
Towards Completing the Puzzle: Solving Open Problems for
Control in Elections

Gábor Erdélyi

School of Mathematics and Statistics,

University of Canterbury

Christchurch, New Zealand

gabor.erdelyi@canterbury.ac.nz

Christian Reger

School of Economic Disciplines,

University of Siegen

Siegen, Germany

christian.reger@ymail.com

Yongjie Yang
∗

1
Chair of Economic Theory,

Saarland University

Saarbrücken, Germany

2
Central South University

Changsha, China

yyongjiecs@gmail.com

ABSTRACT
We investigate the computational complexity of electoral control in

elections. Electoral control describes the scenario where the election

chair seeks to alter the outcome of the election by structural changes

such as adding, deleting, or replacing either candidates or voters.

Such control actions have been studied in the literature for a lot of

prominent voting correspondences. In this paper, we complement

those results by solving several open cases for Copeland
α
, Maximin,

k-Veto, Plurality with Runoff, and Veto with Runoff.

KEYWORDS
voting control; complexity; veto with runoff; plurality with runoff

ACM Reference Format:
Gábor Erdélyi, Christian Reger, and Yongjie Yang. 2019. Towards Completing

the Puzzle: Solving Open Problems for Control in Elections. In Proc. of the
18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019, IFAAMAS, 9 pages.

1 INTRODUCTION
Since the seminal works of Bartholdi et al. [5–7], many strategic

voting problems have been proposed and studied from the complex-

ity theoretic point of view. These strategic voting problems include

manipulation, where voters cast their votes strategically, bribery,
where an external agent changes some voters’ votes, and control,
where an external agent (usually called the chair) tries to alter the

outcome of an election by structural changes such as adding, delet-

ing, or replacing either candidates or voters. For a broad overview

of these strategic actions, their applications in multiagent systems,

recommender systems, ranking algorithms, etc., and for a survey

of the related results we refer to the book chapters [8, 16] and the

references cited therein.

In this paper, we will focus on control, in particular on adding,

deleting, and replacing either candidates or voters. There is a long

line of research centered on the complexity of control. Many voting

correspondences have been investigated, such as Approval Voting

and its variants, Condorcet, Plurality [7, 9, 12, 13, 21], Copeland [9,

14], Maximin [15, 28, 34], k-Veto, and k-Approval [23, 26, 35]. A
general (multimode) control problem, allowing an external agent to

∗
corresponding author

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13–17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

perform different types of control actions at once such as deleting

and/or adding voters and/or candidates, has been introduced in [15].

The reader may ask, why do we need yet another paper on the

complexity of control? The answer is, because our knowledge on

the complexity of control is incomplete, there are several voting

correspondences for which we still have some unsolved open cases.

In this paper, we are filling those gaps. In the following, we will

highlight our contributions:

• Faliszewski et al. [14] and Loreggia [24] investigated the

complexity of control in Copeland
α
elections leaving the

case destructive control by replacing voters for any rationalα
where 0 ≤ α ≤ 1 open. We settle this open problem.

• Faliszewski et al. [15] and Maushagen and Rothe [28] investi-

gated the complexity of control inMaximin elections, leaving

the cases constructive and destructive control by replacing

either candidates or voters open. We solve these problems.

Moreover, we also solve a more general problem called ex-

act destructive control by adding and deleting candidates, a

special form of multimode control.

• Lin [23] and Loreggia et al. [26] focused on control in k-
Veto. Open cases are k-Veto constructive control by replacing
voters for k ≥ 2. We solve these open cases, providing a

dichotomy result for k-Veto with respect to the values of k .
• Finally, we investigate the complexity of control for two

common voting correspondences, which, surprisingly, have

not been considered yet in the literature, namely Plurality

with Runoff and Veto with Runoff.

2 PRELIMINARIES
An election E is given by a tuple E = (C,V ) whereC is a finite set of

candidates andV is a finite multiset of votes. Each vote is defined as

a linear order over C , indicating the preference of the voter over C .
In particular, if a voter v ∈ V prefers candidate a to candidate b,
denoted as a ≻ b, a is ordered before b inv . A voting correspondence
(or voting rule) τ maps each election (C,V ) to a subset of candidates
called the winners of the election. For two candidates a,b ∈ C , let
NE (a,b) be the number of voters preferring a to b. We drop E from

the notation if it is clear from the context. Furthermore, for any

set X of candidates or voters let nX denote the cardinality of X . For

ease of exposition, in this paper we exchangeably use the words

vote and voter. We consider the following voting correspondences.

Copelandα For each pairwise comparison between two can-

didates a and b, if NE (a,b) > NE (b,a), a receives 1 point

and b receives 0 points. If NE (a,b) = NE (b,a), both a and b

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

846



receive α points, where α ∈ [0, 1] is a rational number. The

candidates with the highest total points are the winners.

Maximin TheMaximin score of a candidate a ∈ C is defined as

minb ∈C\{a } NE (a,b). Candidates with the highest Maximin

score are the winners.

k-Approval Each voter gives 1 point to every candidate on

the top-k positions. The winners are the candidates with the

highest total score. Particularly, 1-Approval is often referred

to as Plurality in the literature.

k-Veto Each voter gives 1 point (veto) to every candidate ranked

on the last k positions. The winners are the candidates with

the least vetoes. 1-Veto is often referred to as Veto.
Plurality with Runoff (PRun) Each voter only approves of

his top-ranked candidate. If there is a candidate c who is

approved by every voter, then c is the unique winner. Oth-
erwise, this voting correspondence takes two stages to se-

lect the winner. In the first stage, all candidates except the

two who respectively receive the most and second-most

approvals are eliminated from the election. If more than

two candidates have the same highest total approvals, a

tie-breaking rule is applied to select exactly two of them,

and if there is one candidate with the most approvals but

several candidates with the second-most approvals, a tie-

breaking rule is used to select exactly one of those with

the second-most approvals. Then, the remaining two can-

didates, say c and d , compete in the second stage (runoff

stage). In particular, if NE (c,d ) > NE (d, c ) then c wins; and
if NE (d, c ) > NE (c,d ) then d wins. Otherwise, a tie-breaking

rule applies to determine the winner between c and d .
Veto with Runoff (VRun) Each voter vetoes exactly the last-

ranked candidate. This voting correspondence is defined

similar to PRun, with a slight difference in the first stage:

all candidates except the ones who receive the least and

second-least vetoes are eliminated from the election.

We study various control problems which can be considered as

special cases of the following problem [15].

τ -Constructive Multimode Control

Given: An election (C ∪ D, V ∪W ) with registered candidate

set C , unregistered candidate set D , registered voter

set V , unregistered voter setW , a designated candidate

c ∈ C , and four non-negative integers ℓAV, ℓDV, ℓAC,

ℓDC, with ℓAV ≤ |W |, ℓDV ≤ |V |, ℓAC ≤ |D |, and
ℓDC ≤ |C |.

Question: Are thereV ′ ⊆ V ,W ′ ⊆W ,C′ ⊆ C \ {c },D′ ⊆ D , such

that |V ′ | ≤ ℓDV, |W ′ | ≤ ℓAV, |C′ | ≤ ℓDC, |D′ | ≤ ℓAC,

and c is a winner of the election ((C \ C′) ∪ D′, (V \
V ′) ∪W ′) under τ ?

In τ -Destructive Multimode Control we ask whether there

exist subsets V ′,W ′, C ′, and D ′ as in the above definition such

that c is not a winner in ((C \C ′) ∪ D ′, (V \V ′) ∪W ′) under τ .
In this paper we study several special cases or restricted versions

of multimode control, such as adding, deleting, or replacing either

candidates or voters. The following list gives an overview of the

restrictions compared to the general multimode control problem.

Problems Restrictions

Add. Voters ℓAC = ℓDC = ℓDV = 0, D = ∅

Del. Voters ℓAC = ℓDC = ℓAV = 0, D =W = ∅

Add. Candidates ℓDC = ℓAV = ℓDV = 0,W = ∅

Del. Candidates ℓAC = ℓAV = ℓDV = 0, D =W = ∅

Repl. Voters |V ′ | = |W ′ |, ℓAV = ℓDV,
ℓAC = ℓDC = 0, D = ∅

Repl. Candidates |C ′ | = |D ′ |, ℓAC = ℓDC,
ℓAV = ℓDV = 0,W = ∅

Throughout the paper, we will use a four-letter code to denote

our problems. The first two characters CC/DC stand for construc-

tive/destructive control, the third character A/D/R stands for add-

ing/deleting/replacing, and the last one V/C for voters/candidates.

For example, DCRV stands for destructive control by replacing

voters. For simplicity, in each problem in the above table, we use ℓ

to denote the integer(s) in the input that is not necessarily required

to be 0. For example, when considering CCRV, we use ℓ to de-

note ℓAV = ℓDV. Control by adding/deleting votes/candidates has

been extensively studied in the literature since the seminal work

of Bartholdi (see, e.g., [7, 11, 22, 27, 29, 31, 33, 35]). However, the

complexity of control by replacing candidates or voters has been

studied just recently by Loreggia et al. [26].

We assume the reader to be familiar with basics in complexity

theory, such as P, NP, NP-hard, NP-complete, etc. We refer to [32]

for a concise introduction to the complexity theory and [2, 18]

for more comprehensive discussions. For NP-completeness results

we only provide the hardness proofs since the NP-membership of

these problems is easy to check. Our NP-hardness results are mainly

based on reductions from the following NP-hard problem [19].

Restricted Exact Cover By 3-Sets (RX3C)

Given: A set U = {u1, . . . , u3κ } and a collection S =

{S1, . . . , S3κ } of 3-element subsets of U such that each

u ∈ U occurs in exactly three subsets S ∈ S.
Question: Does S contain an exact 3-set cover for U , i.e., a subcol-

lection S′ ⊆ S such that every element of U occurs in

exactly one member of S′?

For showing membership in P, we will in some proofs make

use of the following problems. We also assume that the reader is

familiar with graph theory (cf. [4, 10]).

Integral Minimum Cost Flow (IMCF)

Given: A networkG = (V , E ), capacity functions bα , bβ : E →
N0, a source vertex x ∈ V , a sink vertex y ∈ V \ {x }, a
cost function д : E → N0, and an integer r .

Question: Find a minimum cost flow from x to y of value r .
Recall that a flow f is a function assigning to each

arc (u, v ) ∈ E an integer number f (u, v ) such

that (1) bα (u, v ) ≤ f (u, v ) ≤ bβ (u, v ); and

(2) for every node v except x and y , it holds that∑
(u,v )∈E f (u, v ) =

∑
(v,u )∈E f (v, u ). 1 The cost of a

flow f is

∑
(u,v )∈E f (u, v ) · д (u, v ), and the value of f

is

∑
(x,v )∈E f (x, v ).

1
For simplicity, we write bα (u, v ) for bα ((u, v )), bβ (u, v ) for bβ ((u, v )), and
д (u, v ) for д ((u, v )) throughout this paper.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

847



In the above definitions, bα and bβ are respectively called the

lower-bound capacity and the upper-bound capacity. The IMCF

problem is well-known to be polynomial-time solvable [1].

b-Edge Cover (b-EC)

Given: AnundirectedmultigraphG = (V , E )without loops, two
capacity functions bα , bβ : V → N0, and an integer r .

Question: Is there a b-edge cover inG of size at most r , i.e., a subset
E′ ⊆ E of at most r edges such that each node v ∈ V
is incident to at least bα (v ) and at most bβ (v ) edges in
E′?

The b-EC problem is also polynomial-time solvable [17, 20].

3 COPELANDα

We start by completing our knowledge on control in Copeland
α

elections. Faliszewski et al. [14] and Loreggia [24] investigated the

complexity of control in Copeland
α
elections, leaving the cases

destructive control by replacing voters and constructive and de-

structive control by replacing candidates open.

A voting correspondence satisfies Insensitivity to Bottom-ranked
Candidates (IBC) if for any election with at least two candidates,

the winners do not change after a subset of candidates which are

ranked after all other candidates in all votes are deleted. Note that

both Copeland
α
and Maximin satisfy IBC. Loreggia et al. [25, 26]

established the following relationship between CCRC and CCDC,

and between DCRC and DCDC.

Lemma 3.1. [25, 26] Let τ be a voting correspondence satisfying
IBC. Then, τ -CCRC is NP-hard if τ -CCDC is NP-hard, and τ -DCRC is
NP-hard if τ -DCDC is NP-hard.

Due to Lemma 3.1 and the facts that Copeland
α
satisfies IBC,

and Copeland
α
-CCDC and Copeland

α
-DCDC are NP-hard [14], it

follows that Copeland
α
-CCRC and Copeland

α
-DCRC are NP-hard.

It remains the case of destructive control by replacing voters.

We complete it via the following theorem.

Theorem 3.2. Copelandα -DCRV is NP-complete for any α such
that 0 ≤ α ≤ 1.

We omit the proof due to space constraints. The proof is a slight

modification of the one for Copeland
α
-CCAV given in [14] with the

only difference that there are k further votes ranking the designated

candidate first. These votes are replaced with the highest priority.

4 MAXIMIN
Let us now turn to Maximin. Faliszewski et al. [15] have already

investigated the complexity of constructive and destructive control

by adding and deleting either candidates or voters.Wewill complete

the picture on control in Maximin elections by providing results on

constructive and destructive control by replacing candidates and

voters. It is known that constructive control by deleting candidates

for Maximin is polynomial-time solvable [15]. Hence, we could

not obtain the NP-hardness of Maximin-CCRC from Lemma 3.1.

However, Loreggia [25] introduced another useful lemma.

A voting correspondence is said to be unanimous if whenever
the same candidate is ranked in the top position in all votes, this

candidate wins.

Lemma 4.1. [25] Let τ be an unanimous voting correspondence
that satisfies IBC. If τ -CCAC is NP-hard, then τ -CCRC is NP-hard.

Due to this lemma and the facts that (1) Maximin is unani-

mous; (2) Maximin satisfies IBC; and (3) CCAC for Maximin is

NP-complete [15], we know that Maximin-CCRC is NP-complete.

The following theorem handles constructive and destructive

control by replacing voters. Our proof is a modification of the proof

of constructive control by adding voters in Maximin [15]. In the

following, for two subsetsA and B of candidates and a linear order ≻

over candidates, A ≻ B means that a ≻ b for every a ∈ A and b ∈ B.

Theorem 4.2. Maximin-CCRV andMaximin-DCRV are NP-complete.

Proof. We start with the constructive case. Let (U ,S) be a given
RX3C instance such that |U | = |S| = 3κ. We construct the following

CCRV instance. Let the set of candidates be C = U ∪ {c,d } s.t.
{c,d } ∩U = ∅. The designated candidate is c . The registered votes

are as follows.

• There are 3κ + 1 votes of the form d ≻ U ≻ c .
• There are κ votes of the form c ≻ U ≻ d .
• There are κ votes of the form c ≻ d ≻ U .

Moreover, for each S ∈ S, we create an unregistered vote inW of

the form (U \ S ) ≻ c ≻ S ≻ d . Finally, we set ℓ = κ, i.e., we are
allowed to replace at most κ voters. We claim that we can make the

candidate c the winner of the election by replacing up to κ voters if

and only if S contains an exact 3-set cover forU . The argument for

the correctness is similar to the one for Maximin-CCAV in [15].

The destructive version works identically, except that the first

vote group contains only 3κ votes and the designated candidate

is d . □

It remains to show the complexity of destructive control by

replacing candidates in Maximin. In contrast to the NP-hardness

results for the other replacing cases, we show that Maximin-DCRC

is polynomial-time solvable. In fact, we show the P-membership of

a more general problem called Exact Destructive Control by

Adding and Deleting Candidates, denoted by τ -EDCAC+DC.
In particular, this problem is a variant of the multimode control

problem where ℓAV = ℓDV = 0,W = ∅. Moreover, it must hold that

in the solution |C ′ | = ℓDC and |D ′ | = ℓAC (i.e., the chair deletes

exactly ℓDC candidates and adds exactly ℓAC candidates). Note that

the number of candidates added and the number of candidates

deleted do not have to be the same.

Theorem 4.3. Maximin-EDCAC+DC is in P.

Proof. Our input is an EDCAC+DC instance as defined above.

Suppose that the chair adds exactly ℓAC candidates from D and

deletes exactly ℓDC candidates from C . Note that ℓDC < |C | since
the chair must not delete the designated candidate c . Our algorithm
works as follows. It checks if there is a pivotal candidate c ′ , c that
beats c in the final election. In case c has Maximin score at most k
for some integer k in the final election, there exists some candidate

d ∈ (C ∪D) \ {c}, not necessarily different from c ′ with N (c,d ) ≤ k .
Our algorithm checks whether there is a final election including c , c ′

and d , the candidate c has Maximin score at most k and c ′ has
Maximin score at least k + 1, where k ∈ {0, 1, . . . , |V | − 1}. Note

that we may restrict ourselves to values k ≤
⌈
|V |
2

⌉
− 1. Otherwise, c

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

848



does not lose any pairwise comparison and is a weak Condorcet

winner and thus a Maximin winner.

Precisely, the algorithm first guesses the candidate c ′ ∈ (C ∪D) \
{c} and the threshold score k as discussed above, and then proceeds

with the following steps.

(1) Let D (c ′) = {d ∈ (C ∪ D) \ {c} : N (c,d ) ≤ k ∧ (c ′ =
d ∨ N (c ′,d ) > k )}. If D (c ′) = ∅ or N (c ′, c ) ≤ k , we im-

mediately reject for the pair (c ′,k ). Otherwise, we guess a
candidate d ∈ D (c ′) (not necessarily different from c ′). The
candidate d has the function to fix the score of c below or

equal to k . In order to keep c ′’s score above the score of c , it
must hold either c ′ = d or N (c ′,d ) > k . 2 We go to the next

step.

(2) Check whether ℓDC ≤ |C | − 1 − |C ∩ {c ′,d }| and ℓAC ≥
|D ∩ {c ′,d }|. If this is the case, proceed with the next step.

Otherwise, we reject because there is no way for the chair

to keep (add) both c ′ and d in(to) the final election.

(3) Let C1 = {c
′′ ∈ C \ {c, c ′,d } : N (c ′, c ′′) ≤ k }. Candidates

in C1 must all be deleted in order to keep the maximin score

of c ′ higher than k . If |C1 | > ℓDC, we discard this subcase and

try the next triple (c ′,k,d ). Otherwise, the chair deletes all
candidates inC1 and arbitrary other candidates inC\{c, c

′,d }
such that exactly ℓDC candidates have been deleted. We go

to the next step.

(4) Let D1 = {a ∈ D \ {c
′,d } : N (c ′,a) > k }. Candidates in D1

are the only candidates which may be added and the score

of c ′ does not decrease. Hence, if |D1 | < ℓAC − |D ∩ {c
′,d }|,

we reject for the triple (c ′,k,d ) since the chair must add

some candidates leading to a lower score than k + 1 for c ′.
Otherwise, we accept.

The original instance is a YES-instance, at least one guessed triple

(c ′,k,d ) leads to a YES answer. The algorithm runs in polynomial

time because there are polynomially many triples to check and each

of them can be done in polynomial time as described above. □

Due to Theorem 4.3, we obtain the following result.

Corollary 4.4. Maximin-DCRC is in P.

Theorem 4.3 also generalizes the polynomial-time solvability

results for Maximin-DCAC and Maximin-DCDC studied in [15].

We also would like to point out that Faliszewski et al. [15] showed

that Maximin-CCACu+DC is polynomial-time solvable. In this case

the chair is allowed to add as many unregistered candidates as he

wants but can only delete a limited number of candidates.

5 K-VETO
Turning now to k-Veto, it is known that Veto-CCRV and k-Veto-
DCRV for all possible k are polynomial-time solvable [26]. We com-

plement these results by showing that 2-Veto-CCRV is polynomial-

time solvable and k-Veto-CCRV is NP-complete for k ≥ 3, achiev-

ing a dichotomy result for k-Veto with respect to the values of k .
LetV c

(W c
) be the set consisting of all voters inV (W ) vetoing c ,

and define V¬c = V \V c
(W ¬c =W \W c

). For an election (C,V )
and a candidate c ∈ C , let vto(C,V ) (c ) be the number of voters in V
vetoing c .

2
Note that if the Maximin score of c is less than k , the candidate c ′ can also beat c
with Maximin score k , but this case is captured by another pair (c ′, k ).

Theorem 5.1. 2-Veto-CCRV is in P.

Proof. Let (C,V ∪W ), ℓ, c ∈ C be the components of the CCRV

instance input as described in Section 2. Recall that c is the des-
ignated candidate in the input. Our algorithm distinguishes the

following cases

• vto(C,V ) (c ) ≤ min(ℓ,nW − vto(C,W ) (c )).
In this case, the algorithm returns “YES” since c can be made

a winner with zero vetoes by replacing all registered votes

vetoing c with equal number of unregistered votes not veto-

ing c .
• nW − vto(C,W ) (c ) ≤ min(ℓ, vto(C,V ) (c )).
In this case, the optimal choice for the chair is to replace

nW − vto(C,W ) (c ) voters inV vetoing c by the same number

of voters fromW not vetoing c . Hence, all votes inW ¬c are

ensured in the final election. In addition, all votes in V¬c

are also in the final election, as none of these votes needs

to be exchanged in an optimal solution. However, the chair

possibly needs to exchange further ℓ − nW + vto(C,W ) (c ) V -

voters vetoing c by the same number ofW -voters vetoing c .
Anyway, c has exactly vc =

vto(C,V ) (c ) − (nW − vto(C,W ) (c )) = vto(C,V∪W ) (c ) − nW

vetoes in the final election. Due to these observations, the

question is equivalent to searching for no more than vc vot-

ers in V c ∪W c
that shall belong to the final election, such

that at least max(0, vto(C,V ) (c )−ℓ) and at most vto(C,V ) (c )−
nW + vto(C,W ) (c ) among them belong to V c

. We guess the

exact number ℓ′ where max(0, vto(C,V ) (c ) − ℓ) ≤ ℓ
′ ≤

vto(C,V ) (c ) − nW + vto(C,W ) (c ) of V -voters that are kept in

the final election. This implies that we keep exactly vc − ℓ
′

votes fromW c
in the final election. Clearly, if the given in-

stance falls into this case and is a YES-instance, at least one

of these guesses leads to a YES answer. In the following,

we reduce the instance into an equivalent b-EC instance in

polynomial time.

For each candidate d ∈ C \ {c}, we create a vertex d . In
addition, we create two vertices cV and cW representing

vetoes that non-designated candidates receive from voters

in V orW vetoing c , respectively. Each voter in V c
(W c

)

vetoing some candidate d ∈ C \ {c} and c yields an edge

between d and cV (cW ). The capacities are as follows.

– bα (cV ) = bβ (cV ) = ℓ′. These capacities ensure that ex-

actly ℓ′ votes from V c
are kept in the final election.

– bα (cW ) = bβ (cW ) = vc − ℓ
′
. These capacities ensure that

exactlyvc −ℓ
′
votes fromW c

are kept in the final election.

– bβ (d ) = |V ∪W | and bα (d ) = vc − vto(C,V ¬c∪W ¬c ) (d ) for
every candidate d ∈ C \ {c}. As discussed above, all votes

in V¬c ∪W ¬c are in the final elections. These votes give

vto(C,V ¬c∪W ¬c ) (d ) vetoes to the candidate d . Hence, the
lower-bound capacity for d is to ensure that in the final

election d has at least the same number of vetoes as c . The
upper-bound capacity for d is not important and can be

changed to any integer that is larger than the maximum

possible vetoes the candidate d can obtain.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

849



It is fairly easy to check that there is a b-edge cover with at

most vc edges if and only if c can be made a winner in the

final election by replacing exactly vto(C,V ) (c ) − ℓ
′
votes.

• ℓ ≤ min(vto(C,V ) (c ),nW − vto(C,W ) (c )).
In this case, the optimal choice for the chair is to replace

exactly ℓ voters in V vetoing c with ℓ voters fromW not

vetoing c . In other words, we are ensured that the final elec-

tion contains all voters inV¬c , exactly vto(C,V ) (c )− ℓ voters
in V c

, and exactly ℓ voters fromW ¬c . This observation en-

ables us to reduce the instance in this case to the following

b-EC instance.

The vertex set is {cV } ∪ (C \ {c}), i.e., we create a vertex cV
first and then for each candidate inC \ {c} we create a vertex
denoted by the same symbol. For each voter in V c

vetoing

somed ∈ C\{c} (and c), we create an edge (cV ,d ). In addition,
for each voter inW ¬c vetoing two distinct candidates d and

e , we create an edge (d, e ). The capacities of the vertices are
as follows.

– bα (cV ) = bβ (cV ) = vto(C,V ) (c ) − ℓ. This capacity ensures

that exactly vto(C,V ) (c ) − ℓ voters from V c
remain in the

final election.

– For every d ∈ C \ {c}, we set bβ (d ) = |V ∪W | and

bα (d ) = max

(
0, vto(C,V ) (c ) − ℓ − vto(C,V ¬c ) (d )

)
.

The lower bound ensures that in the final election d has at

least the same vetoes as c . Here, vto(C,V ¬c ) (d ) is the vetoes
ofd obtained from voters inV¬c which, as discussed above,
are ensured in the final election. The upper bound is not

very important and can be set as any integer larger than

the maximum possible vetoes that d can obtain in the final

election.

Given the above discussions, it is fairly easy to check that c
can be made a winner by replacing ℓ voters if and only if

there is a b-edge cover of size at most vto(C,V ) (c ).

Each subcase can be done in polynomial time. Consequently, the

overall algorithm terminates in polynomial time. □

We fill the complexity gap for CCRV for k-Veto by showing

that k-Veto-CCRV is NP-complete for every k ≥ 3. The proof is an

adaption of the hardness proof of constructive control by adding

voters for 3-Veto [23].

Theorem 5.2. k-Veto-CCRV is NP-complete for every constant
k ≥ 3.

Proof. We show our result only for k = 3 and argue at the end

of the proof how to handle the cases k ≥ 4.

Our proof provides a reduction from the RX3C problem. Given

an instance (U ,S) of the RX3C problem where |U | = |S| = 3κ, we
construct an instance of 3-Veto-CCRV as follows. Let the candidate

set be C = {c} ∪ {d1,d2,d3} ∪U , where {c,d1,d2,d3} ∩U = ∅. The
designated candidate is c . For ease of exposition, let n = 3κ. The
set V consists of the following 2n − 2κ + 3κ · n registered voters.

• There are n + κ voters vetoing c , d1 and d2.
• There are n voters vetoing d1, d2 and d3.
• For each u ∈ U , there are n − 1 voters vetoing u and any two

arbitrary dummy candidates in {d1,d2,d3}.

Note that with the registered voters, the designated candidate c
has n+κ vetoes, eachu ∈ U has n−1 vetoes, and di , i ∈ {1, 2, 3}, has
at least n vetoes. Let the multisetW of unregistered voters consist

of the following n voters. For each S ∈ S, there is a voter vetoing
the candidates in S . Finally, we are allowed to replace at most κ
voters, i.e., ℓ = κ.

We claim that c can be made a 3-Veto winner by replacing at

most κ voters if and only if an exact 3-set cover of U exists.

(⇐) Assume that U has an exact 3-set cover S′ ⊆ S. After

replacing the κ votes corresponding to S′ fromW with arbitrary κ
voters inV vetoing c , c has (n + κ) − κ = n vetoes, every u ∈ U has

(n − 1) + 1 = n vetoes, and each d1, d2, and d3 has at least n vetoes.

Clearly, c becomes a winner.

(⇒) Assume that c can be made a 3-Veto winner by replacing at

most ℓ voters. Let V ′ ⊆ V andW ′ ⊆W be the two sets such that

|V ′ | = |W ′ | and c becomes a winner after replacing all votes in V ′

with all votes inW ′. Observe first that |V ′ | and |W ′ |must be exactly

κ, since otherwise c has at least n + 1 vetoes and there exists one

u ∈ U having at most n−1 vetoes in the final election, contradicting
that c becomes a winner in the final election. In addition, no matter

whichκ voters are inW ′, there must be at least one candidateu ∈ U
who has at most n vetoes after the replacement. This implies that

each voter inV ′ must veto c . As a result, c has (n+κ)−κ = n vetoes

after the replacement. This further implies that for eachu ∈ U there

is at least one voter inW ′ who vetoes u. As |W ′ | = κ, due to the

construction ofW , the collection of the 3-subsets corresponding to

the κ voters inW ′ form an exact 3-set cover.

To show the NP-hardness for k ≥ 4, we additionally create k − 3
dummy candidates being vetoed by every vote. The correctness

argument is analogous. □

6 PLURALITY AND VETOWITH RUNOFF
We now turn to the final two voting correspondences considered

in this paper. Both voting correspondences are common voting

correspondences, however, somewhat surprisingly, there are no

results on control in Plurality with Runoff and Veto with Runoff.

We first show that CCAV/CCDV/CCRV for both Plurality with

Runoff and Veto with Runoff are polynomial-time solvable when

ties are broken in favor of the chair in both stages. Precisely, if

several candidates are tied in the first stage, the chair has the right

to select the two candidates who survive this stage, and if in the

second stage NE (c,d ) = NE (d, c ) for the two candidates c and d
who survive the first stage, the chair is obligated to select the final

winner between c and d .
Instead of showing the results separately one-by-one, we prove

that a variant of the multimode control problem, Exact Construc-

tive Control by Adding and Deleting Voters, denoted by τ -
ECCAV+DV, is polynomial-time solvable, where τ is Plurality with

Runoff and Veto with Runoff. In this exact variant, we require that

the number of added and deleted voters is exactly equal to the

corresponding given integer, i.e., we require that |V ′ | = ℓDV and

|W ′ | = ℓAV. Moreover, we have ℓAC = ℓDC = 0 andD = ∅. Note that
CCAV/CCDV/CCRV are polynomial-time reducible to ECCAV+DV.

For an election (C,V ) and a candidate d ∈ C , let score(C,V ) (d ) be
the number of voters inV approving d . In the proof of the following

theorem we will show the P-membership of PRun-ECCAV+DV

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

850



and VRun-ECCAV+DV by reducing them to the polynomial-time

solvable problem Integral Min-Cost Flow [1].

Theorem 6.1. PRun-ECCAV+DV and VRun-ECCAV+DV are in P.

Proof. Due to space constraints, we only provide the algorithm

for Plurality with Runoff. Let (C,V ),W , c ∈ C , ℓAV, and ℓDV be

the components of the input of a given instance as described in

the definition of τ -ECCAV+DV. Here, c is the designated candi-

date. Our algorithm guesses a candidate d ∈ C \ {c} and four in-

tegers ℓc
AV

, ℓd
AV

, ℓc
DV

, and ℓd
DV

such that 0 ≤ ℓcX + ℓ
d
X ≤ ℓX for

X ∈ {AV, DV}. The guessed candidate d is supposed to be the one

who competes with c in the runoff stage. Moreover, ℓc
AV

(resp. ℓd
AV

)

is supposed to be the number of voters added fromW that approve c

(resp. d), and ℓc
DV

(resp. ℓd
DV

) is supposed to be the number of voters

deleted from V that approve c (resp. d). Given such guessed candi-

date and integers, we determine whether we can add exactly ℓAV
votes fromW wherein ℓc

AV
(resp. ℓd

AV
) of them approve c (resp. d),

and delete exactly ℓDV votes from V wherein ℓc
DV

(resp. ℓd
DV

) of

them approve c (resp. d). Clearly, the original instance is a YES-

instance if and only if at least one of these guesses leads to a YES

answer. We show how to find the answer to each subinstance in

polynomial time. First, we immediately discard the guess if one of

the following conditions holds: (1) ℓc
DV
> score(C,V ) (c ); (2) ℓ

d
DV
>

score(C,V ) (d ); (3) ℓ
c
AV
> score(C,W ) (c ); or (4) ℓ

d
AV
> score(C,W ) (d ).

Assume that none of the above conditions holds. Then, the scores

of c and d in the final election are determined. Precisely, the final

score of e ∈ {c,d }, denoted by score(e ), is score(C,V ) (e ) + ℓ
e
AV
− ℓe

DV
.

Let s = min{score(c ), score(d )}. To ensure c and d to be in the runoff

stage, each candidate a ∈ C \ {c,d } may have at most s approvals
in total. A second condition for c to be a runoff winner against d
is that c beats d in the pairwise comparison between them. Since

there are n′ = nV + ℓAV − ℓDV voters in the final election (C,V ′), d

must win at most

⌊
n′
2

⌋
duels against c . Let A = C \ {c,d } and

score(C,V ) (A) =
∑
a∈A score(C,V ) (a). Moreover, for X ∈ {AV,DV},

let ℓAX = ℓX − ℓ
c
X − ℓ

d
X . As d in turn wins score(d ) comparisons

against c in all votes whered is the top candidate, if

⌊
n′
2

⌋
< score(d ),

we reject for the current guess and regard the next one. Otherwise,

we search for exactly

nV − score(C,V ) (c ) − score(C,V ) (d )︸                                        ︷︷                                        ︸
=score(C,V ) (A)

−ℓA
DV

voters in V not deleted and approving candidates in A, and ex-

actly ℓA
AV

voters added fromW and approving some a ∈ A such

that the final election contains at most

⌊
n′
2

⌋
− score(d ) voters who

rank some a ∈ A first and prefer d over c . We solve this question

by reducing it to the IMCF problem.

The construction of the IMCF instance is illustrated in Figure 1.

Precisely, there is a source x , a sink y, and two nodes VA
andW A

.

Moreover, each voter inV ∪W approving some a ∈ A yields a node.

Additionally, each a ∈ A yields a node a. If not mentioned other-

wise, each cost is equal to zero. There is an arc from x to VA
with

lower-bound and upper-bound capacities bα (x ,V
A ) = bβ (x ,V

A ) =

score(C,V ) (A)− ℓ
A
DV

. There is another arc from x toW A
with lower-

bound and upper-bound capacities bα (x ,W
A ) = bβ (x ,W

A ) = ℓA
AV

.

x y

V A

V W

AW

V

v

Figure 1: An illustration of the construction of the IMCF in-
stance in Theorem 6.1.

Each voter v ∈ V with top candidate in A yields an arc (VA,v )
with capacity 1. The cost of this arc is equal to 1 if v prefers d to c .
Analogously we define edges fromW A

to verticesw correspond-

ing to voters inW approving some a ∈ A. There is an edge from

some v ∈ V ∪W to some a ∈ A with capacity one if and only if v
prefers a most. Each a ∈ A yields an arc (a,y) with capacity s .

One can check that there is a (maximum) flow with value

score(C,V ) (A) − ℓ
A
DV
+ ℓA

AV

and (minimum) cost of at most

⌊
n′
2

⌋
− score(d ) if and only if we can

find exactly score(C,V ) (A) − ℓ
A
DV

(remaining) voters inV approving

some a ∈ A and exactly ℓA
AV

voters added fromW approving some

a ∈ A such that each a ∈ A has at most s approvals, and a weak

majority of voters prefers c to d in the final election. □

The exact versions of the destructive multimode control for

Plurality with Runoff and Veto with Runoff are polynomial-time

solvable too. We omit the proofs.

Theorem 6.2. PRun-EDCAV+DV and VRun-EDCAV+DV are in P.

Given the above results, we obtain the following corollary.

Corollary 6.3. PRun-Y and VRun-Y are in P for all
Y ∈ {CCAV,CCDV,CCRV,DCAV,DCDV,DCRV}.

Concerning candidate control, we have the following result.

Theorem 6.4. PRun-CCAC, VRun-CCAC, PRun-DCAC, and VRun-
DCAC are NP-complete.

Proof. We prove the theorem by reductions from the RX3C

problem. Due to space constraints, we give proofs only for VRun-

CCAC and PRun-CCAC. We first consider Veto with runoff.

VRun-CCAC. For a given RX3C instance (U ,S) where |U | =
|S| = 3κ, we create the following instance. For each u ∈ U , we

create a registered candidate denoted still by u for simplicity. In

addition, we create two registered candidates c and q with c being

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

851



CCAV CCDV CCRV CCAC CCDC CCRC DCAV DCDV DCRV DCAC DCDC DCRC

Copeland
α

NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC NPC

Maximin NPC NPC NPC NPC P NPC NPC NPC NPC P P P
Plurality P P P NPC NPC NPC P P P NPC NPC NPC

2-Approval P P ? NPC NPC NPC P P P NPC NPC NPC

3-Approval P NPC NPC NPC NPC NPC P P P NPC NPC NPC

≥ 4-Approval NPC NPC NPC NPC NPC NPC P P P NPC NPC NPC

Veto P P P NPC NPC NPC P P P NPC NPC NPC

2-Veto P P P NPC NPC NPC P P P NPC NPC NPC

≥ 3-Veto NPC NPC NPC NPC NPC NPC P P P NPC NPC NPC

PRun P P P NPC NPC NPC P P P NPC NPC NPC
VRun P P P NPC NPC NPC P P P NPC NPC NPC

Table 1: Our results are in boldface. Other results are from [7, 14, 15, 23, 26]. The complexity of CCRV for 2-Approval is open.

the distinguished candidate. Hence, the set of registered candidates

isC = U ∪ {c,q}. The unregistered candidates are created according
to S, one for each S ∈ S denoted by the same symbol for simplicity.

We create a multiset V of votes as follows.

• We create a vote of the form S ≻ U ≻ c ≻ q.
• For each u ∈ U , we crate 6κ − 3 votes of the form
c ≻ q ≻ S ≻ U \ {u} ≻ u.
• For each S ∈ S, we create 6κ + 5 votes as follows (number

of votes: preferences):

3κ + 1: q ≻ U ≻ c ≻ S \ {S } ≻ S .
3κ + 1: c ≻ U ≻ q ≻ S \ {S } ≻ S .

3: q ≻ U ≻ S \ {S } ≻ c ≻ S .

• For each S = {ux ,uy ,uz } ∈ S, we further create six votes as
follows (number of votes: preferences).

2: c ≻ q ≻ U \ {ux } ≻ S \ {S } ≻ ux ≻ S .
2: c ≻ q ≻ U \ {uy } ≻ S \ {S } ≻ uy ≻ S .
2: c ≻ q ≻ U \ {uz } ≻ S \ {S } ≻ uz ≻ S .

We are allowed to add at most κ candidates, i.e., ℓ = κ. Note
that in the election restricted to the registered candidates, c has
3κ · (3κ + 1) + 9κ vetoes, q has 3κ · (3κ + 1) + 1 vetoes, and every

u ∈ U has 6κ + 3 vetoes. Hence, c is not a Veto with Runoff winner

of the election. It remains to prove the correctness of the reduction.

(⇐) Assume that there is an exact 3-set cover S′ ⊆ S ofU . After

adding the candidates in S′, candidate q has 1 veto, every S ∈ S′

has at least 6κ + 11 vetoes, every u ∈ U has 6κ + 3 − 2 = 6κ + 1

vetoes, and c has 6κ vetoes. Hence, q and c move into the runoff

stage. As more voters prefer c over q, c becomes a final winner.

(⇒) Suppose that we can add a subset S′ ⊆ S of at most κ un-

registered candidates to makes c a winner under Veto with Runoff.

Observe first that S′ must contain exactly κ candidates, since other-

wise c would have at least 6κ+3 vetoes, while at least one candidate
in U would have at most 6κ + 3 − 2 = 6κ + 1 vetoes. Hence, this
candidate in U and q would be the two candidates going to the

runoff stage. Then, from |S′ | = κ, it follows that c has 6κ vetoes

after adding candidates in S′. If S′ is not an exact 3-set cover, there

must be a candidate u ∈ U occurring in at least two subsets of S′.

Then, the candidate u has at most 6κ + 3 − 4 = 6κ − 1 vetoes, lead-
ing to q and u the two competing in the runoff stage. So, we can

conclude that S′ is an exact 3-set cover.

PRun-CCAC. For each u ∈ U , we create a registered candidate

denoted by the same symbol. In addition, we create two registered

candidates q and c with c being the designated candidate. Moreover,

for each S ∈ S, we create an unregistered candidate denoted by

the same symbol. Regarding the votes, we create 15 + 24κ votes in

total. First, we create 8 votes with q in the first position. Second,

we create 7 votes with c in the first position. Third, for each u ∈ U ,

we crate 2 votes with u in the first position. The preferences over

other candidates except the top-ranked one in the above 15 + 6κ
votes can be set arbitrarily. Finally, for each S ∈ S and each u ∈ S ,
we create 2 votes of the form S ≻ u ≻ U \ {u} ≻ c ≻ q ≻ S \ {S }.
We complete the construction by setting ℓ = κ, i.e., we are allowed
to add at most κ candidates. This completes the construction. It

remains to prove the correctness of the reduction.

If there is an exact 3-set cover S′ ∈ S, we claim that S′ is a

solution of the CCAC instance constructed above. Clearly, after

adding candidates in S′, q has 8 approvals, c has 7 approvals, every
S ∈ S′ has 6 approval, and every u ∈ U has 8 − 2 = 6 approvals.

Then, according to the definition of Plurality with Runoff, q and c
go into the runoff stage. Clearly, a majority of voters prefer c to q,
and hence c becomes the unique winner after adding all candidates

in S′. Consider the opposite direction. Observe that to ensure c to
survive the first stage, at least κ candidates must be added, since

otherwise there is at least one candidate u ∈ U which receives at

least 8 approvals, resulting in q and this candidate to go into the

runoff stage. Let S′ be a solution. As discussed |S′ | = κ. If S′ is
not an exact 3-set cover, again there is a candidate u ∈ U such

that u is not in any subset of S′. According to the construction

of the instance, the candidate u receives at least 8 approvals after

adding candidates in S′, and hence survives the first stage with q.
Therefore, S′ must be an exact 3-set cover of U . □

Now we study the complexity of control by deleting candidates

for Plurality with Runoff and Veto with runoff.

Theorem 6.5. PRun-CCDC, VRun-CCDC, PRun-DCDC, and VRun-
DCDC are NP-complete.

Proof. Due to space constraints, we only prove PRun-CCDC.

For a given RX3C instance (U ,S) such that |U | = |S| = 3κ, we
create the following instance. Without loss of generality, assume

that κ ≥ 4. Let U = {u1,u2, . . . ,u3κ }. Let C = {c,q} ∪ U ∪ S be

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

852



the set of candidates and c the designated candidate. We create a

multiset V of 9κ2 + 21κ + 1 votes as follows.

• We crate 2κ votes of the form

q ≻ u1 ≻ u2 ≻ · · · ≻ u3κ ≻ S ≻ c .

• We create κ + 1 votes of the form

q ≻ u3κ ≻ u3κ−1 ≻ · · · ≻ u1 ≻ S ≻ c .

• For each u ∈ U , we create 3κ − 3 votes of the form

u ≻ U \ {u} ≻ S ≻ c ≻ q.

• For each S ∈ S, we create three votes of the form

S ≻ c ≻ C \ (S ∪ {c,q}) ≻ q.

• For each S = {ux ,uy ,uz } ∈ S, we further create six votes as
follows (number of votes: preferences):

2: S ≻ ux ≻ C \ {c,q,ux } ≻ c ≻ q.
2: S ≻ uy ≻ C \ {c,q,uy } ≻ c ≻ q.
2: S ≻ uz ≻ C \ {c,q,uz } ≻ c ≻ q.

Furthermore, let ℓDC = κ. It remains to prove the correctness.

(⇐) Assume there is an exact 3-set cover S′ ⊆ S. After deleting

the candidates in S′, q has 2κ + κ + 1 = 3κ + 1 approvals, c has 3κ
approvals, every remaining S ∈ S \ S′ has 9 approvals, and every

u ∈ U has 3κ − 3 + 2 = 3κ − 1 approvals. Hence, q and c go to the

runoff stage, leading to c to be the final winner.

(⇒) Assume that it is possible to make c a Plurality with Runoff

winner of the election by deleting a set C ′ ⊆ C \ {c} of at most κ
candidates. Note that q < C ′, since otherwise there would be two

candidates inU receiving at least 3κ − 3+ 2κ = 5κ − 3 and 3κ − 3+
κ + 1 = 4κ − 2 approvals, preventing c from winning. Therefore, q
has at least 3κ + 1 approvals in the final election. Furthermore,

none of the candidates in U can be deleted, i.e., U ∩ C ′ = ∅. In
fact, if we delete some candidate u ∈ U , then the candidate ranked

immediately after u in the 3κ − 3 votes created for u would receive

at least (3κ − 3) + (3κ − 3) = 6κ − 6 approvals, preventing c from
winning. This means that the deletion of one candidate inU invites

the deletion of all candidates in U , to make c the winner. However,
we are allowed to delete at most κ candidates. In summary, we have

C ′ ⊆ S. After deleting the candidates in C ′, c has 3|C ′ | approvals.
Note that |C ′ | = κ must hold, since otherwise at least one candidate

inU would receive more approvals than candidate c , after deleting
all candidates in C ′; hence, this candidate and q would be the two

candidates going to the runoff stage. Therefore, we know that c
receives 3κ approvals after deleting all candidates inC ′. IfC ′ is not
an exact 3-set cover, then there must be a candidate u ∈ U who

occurs in at least two subsets of C ′. Due to the construction, the

candidate u receives at least 3κ − 3 + 2 + 2 = 3κ + 1 approvals,

implying that q and u are the two candidates surviving the first

stage, contradicting that c is the final winner after deleting all

candidates in C ′. Thus, C ′ must be an exact 3-set cover. □

Note that the hardness results in the above two theorems hold

regardless of the tie-breaking rule used.

Finally, we study the complexity of control by replacing can-

didates for Plurality with Runoff and Veto with runoff. Observe

that Plurality with runoff is unanimous. Then, the NP-hardness

of PRun-CCAC studied in Theorem 6.4 and Lemma 4.1 directly

yield the NP-hardness of PRun-CCRC. In addition, Plurality with

runoff satisfies IBC when ties are broken deterministically. Hence,

from the NP-hardness of PRun-DCDC studied in Theorem 6.5 and

Lemma 3.1, it follows that PRun-DCRC is NP-hard when ties are

broken deterministically. We can extend this NP-hardness result to

all tie-breaking rules by deriving a reduction where no tie occurs

in the constructed instance of PRun-DCRC. However, it is easy to

check that Veto with runoff is not unanimous and does not satisfy

IBC too. Hence, we can not obtain the NP-hardness for VRun-CCRC

and VRun-DCRC using Lemmas 3.1 and 4.1. Nevertheless, we can

show the NP-hardness of these problems by modifications of the

proofs for VRun-CCAC and VRun-CCDC studied in Theorems 6.4

and 6.5. In summary, we have the following results.

Theorem 6.6. PRun-CCRC, VRun-CCRC, PRun-DCRC, and VRun-
DCRC are NP-complete.

Similar to Theorems 6.4 and 6.5, in our NP-hardness reductions

for the problems in Theorem 6.6 no tie occurs in both stages.

7 CONCLUSION
We have investigated the computational complexity of control for

Copeland
α
, Maximin, k-Veto, Plurality with Runoff, and Veto with

Runoff, closing the gaps in the literature. We refer to Table 1 for a

summary of the complexity of different control problems for these

voting correspondences and our concrete contributions. Our proofs

are based on the non-unique winner model but can be modified

for the unique-winner model of the control problems. Notice that

the complexity of CCRV for 2-Approval remained as the only open

problem in Table 1. The polynomial-time algorithm for 2-Veto-

CCRV in Theorem 5.1 can not be trivially extended to 2-Approval. In

2-Veto, any optimal solution only replaces voters in V that vetoing

the distinguished candidate. However, this is not the case in 2-

Approval. In a worst case, we need to replace votes inV that do not

approve c with some votes inW that also do not approve c . It is not
clear how to reduce such a worst-case instance to a b-EC instance.

We would like to point out that the complexity of partitioning

either the set of candidates or the set of voters is still open for

Plurality with Runoff and Veto with Runoff. In addition, it is also

interesting to study the parameterized complexity of control prob-

lems for Plurality with Runoff and Veto with Runoff. Third, it is

important to point out that our NP-completeness results are purely

worst-case analysis and whether they are difficult to solve in prac-

tice needs to be further investigated. Finally, our polynomial-time

algorithm in Theorem 6.1 relies on that ties are broken in favor of

the chair. It is interesting to see if the result still holds for other

tie-breaking rules. It has been observed that tie-breaking rules may

affect the complexity of strategic voting problems [3, 30, 36].

ACKNOWLEDGMENTS
The authors would like to thank the anonymous referees of AAMAS

2019 for their valuable comments and helpful suggestions. The work

was supported by the National Natural Science Foundation of China

(Grant No. 61702557), the China Postdoctoral Science Foundation

(Grant No. 2017M612584), and the DFG (Grant No. ER 738/2-1, ER

738/2-2). The paper was written in part while the first and second

authors were affiliated at University of Siegen.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

853



REFERENCES
[1] R. Ahuja, T. Magnanti, and J. Orlin. 1993. Network Flows: Theory, Algorithms, and

Applications. Prentice-Hall.
[2] S. Arora and B. Barak. 2009. Computational Complexity: A Modern Approach.

Cambridge University Press.

[3] H. Aziz, S. Gaspers, N. Mattei, N. Narodytska, and T. Walsh. 2013. Ties Mat-

ter: Complexity of Manipulation when Tie-Breaking with a Random Vote. In

Proceedings of the 27th AAAI Conference on Artificial Intelligence. 74–80.
[4] J. Bang-Jensen and G. Gutin. 2008. Digraphs: Theory, Algorithms and Applications.

Springer-Verlag, London.

[5] J. J. Bartholdi III and J. B. Orlin. 1991. Single Transferable Vote Resists Strategic

Voting. Social Choice and Welfare 8, 4 (1991), 341–354.
[6] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. 1989. The Computational Difficulty

of Manipulating an Election. Social Choice and Welfare 6, 3 (1989), 227–241.
[7] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. 1992. How Hard Is it to Control

an Election? Mathematical and Computer Modelling 16, 8-9 (1992), 27–40.

[8] D. Baumeister and J. Rothe. 2015. Preference Aggregation by Voting. In Economics
and Computation: An Introduction to Algorithmic Game Theory, Computational
Social Choice, and Fair Division, J. Rothe (Ed.). Springer-Verlag, Chapter 4, 197–
325.

[9] N. Betzler and J. Uhlmann. 2009. Parameterized Complexity of Candidate Control

in Elections and Related Digraph Problems. Theoretical Computer Science 410, 52
(2009), 5425–5442.

[10] D. B. West. 2000. Introduction to Graph Theory. Prentice-Hall.
[11] J. Chen, P. Faliszewski, R. Niedermeier, and N. Talmon. 2017. Elections with Few

Voters: Candidate Control Can Be Easy. Journal of Artificial Intelligence Research
60 (2017), 937–1002.

[12] G. Erdélyi, M. Fellows, J. Rothe, and L. Schend. 2015. Control Complexity in

Bucklin and Fallback Voting: A Theoretical Analysis. Journal of Computer and
System Sciences 81, 4 (2015), 632–660.

[13] G. Erdélyi, M. Nowak, and J. Rothe. 2009. Sincere-Strategy Preference-Based Ap-

proval Voting Fully Resists Constructive Control and Broadly Resists Destructive

Control. Mathematical Logic Quarterly 55, 4 (2009), 425–443.

[14] P. Faliszewski, E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. 2009. Llull

and Copeland Voting Computationally Resist Bribery and Constructive Control.

Journal of Artificial Intelligence Research 35 (2009), 275–341.

[15] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra. 2011. Multimode

Control Attacks on Elections. Journal of Artificial Intelligence Research 40 (2011),

305–351.

[16] P. Faliszewski and J. Rothe. 2016. Control and Bribery in Voting. In Handbook
of Computational Social Choice, F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. Procaccia (Eds.). Cambridge University Press, Chapter 7, 146–168.

[17] H. N. Gabow. 1983. An Efficient Reduction Technique for Degree-constrained

Subgraph and Bidirected Network Flow Problems. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing. 448–456.

[18] M. Garey and D. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York.

[19] T. F. Gonzalez. 1985. Clustering to Minimize the Maximum Intercluster Distance.

Theoretical Computer Science 38 (1985), 293–306.
[20] M. Grötschel, L. Lovász, and A. Schrijver. 1988. Geometric Algorithms and Combi-

natorial Optimization. Springer, Heidelberg.
[21] E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. 2007. Anyone But Him: The

Complexity of Precluding an Alternative. Artificial Intelligence 171, (5-6) (2007),
255–285.

[22] E. Hemaspaandra, L. A. Hemaspaandra, and H. Schnoor. 2014. A Control Di-

chotomy for Pure Scoring Rules. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence. 712–720.

[23] A. Lin. 2011. The Complexity of Manipulating k -Approval Elections. In Pro-
ceedings of the 3th International Conference on Agents and Artificial Intelligence.
212–218.

[24] A Loreggia. 2012. Iterative Voting and Multi-Mode Control in Preference Aggrega-
tion. Master’s thesis. University of Padova.

[25] A. Loreggia. 2016. Iterative Voting, Control and Sentiment Analysis. Ph.D. Disser-
tation. University of Padova.

[26] A. Loreggia, N. Narodytska, F. Rossi, K.B. Venable, and T.Walsh. 2015. Controlling

Elections by Replacing Candidates or Votes. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems. 1737–1738.

[27] K. Magiera and P. Faliszewski. 2017. How Hard Is Control in Single-Crossing

Elections? Autonomous Agents and Multi-Agent Systems 31, 3 (2017), 606–627.
[28] C. Maushagen and J. Rothe. 2016. Complexity of Control by Partitioning Veto and

Maximin Elections and of Control by Adding Candidates to Plurality Elections.

In Proceedings of the 22th European Conference on Artificial Intelligence. 277–285.
[29] C. G. Menton and P. Singh. 2013. Control Complexity of Schulze Voting. In

Proceedings of the 23th International Joint Conference on Artificial Intelligence.
286–292.

[30] S. Obraztsova, E. Elkind, and N. Hazon. 2011. Ties Matter: Complexity of Voting

Manipulation Revisited. In Proceedings of the 10th Internatinal Conference on
Autonomous Agents and Multiagent Systems. 71–78.

[31] J. Rothe and L. Schend. 2012. Control Complexity in Bucklin, Fallback, and Plu-

rality Voting: An Experimental Approach. In Proceedings of the 11th International
Symposium on Experimental Algorithms. 356–368.

[32] C. A. Tovey. 2002. Tutorial on Computational Complexity. Interfaces 32, 3 (2002),
30–61.

[33] Y. Yang. 2017. The Complexity of Control and Bribery in Majority Judgment.

In Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems. 1169–1177.

[34] Y. Yang and J. Guo. 2014. Controlling Elections with Bounded Single-Peaked

Width. In Proceedings of the 13th International Conference on Autonomous Agents
and Multiagent Systems. 629–636.

[35] Y. Yang and J. Guo. 2017. The Control Complexity of r -Approval: From the

Single-Peaked Case to the General Case. Journal of Computer and System Sciences
89 (2017), 432–449.

[36] Y. Yang and J. Wang. 2017. Anyone But Them: The Complexity Challenge for a

Resolute Election Controller. In Proceedings of the 16th Internatinal Conference on
Autonomous Agents and Multiagent Systems. 1133–1141.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

854


	Abstract
	1 Introduction
	2 Preliminaries
	3 Copeland
	4 Maximin
	5 k-Veto
	6 Plurality and Veto with Runoff
	7 Conclusion
	Acknowledgments
	References



