive monotone clauses of arbitrary length.

All Manipulation variants we considered were known to be
generally NP-hard, which was seen and sold as “barrier against
manipulative behavior” [4]. The main message of this work is that
several basic variants of Manipulation can be solved efficiently
for simple but well-motivated restrictions of conclusions (e.g. Horn
clauses and generalizations thereof) whereas other variants remain
computationally intractable for most restrictions. We see our re-
sults as an important step and expect further effects decreasing the
computational complexity by considering other realistic structural
properties of the formulas (e.g. bounded frequency of variables).
Hence, our results question whether there really is a barrier against
manipulative behavior in case of realistically simple formulas.

Possible next steps include a systematic investigation of the pa-
rameterized complexity for both judgment aggregation-specific
parameters (e.g. “number of judges” or “size of the desired set”) and
formula specific parameters (e.g. “number of clauses” or “variable
frequency”). We note that considering the parameter “number of
judges” alone, however, will not lead to tractable cases because this
parameter is fixed to three in many of our reductions. Furthermore,
it seems natural to extend the study to strategic behavior of groups
of judges instead of a single judge [7].

ACKNOWLEDGMENTS

Junjie Luo was supported by CAS-DAAD Joint Fellowship Program
for Doctoral Students of UCAS. Work done while all authors were
with TU Berlin.
3We remark that our results provide also a full picture for the omitted variants
of Manipulation as defined by Baumeister et al. [4]. For UPQR-TR-Possible-
Manipulation we can obtain the same results as for UPQR Possible Manipulation.
UPQR-U -Necessary-Manipulation is known to be trivial to solve [4].

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

826

REFERENCES

1. John J. Bartholdi III, Craig A. Tovey, andMichael A. Trick. 1989. The Computational
Difficulty of Manipulating an Election. Social Choice and Welfare 6, 3 (1989), 227–
241.

2. John J. Bartholdi, III, Craig A. Tovey, and Michael A. Trick. 1992. How Hard Is It to
Control an Election? Mathematical and Computer Modeling 16, 8-9 (1992), 27–40.

3. Dorothea Baumeister, Gábor Erdélyi, Olivia J. Erdélyi, and Jörg Rothe. 2013. Com-
putational Aspects of Manipulation and Control in Judgment Aggregation. In
Proceedings of the 3rd International Conference on Algorithmic Decision Theory

(ADT ’13) (LNCS), Vol. 8176. Springer, 71–85.
4. Dorothea Baumeister, Gábor Erdélyi, Olivia J. Erdélyi, and Jörg Rothe. 2015. Com-

plexity of manipulation and bribery in judgment aggregation for uniform premise-
based quota rules. Mathematical Social Sciences 76 (2015), 19–30.

5. Dorothea Baumeister, Gábor Erdélyi, and Jörg Rothe. 2016. Judgment Aggregation.
In Economics and Computation. Chapter 8, 361–391.

6. Dorothea Baumeister, Jörg Rothe, and Ann-Kathrin Selker. 2017. Strategic Behavior
in Judgment Aggregation. In Trends in Computational Social Choice, Ulle Endriss
(Ed.). AI Access, Chapter 8, 145–168.

7. Sirin Botan, Arianna Novaro, and Ulle Endriss. 2016. Group Manipulation in
Judgment Aggregation. In Proceedings of the 15th International Conference on

Autonomous Agents & Multiagent Systems (AAMAS ’16). ACM, 411–419.
8. Stefano Ceri, Georg Gottlob, and Letizia Tanca. 2012. Logic programming and

databases. Springer Science & Business Media.

9. Franz Dietrich and Christian List. 2007. Judgment aggregation by quota rules:
Majority voting generalized. Journal of Theoretical Politics 19, 4 (2007), 391–424.

10. Franz Dietrich and Christian List. 2007. Strategy-proof judgment aggregation.
Economics and Philosophy 23, 3 (2007), 269–300.

11. Ulle Endriss. 2016. Judgment aggregation. In Handbook of Computational Social

Choice, Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.
Procaccia (Eds.). Cambridge University Press, Chapter 17.

12. Ulle Endriss, Umberto Grandi, and Daniele Porello. 2012. Complexity of judgment
aggregation. Journal of Artificial Intelligence Research 45 (2012), 481–514.

13. Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe.
2011. The Shield That Never Was: Societies With Single-Peaked Preferences Are
More Open to Manipulation and Control. Information and Computation 209, 2
(2011), 89–107.

14. Andrew V. Goldberg. 1984. Finding a maximum density subgraph. University of
California Berkeley, CA.

15. Davide Grossi and Gabriella Pigozzi. 2014. Judgment Aggregation: A Primer. Mor-
gan & Claypool Publishers.

16. Lewis A. Kornhauser and Lawrence G. Sager. 1986. Unpacking the Court. The Yale
Law Journal 96, 1 (1986), 82–117.

17. Christian List. 2012. The theory of judgment aggregation: an introductory review.
Synthese 187, 1 (2012), 179–207.

18. Christian List and Clemens Puppe. 2009. Judgment Aggregation: A Survey. In
Handbook of Rational and Social Choice, Christian List and Clemens Puppe (Eds.).
Oxford University Press, Chapter 19.

19. John W. Lloyd. 1987. Foundations of Logic Programming. Springer-Verlag.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

827

	Abstract
	1 Introduction
	2 Model and Preliminaries
	3 Basic Manipulation Problems
	3.1 Tractable Cases of Manipulation
	3.2 Intractable Cases of Manipulation: Manipulation vs. Satisfiability

	4 Hamming Distance Based Manipulation
	4.1 Condition for a successful manipulation
	4.2 Positive monotone clauses of length =2
	4.3 Positive monotone clauses of length =3
	4.4 Monotone or Horn clauses of length =2

	5 Conclusion
	Acknowledgments

