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ABSTRACT

A key step in building multi-agent systems is to gather data re-

ported by the agents (people), in either cardinal (numeric ratings)

or ordinal (rankings) form. Cardinal scores collected from people

are well known to sufer from miscalibrations. A popular approach

to address this issue is to assume simplistic models of miscalibration

(such as linear biases) to de-bias the scores. This approach, however,

often fares poorly because people’s miscalibrations are typically

far more complex and not well understood. It is widely believed

that in the absence of simplifying assumptions on the miscalibra-

tion, the only useful information in practice from the cardinal scores

is the induced ranking. In this paper we address the fundamental

question of whether this widespread folklore belief is actually true.

We consider cardinal scores with arbitrary (or even adversarially

chosen) miscalibrations that is only required to be consistent with

the induced ranking. We design rating-based estimators and prove

that despite making no assumptions on the ratings, they strictly

and uniformly outperform all possible estimators that rely on only

the ranking. These estimators can be used as a plug-in to show the

superiority of cardinal scores over ordinal rankings for a variety of

applications, and we provide examples for A/B testing and ranking

as a proof of concept. Our results thus provide novel fundamental

insights in the eternal debate between cardinal and ordinal data.
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1 INTRODUCTION

łA raw rating of 7 out of 10 in the absence of any other infor-

mation is potentially useless.ž [24]

łThe rating scale as well as the individual ratings are often arbi-

trary and may not be consistent from one user to another.ž [1]

It is a common paradigm to evaluate and make decisions about a

set of items, by soliciting and aggregating information from a het-

erogeneous group of people. One such example is conference peer

review. Consider two items that need to be evaluated (for example,

papers submitted to a conference) and two reviewers. Suppose each

Proc. of the 18th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), N. Agmon, M. E. Taylor, E. Elkind, M. Veloso (eds.), May 13ś17, 2019,
Montreal, Canada. © 2019 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

reviewer is assigned one distinct item for evaluation, and this as-

signment is done uniformly at random. The two reviewers provide

their evaluations (say, in the range [0, 1]) for the respective item

they evaluate, from which the better item must be chosen. However,

the reviewers’ rating scales may be miscalibrated. It might be the

case that the irst reviewer is lenient and always provides scores in

[0.6, 1] whereas the second reviewer is more stringent and provides

scores in the range [0, 0.4]. Or it might be the case that one reviewer

is moderate whereas the other is extreme ś the irst reviewer’s 0.2 is

equivalent to the second reviewer’s 0.1 whereas the irst reviewer’s

0.3 is equivalent to the second reviewer’s 0.9. More generally, the

miscalibration of the reviewers may be arbitrary and unknown.

Then is there any hope of identifying the better of the two items

with any non-trivial degree of certainty?

A variety of applications involve collection and aggregation

of human preferences or judgments in terms of cardinal scores

(numeric ratings). A perennial problemwith eliciting cardinal scores

is that of miscalibration ś the systematic errors introduced due to

incomparability of cardinal scores provided by diferent people

(see [18, 30] and references therein).

This issue of miscalibration is sometimes addressed by mak-

ing simplifying assumptions about the form of miscalibration, and

post-hoc corrections under these assumptions. Such models in-

clude one-parameter-per-reviewer additive biases [2, 16, 22, 28],

two-parameters-per-reviewer scale-and-shift biases [28, 36] and

others [14]. The calibration issues with human-provided scores

are often signiicantly more complex causing signiicant violations

to these simpliied assumptions (see [18] and references therein).

Moreover, the algorithms for post-hoc correction often try to es-

timate the individual parameters which may not be feasible due

to low sample sizes. For instance, John Langford notes from his

experience as the program chair of the ICML 2012 conference [21]:

łWe experimented with reviewer normalization and generally

found it signiicantly harmful.ž

This problem of low sample size is exacerbated in a number of

applications such as A/B testing where every reviewer evaluates

only one item, thereby making the problem underdetermined even

under highly restrictive models.

It is commonly believed that when unable or unwilling to make

any simplifying assumptions on the bias in cardinal scores, the

only useful information is the ranking of the scores [1, 15, 19, 24,

25, 35]. This perception gives rise to a second approach towards

handling miscalibrations ś that of using only the induced ranking

or otherwise directly eliciting a ranking and not scores from the

use. As noted by Freund et al. [15]:

ł[Using rankings instead of ratings] becomes very important

when we combine the rankings of many viewers who often
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use completely diferent ranges of scores to express identical

preferences.ž

These motivations have spurred a long line of literature on an-

alyzing data that takes the form of partial or total rankings of

items [1, 5, 9, 25, 33, 37, 40].

In this paper, we contest this widely held belief by addressing

the following two fundamental questions:

• In the absence of simplifying modeling assumptions on the

miscalibration, is there any estimator (based on the scores)

that can outperform estimators based on the induced rank-

ings?

• If only one evaluation per reviewer is available, and if each

reviewer may have an arbitrary (possibly adversarially cho-

sen) miscalibration, is there hope of estimation better than

random guessing?

Our theory shows that the answer to both questions is łYesž. One

need not make simplifying assumptions about the miscalibration

and yet guarantee a performance superior to that of any estimator

that uses only the induced rankings.

In more detail, we consider settings where a number of people

provide cardinal scores for one or more from a collection of items.

The calibration of each reviewer is represented by an unknown

monotonic function that maps the space of true values to the scores

given by this reviewer. These functions are arbitrary and may even

be chosen adversarially. We present a class of estimators based on

cardinal scores given by the reviewers which uniformly outperforms

any estimator that uses only the induced rankings. A compelling

feature of our estimators is that they can be used as a plug-in to

improve ranking-based algorithms in a variety of applications, and

we provide a theoretical proof-of-concept for two applications: A/B

testing and ranking.

The techniques used in our analyses draw inspiration from the

framework of Stein’s shrinkage [20, 41] and empirical Bayes [34].

Our setting with 2 reviewers and 2 papers presented subsequently

in the paper carries a close connection to the classic two-envelope

problem (for a survey on the two-envelope problem, see [17]), and

our estimator in this setting is similar in spirit to the randomized

strategy [10] proposed by Thomas Cover. We discuss connections

with the literature in more detail in Section 5.

Our work provides a new perspective on the eternal debate

between cardinal scores and ordinal rankings. It is often believed

that ordinal rankings are a panacea for the miscalibration issues

with cardinal scores. Here we show that ordinal estimators are not

only statistically inadmissible (that is, Pareto-ineicient), they are

also strictly and uniformly beaten by our cardinal estimators. Our

results thus uncover a new point on the tradeof between cardinal

and ordinal data collection. The fundamental theoretical results and

insights established in this paper are envisaged to serve as a crucial

building block towards the design of rating-based estimators under

more benign assumptions on miscalibrations, and for more complex

settings of data collection, in the future.

Finally, a note qualifying the scope of the problem setting consid-

ered here. In applications such as crowdsourced microtasks where

workers often spend very little time answering every question, the

cardinal scores elicited may not necessarily be consistent with the

ordinal rankings, and moreover, ordinal rankings are often easier

and faster to provide [37]. These diferences cease to exist in a vari-

ety of applications such as peer review or in-person laboratory A/B

tests which require the reviewers to spend a non-trivial amount of

time and efort in the review process, and these applications form

the motivation of this work.

An extended version of this paper is available on arXiv [44]. This

extended version also contains complete proofs of all the results

presented in the present paper, results for łrankingž metrics in

addition to the metrics considered here, and additional simulations.

2 PRELIMINARIES

Consider a set of n items denoted as {1, . . . ,n} or [n] in short.1 Each

item i ∈ [n] has an unknown value xi ∈ R. For ease of exposition,

we assume that all items have distinct values. There arem reviewers

{1, . . . ,m} and each reviewer evaluates a subset of the items. The

calibration of any reviewer j ∈ [m] is given by an unknown, strictly-

increasing function fj : R→ R. (More generally, our results hold

for any non-singleton intervals on the real line as the domain and

range of the calibration functions). When reviewer j evaluates item

i , the reported score is fj (xi ). We make no other assumptions on the

calibration functions f1, . . . , fm . We use the notation ≻ to represent

a relative order of any items, for instance, we use ł1 ≻ 2ž to say that

item 1 has a greater value (ranked higher) than item 2. We assume

thatm and n are inite.

Every reviewer is assigned one or more items to evaluate. We

denote the assignment of items to reviewers as A = (S1, . . . , Sm ),

where Sj ⊆ [n] is the set of items assigned to reviewer j ∈ [m].

We use the notation Π to represent the set of all permutations of

n items. We let π∗ ∈ Π denote the ranking of the n items induced

by their respective values (x1, . . . ,xn ), such that xπ ∗(1) > xπ ∗(2) >

· · · > xπ ∗(n). The goal is to estimate this underlying łtruež ranking

π∗ from the evaluations of the reviewers. We consider two types of

settings: an ordinal setting where estimation is performed using the

rankings induced by each reviewer’s reported scores, and a cardinal

setting where the estimation is performed using the reviewers’

scores (which can have an arbitrary miscalibration and only need

to be consistent with the rankings). Formally:

• Ordinal: Each reviewer j reports a total ranking among

the items in Sj , that is, the ranking of the items induced by

the values { fj (xi )}i ∈Sj . An ordinal estimator observes the

assignment A and the rankings reported by all reviewers.

• Cardinal: Each reviewer j reports the scores for the items

in Sj , that is, the values of { fj (xi )}i ∈Sj . A cardinal estimator

observes the assignment A and the scores reported by all

reviewers.

The reader may observe that the setting described above consid-

ers łnoiselessž data, where each reviewer reports either the scores

{ fj (xi )} or the induced ranking. We also extend our results to a

łnoisyž setting later in the paper (Proposition 3.3) wherein the re-

ported scores or rankings take the form { fj (xi ) + ϵi j }, where the

noise terms {ϵi j } are i.i.d.

In order to compare the performance of diferent estimators,

we use the notion of strict uniform dominance. Informally, we say

that one estimator strictly uniformly dominates another if it incurs

1We use the standard notation of [κ] to denote the set {1, . . . , κ } for any positive
integer κ .

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

865



a strictly lower risk for all possible choices of the miscalibration

functions and the item values.

In more detail, suppose that you wish to show that an estimator

π̂1 is superior to estimator π̂2 with respect to some metric for es-

timating π∗. However, there is a clever adversary who intends to

thwart your attempts. The adversary can choose the miscalibration

functions of all reviewers and the values of all items, and moreover,

can tailor these choices for diferent realizations of π∗. Formally, the

adversary speciies a set of values { f π1 , . . . , f
π
m ,x

π
1 , . . . ,x

π
n }π ∈Π .

The only constraints in this choice are that the miscalibration func-

tions f π1 , . . . , f
π
m must be strictly monotonic and that the item

values xπ1 , . . . ,x
π
n should induce the ranking π . In the sequel, we

consider two ways of choosing the true ranking π∗: In one setting,

π∗ can be chosen by the adversary, and in the second setting π∗ is

drawn uniformly at random from Π. Once this ranking π∗ is chosen,

the actual values of the miscalibration functions and the item values

are set as f π
∗

1 , . . . , f
π ∗
m and xπ

∗

1 , . . . ,x
π ∗
n . The items are then as-

signed to reviewers according to the (possibly random) assignment

A. The reviewers now provide their ordinal or cardinal evaluations

as described earlier, and the two estimators π̂1 and π̂2 use these

evaluations to compute their estimates. We say that estimator π̂1
strictly uniformly dominates π̂2, if π̂1 is always guaranteed to incur

a strictly smaller (expected) error than π̂2. Formally:

Deinition 2.1 (Strict uniform dominance). Let π̂1 and π̂2 be two

estimators for the true ranking π∗. Estimator π̂1 is said to strictly

uniformly dominate estimator π̂2 with respect to a given loss func-

tion L : Π × Π → R if

E[L(π∗, π̂1)] < E[L(π
∗
, π̂2)], (1)

for all permissible { f π1 , . . . , f
π
m ,x

π
1 , . . . ,x

π
n }π ∈Π . The expectation

is taken over any randomness in the assignment A and the esti-

mators. If the true ranking π∗ is drawn at random from a ixed

distribution, then the expectation is also taken over this distribu-

tion; otherwise, inequality (1) must hold for all values of π∗.

Note that strict uniform dominance is a stronger notion than

comparing estimators in terms of their minimax (worst-case) or

average-case risks. Moreover, if an estimator π̂2 is strictly uniformly

dominated by some estimator π̂1, then the estimator π̂2 is statisti-

cally inadmissible (see [45, Deinition 12.17] for a formal deinition

of statistical inadmissibility).

Finally, for ease of exposition, we focus on the 0-1 loss, L(π∗,π ) =

1{π∗ , π }. An extension to other metrics such as the Kendall-

tau distance and the Spearman’s footrule distance is provided in

Appendix B of the extended version [44].

3 MAIN RESULTS

In this section we present our main theoretical results.

3.1 A canonical setting

We begin with a canonical setting that involves two items and two

reviewers (that is, n = 2,m = 2), where each reviewer evaluates one

of the two items. Our analysis for this setting conveys the key ideas

underlying our general results. These ideas are directly applicable

towards designing uniformly superior estimators for a variety of

applications, and we subsequently demonstrate this general utility

with two applications.

In this canonical setting, each of the two reviewers evaluates one

of the two items chosen uniformly at random without replacement,

that is, the assignment A is chosen uniformly at random from the

two possibilities (S1 = 1, S2 = 2) and (S1 = 2, S2 = 1). Since each

reviewer is assigned only one item, the ordinal data is vacuous.

Then the natural ordinal baseline is an estimator which makes a

guess uniformly at random:

π̂can(A, {}) =

{
1 ≻ 2 with probability 0.5

2 ≻ 1 with probability 0.5.

In the cardinal setting, let y1 denote the score reported for item

1 by its respective reviewer, and let y2 denote the score for item 2

reported by its respective reviewer. Since the calibration functions

are arbitrary (and may be adversarial), it appears hopeless to obtain

information about the relative ordering of x1 and x2 from just this

data. Indeed, as we show below, standard estimators such as the

sign test Ð ranking the items in terms of their reviewer-provided

scores Ð provably fail to achieve this goal. More generally, the

following theorem holds for all deterministic estimators, that is,

estimators given by deterministic mappings from {A,y1,y2} to the

set {1 ≻ 2, 2 ≻ 1}.

Theorem 3.1. No deterministic (cardinal or ordinal) estimator can

strictly uniformly dominate the random-guessing estimator π̂can.

Proof. Let î(1) ∈ argmaxi ∈{1,2} yi denote the item which re-

ceives the higher score, and let î(2) denote the remaining item (with

ties broken arbitrarily). First, we consider a deterministic estimator

that always outputs î(1) as the item whose value is greater. We call

this estimator the łsign estimatorž, denoted π̂sign:

π̂sign(A,y1,y2) = (̂i
(1) ≻ î(2)).

The proof consists of two steps. (1) We show that the sign estima-

tor does not strictly uniformly dominate random guess. (2) Building

on top of (1), we show that more generally, no deterministic esti-

mator strictly uniformly dominates random guess.

Step 1: The sign estimator does not strictly uniformly dominate

random guess.

We consider the following construction: let x1,x2 ∈ (0, 1), and

let f1(x) = x and f2(x) = x + 1. Then the score given by reviewer

2 is higher than the score given by reviewer 1 regardless of the

item values they are assigned. The sign estimator always observes

y1 < y2, and outputs the item assigned to reviewer 2 as the greater

item. Since the assignment is uniformly at random, the probability

of error of the sign estimator is 0.5.

Step 2: No deterministic estimator strictly uniformly dominates

random guess.

Let A be the set of the two assignments, A = {(S1 = 1, S2 =

2), (S1 = 2, S2 = 1)}. A deterministic estimator π̂det : A × R × R→

{1 ≻ 2, 1 ≺ 2} is a deterministic function that takes as input the as-

signment and the scores for the two items, and outputs the relative

ordering of the two items. Step 1 has shown that the sign estimator

does not strictly uniformly dominate random guess. Hence, we only

need to prove that any deterministic estimator π̂det that is diferent

from the sign estimator does not strictly uniformly dominate ran-

dom guess. For this estimator π̂det, there exist some input values

(a, ỹ1, ỹ2) such that the output of this deterministic estimator difers
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from the sign estimator. If the two estimators π̂sign and π̂det only

difer at points where ỹ1 = ỹ2, then we can use the same construc-

tion in Step 1 to show that the probability of error of π̂det is 0.5.

Otherwise, there exist some input values where ỹ1 , ỹ2. Without

loss of generality, assume ỹ1 > ỹ2. Then consider the following

construction. Let x1 > x2. Let f1, f2 be strictly-increasing functions

such that f1(x1) = f2(x1) = ỹ1, f1(x2) = f2(x2) = ỹ2. Regardless of

the assignment, the score y1 for item 1 is ỹ1, and the score y2 for

item 2 is ỹ2. Under assignment a, the deterministic estimator difers

from the sign estimator, so the deterministic estimator gives the in-

correct output (1 ≺ 2). The assignment a happens with probability

0.5, so the probability of error of this deterministic estimator is at

least 0.5. □

This theorem demonstrates the diiculty of this problem by

ruling out all deterministic estimators. Our original question then

still remains: is there any estimator that can strictly uniformly

outperform the random-guessing ordinal baseline?

We show that the answer is yes, with the construction of a

randomized estimator for this canonical setting, denoted as π̃our
can .

This estimator is based on a function w : [0,∞) → [0, 1) which

may be chosen as any arbitrary strictly-increasing function. For

instance, one could choosew(x) = x
1+x orw as the sigmoid func-

tion. Given the scores y1,y2 reported for the two items, let î(1) ∈

argmaxi ∈{1,2} yi denote the item which receives the higher score,

and let î(2) denote the remaining item (with ties broken uniformly).

Then our randomized estimator outputs:

π̃our
can (A,y1,y2) =

{
î(1) ≻ î(2) with probability

1+w ( |y1−y2 |)
2

î(2) ≻ î(1) otherwise.
(2)

Note that the the output of this estimator is independent of the

assignment A, so in the remainder of this paper we also denote this

estimator as π̃our
can (y1,y2).

As an example, suppose that the values of the two items are

(x1 = 4,x2 = 7). Suppose the calibration function f1 of reviewer 1

maps the values of these two items to (f1(x1) = 1, f1(x2) = 5), and

the calibration function f2 of reviewer 2 maps them to (f2(x1) =

6, f2(x2) = 8). Now, we observe the ratings (y1 = 1,y2 = 8) with

probability 0.5, in which case the estimator reports item 2 as greater

with probability
1+w (7)

2 . With probability 0.5, we observe (y1 =

6,y2 = 5), in which case the estimator reports item 2 as greater

with probability 1−
1+w (1)

2 =
1−w (1)

2 . Since the functionw is strictly-

increasing, we have w(7) > w(1). Using this fact and averaging

the outcomes over these two cases yields a probability of success

strictly greater than 0.5.

The following theorem now proves this result formally.

Theorem 3.2. The randomized estimator π̃ our
can strictly uniformly

dominates the random-guessing baseline π̂can.

Proof. We irst re-write our estimator in (2) into an alternative

and equivalent expression, and then prove the result on this new

expression of our estimator.

We can split (2) into the following three cases, depending on the

relative ordering of y1 and y2:

π̃our
can (A,y1,y2 | y1 > y2) =

{
1 ≻ 2 with probability

1+w (y1−y2)
2

2 ≻ 1 otherwise,

(3a)

π̃our
can (A,y1,y2 | y1 < y2) =

{
1 ≻ 2 with probability

1−w (y2−y1)
2

2 ≻ 1 otherwise,

(3b)

π̃our
can (A,y1,y2 | y1 = y2) =

{
1 ≻ 2 with probability 1

2

2 ≻ 1 otherwise.
(3c)

Recall that the functionw is from [0,∞) to [0, 1). Now we deine

the following auxiliary function w̃ : R→ (0, 1):

w̃(x) =




1+w (x )
2 if x > 0

1
2 if x = 0
1−w (−x )

2 otherwise.

(4)

Combining (3) and (4), we have

π̃our
can (A,y1,y2) =

{
1 ≻ 2 with probability w̃(y1 − y2)

2 ≻ 1 otherwise.
(5)

Without loss of generality, assume x1 > x2. The assignment is

either a := (S1 = 1, S2 = 2) or a′ := (S1 = 2, S2 = 1)with probability

0.5 each. Thus, the estimator observes (y1 = f1(x1),y2 = f2(x2))

under assignment a, or (y1 = f2(x1),y2 = f1(x2)) under assignment

a′. The probability of success of our estimator π̃our
can is:

P(π̃our
can = π∗) =

∑

ã∈{a,a′ }

P(π̃our
can = π∗ | A = ã) · P(A = ã)

(i)
=

1

2
w̃(f1(x1) − f2(x2)) +

1

2
w̃(f2(x1) − f1(x2))

(ii)
=

1

2
[1 + w̃(f1(x1) − f2(x2)) − w̃(f1(x2) − f2(x1))] ,

(6)

where step (i) is true by plugging in (5), and step (ii) is true because

w̃(x) + w̃(−x) = 1 by the deinition of the function w̃ in (4).

By the monotonicity of the functions f1 and f2, and by the as-

sumption that x1 > x2, we have f1(x1) + f2(x1) > f1(x2) + f2(x2),

and therefore f1(x1) − f2(x2) > f1(x2) − f2(x1). Sincew(0) ≥ 0 and

w is monotonically increasing on [0,∞), it is straightforward to

verify that w̃ is monotonically increasing on R. Hence, we have

w̃(f1(x1) − f2(x2)) > w̃(f1(x2) − f2(x1)) (7)

Combining (6) and (7), we have

P(π̃our
can = π∗) > 1/2.

□

The contrast between deterministic estimators and randomized

estimators arises from the fact that a deterministic estimator łcom-

mitsž to an action (deciding which item has a greater value). It

performs well if the situation is aligned with this action (when the

scores under miscalibration are consistent with the true ordering

of the two items). However, due to its prior commitment it may fail

if the situation is not aligned. In contrast, a randomized estimator

balances out good and bad cases. The probability of the good case
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(correct estimation) is greater than the probability of the bad case

(incorrect estimation) for the randomized estimator (2), because

it exploits the monotonic structure of the calibration functions,

whereas this structure is lost in ordinal data.

While Theorem 3.2 considers a setting with łnoiselessž observa-

tions (that is, wherey = f (x)), an analogous result to Theorem 3.2 is

established in the following proposition for a more general setting

where the observations are noisy (with y = f (x)+ noise). Formally,

when reviewer j ∈ [m] evaluates item i ∈ [n], the reported score

is fj (xi ) + ϵi j . We assume that the noise terms {ϵi j }i ∈[n], j ∈[m] are

drawn i.i.d. from any unknown distribution. In this setting of noisy

reported scores, we modify Deinition 2.1 of strict uniform domi-

nance, and let the expectation include the randomness in the noise.

The following theorem establishes the strict uniform dominance in

the noisy setting for the cardinal estimator π̃our
can in (2).

Proposition 3.3. The canonical estimator π̃ our
can strictly uniformly

dominates the random-guessing estimator π̂can in the presence of

noise.

Proof. The proof is a slight modiication to the proof of The-

orem 3.2. In Eq. (6) from the proof of Theorem 3.2, we replace all

the noiseless terms fj (xi ) by the noisy terms fj (xi ) + ϵi j for each

i ∈ {1, 2} and j ∈ {1, 2}. Taking an expectation over all the noise

terms, we have

P(π̃our
can = π∗) =

1

2
Eϵ11,ϵ12,ϵ21,ϵ22 [ 1 + w̃((f1(x1) + ϵ11) − (f2(x2) + ϵ22))

− w̃((f1(x2) + ϵ21) − (f2(x1) + ϵ12))]

(i)
=

1

2
Eϵ1,ϵ2 [1 + w̃(f1(x1) − f2(x2) + ϵ1 − ϵ2)

−w̃(f1(x2) − f2(x1) + ϵ1 − ϵ2)], (8)

where step (i) uses linearity of expectation with a change of variable

names, as the noise terms ϵi j are i.i.d.

Without loss of generality, assume x1 > x2. Recall from the proof

of Theorem 3.2 that f1(x1) − f2(x2) > f1(x2) − f2(x1), and therefore

we have the deterministic inequality

f1(x1) − f2(x2) + ϵ1 − ϵ2 > f1(x2) − f2(x1) + ϵ1 − ϵ2, for any ϵ1, ϵ2 ∈ R.

Using the monotonicity of w̃ , we have

w̃(f1(x1) − f2(x2) + ϵ1 − ϵ2)) > w̃(f1(x2) − f2(x1) + ϵ1 − ϵ2). (9)

Taking an expectation over ϵ1 and ϵ2 in (9) and combining

with (8) gives

P(π̃our
can = π∗) > 1/2.

□

Observe that this result is quite general, since the noise distribu-

tion can be arbitrary and unknown.

3.2 A/B testing

We now demonstrate how to use the result in the canonical setting

as a plug-in for more general scenarios. Speciically, we construct

simple extensions to our canonical estimator, as a proof-of-concept

for the superiority of cardinal data over ordinal data in A/B testing

(this section) and ranking (Section 3.3). A/B testing is concerned

with the problem of choosing the better of two given items, based

on multiple evaluations of each item. In many applications of A/B

testing, the two items are rated by disjoint sets of individuals (for

example, when comparing two web designs, each user sees one and

only one design). It is therefore important to take into account the

diferent calibrations of diferent individuals, and this problem its

in our setting with n = 2 items and m reviewers. For simplicity,

we assume that m is even. We consider an assignment obtained

by assigning item 1 to somem/2 reviewers chosen uniformly at

random (without replacement) from the set of m reviewers, and

assigning item 2 to the remainingm/2 reviewers.2

For concreteness, we consider the following method of perform-

ing this random assignment. We irst perform a uniformly random

permutation of them reviewers, and then assign the irstm/2 re-

viewers in this permutation to item 1; we assign the lastm/2 review-

ers in this permutation to item 2. We let y
(1)
1
, . . . ,y

(m/2)
1

denote the

scores given by them/2 reviewers to item 1, and let y
(1)
2
, . . . ,y

(m/2)
2

denote the scores given by them/2 reviewers assigned to item 2.

Namely, the reviewers (in the permuted order) provide the scores

[y
(1)
1
, . . . ,y

(m/2)
1

,y
(1)
2
, . . . ,y

(m/2)
2

].

As in the canonical setting we studied earlier, in the absence of

any direct comparison between the two items by the same reviewer,

a natural ordinal estimator in the A/B testing setting is a random

guess:

π̂ab(A, {}) =

{
1 ≻ 2 with probability 0.5

2 ≻ 1 with probability 0.5.

Now consider the following standard (deterministic) cardinal

estimators:

• Sign estimator: The sign estimator outputs the item which

has more pairwise wins:
∑m/2
j=1 1{y

(j)
1
> y
(j)
2
}
1≻2
≷
2≻1

∑m/2
j=1 1{y

(j)
2
> y
(j)
1
}.

• Mean estimator: The mean estimator outputs the item with

the higher mean score:

mean(y
(1)
1 , . . . ,y

(m/2)
1 )

1≻2
≷
2≻1

mean(y
(1)
2 , . . . ,y

(m/2)
2 ).

• Median estimator: The median estimator outputs the item

with the higher median score: median(y
(1)
1 , . . . ,y

(m/2)
1 )

1≻2
≷
2≻1

median(y
(1)
2 , . . . ,y

(m/2)
2 ).

In each estimator, ties are assumed to be broken uniformly at ran-

dom.

We now show that despite using the scores given by allm review-

ers, wherem can be arbitrarily large, these natural estimators fail to

uniformly dominate the naïve random-guessing ordinal estimator

π̂ab.

Theorem 3.4. For any (even) number of reviewers, none of the

sign, mean, and median estimators can strictly uniformly dominate

the random-guessing estimator π̂ab.

For Theorem 3.4 and all results to follow, we provide sketches of

the proofs in the present paper, and refer the reader to Section 5 of

the extended version [44] for the complete proofs.

2Our results also hold in the following settings: (a) Each reviewer is assigned one of
the two items independently and uniformly at random. (b) Reviewers are grouped (in
any arbitrary manner) intom/2 pairs, and within each pair, the two reviewers are
assigned one distinct item each uniformly at random.
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Proof sketch. We give a construction where the mean, me-

dian and sign estimators have a probability of error of 0.5. Let the

item values be bounded as x1,x2 ∈ (0, 1), and let them reviewer

calibration functions be as follows:

fj (x) =




x + (j − 1) if 1 ≤ j ≤ m − 1

x +
m(m − 1)

2
if j =m.

In this construction, one reviewer (speciically, reviewerm) has

a signiicantly greater bias than the rest of the reviewers, and the

ranges of the calibration functions are disjoint.

For the mean estimator, it can be veriied that an item has a

greater sum of scores if and only if reviewerm is assigned to this

item. By symmetry of the assignment, the mean estimator makes

an error with probability 0.5.

For the median estimator and the sign estimator, since the ranges

of the calibration functions are disjoint, it can be veriied that the

output of the median and sign estimators only depend on the as-

signment, regardless of the two item values. Again, by symmetry

of the assignment, it is equally likely for any set ofm/2 reviewers

to be assigned to item 1 or item 2. Hence, the median and sign

estimators make an error with probability 0.5. □

The negative result of Theorem 3.4 demonstrates the challenges

even when one is allowed to collect an arbitrarily large number

of scores for each item. We now build on top of our canonical

estimator π̃our
can from Section 3.1, and present a simple randomized

estimator π̃our
ab

as follows:

(1) For every j ∈ [m/2], use the canonical estimator π̃our
can on the

jth pair of scores (y
(j)
1
,y
(j)
2
) and obtain the estimate r j :=

π̃our
can (y

(j)
1
,y
(j)
2
) ∈ {1 ≻ 2, 2 ≻ 1}.

(2) Output the majority vote among the estimates {r j }j ∈[m/2]
with ties broken uniformly at random.

The following theorem now shows that the results for the canon-

ical setting from Section 3.1 translate to this A/B testing application.

Theorem 3.5. For any (even) number of reviewers, the estimator

π̃ our
ab

strictly uniformly dominates the random-guessing estimator π̂ab.

Proof sketch. Consider any arbitrary values of items x1,x2 ∈

R. By symmetry of the assignment, we apply Theorem 3.2 on each

pair of scores (y
(j)
1
,y
(j)
2
) for j ∈ [m/2], and show that the canonical

estimator gives the correct output with probability strictly greater

than 0.5 on each pair.

Now we show that combining them/2 pairs by majority voting

yields a probability of success strictly greater than 0.5. For each j ∈

[m/2], deineVj ∈ {0, 1} as the indicator variable of the correctness

of our canonical estimator on the jth pair of scores. We set Vj =

1 if the canonical estimator gives the correct output on the jth

pair, and 0 otherwise. Then Vj is a Bernoulli random variable with

mean strictly greater than 0.5. Moreover, the variables {Vj }
m/2
j=1 are

independent given the item values.

LetV =
∑m/2
j=1 Vj be the number of pairs for which the canonical

estimator π̃our
can gives the correct output. Recall that the majority

voting procedure breaks ties uniformly at random. The probability

of success of our estimator is

P[V > m/4] +
1

2
P[V =m/4].

It can be veriied that this probability is strictly greater than 1/2. □

This result thus illustrates the use of our canonical estimator

π̃our
can as a plug-in for A/B testing, and can be extended to the noisy

setting in a similar fashion.

So far we have considered settings where there are only two

items and where each reviewer is assigned only one item, thereby

making the ordinal data vacuous. In the next section, we turn to an

application that does not have these restrictions.

3.3 Ranking

It is common in practice to estimate the partial or total ranking for a

list of items by soliciting ordinal or cardinal responses from individu-

als. In conference reviews, each reviewer is asked to rank [12, 38, 39]

or rate [16, 39] a small subset of the papers, and this information

is subsequently used to estimate a partial or total ranking of the

papers. Applications for aggregating rankings also arise in vot-

ing [31, 47], peer grading [29] and meta-search [13]. Formally, we

let n > 2 denote the number of items andm denote the number of

reviewers. For simplicity, we focus on a setting where each reviewer

reports noiseless evaluation of some pair of items, and the goal is

to estimate the total ranking of all items. We consider a random

design setup where the pairs compared are randomly chosen and

randomly assigned to reviewers. We assume 1 < m <
(n
2

)
so that

the problem does not degenerate. Each reviewer evaluates a pair of

items, and these pairs are drawn uniformly without replacement

from the
(n
2

)
possible pairs of items. We let A = (S1, . . . , Sm ) de-

note thesem pairs of items assigned to them respective reviewers,

where Sj ∈ [n] × [n] denotes the pair of items assigned to reviewer

j ∈ [m]. For each pair Sj = (i, i
′), denote the cardinal evaluation as

y(Sj ) = (fj (xi ), fj (xi′)), and the ordinal evaluation as the induced

ranking b(Sj ) ∈ {i ≻ i ′, i ′ ≻ i}. Denote the set of ordinal obser-

vations as B = {b(Sj )}
m
j=1, and the set of cardinal observations as

Y = {y(Sj )}
m
j=1. The inputs to an ordinal estimator are the reviewer

assignment A and the ordinal information B. The inputs to a cardi-

nal estimator are the reviewer assignment A and the set of cardinal

observations Y. Finally, let G(B) denote a directed acyclic graph

(DAG) with nodes comprising the n items and with an edge from

any node i to any other node i ′ if and only if {i ≻ i ′} ∈ B. One can

see that under the current setup of the problem, the graph G(B)

captures all requisite information in the ordinal observations. A

topological ordering on G is any total ranking of its vertices which

does not violate any pairwise comparisons indicated by B.

We now present our (randomized) cardinal estimator π̃our
rank
(A,Y)

in Algorithm 1. In words, this algorithm starts from any topological

ordering of the items as the initial estimate of the true ranking.

Then the algorithm scans one-by-one over the pairs whose items

are adjacent in the initial estimated ranking. If a pair can be lipped

(that is, if the ranking after lipping this pair is also a topological

ordering), we uniformly sample a pair of scores for these two items

from the cardinal observationsY, and use the randomized estimator

π̃our
can to determine the relative ordering of this pair. After π̃our

can is

called, the positions of the two items in this pair are inalized. We
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Algorithm 1: Our cardinal ranking estimator π̃our
rank
(A,Y).

1 Deduce the ordinal observations B from the cardinal

observations Y.

2 Compute a topological ordering π̂ on the graph G(B), with

ties broken in order of the indices of the items.

3 t ← 1.

4 while t < n do

5 Let π̂lip be the ranking obtained by lipping the positions

of the t th and the (t + 1)th items in π̂ .

6 if π̂lip is a topological ordering on G(B), and both the t th

and (t + 1)th items are evaluated by at least one reviewer

each in Y then

7 From all of the scores of the t th item in Y, sample one

uniformly at random and denote it as yπ̂ (t ). Likewise

denote yπ̂ (t+1) as a randomly chosen score of the

(t + 1)th item from Y.

8 Consider the two reviewers reporting the scores yπ̂ (t )
and yπ̂ (t+1). Remove from Y all scores provided by

these two reviewers.

9 if π̃our
can (yπ̂ (t ),yπ̂ (t+1)) outputs π̂ (t + 1) ≻ π̂ (t) then

10 π̂ ← π̂lip.

11 end

12 t ← t + 2.

13 else

14 t ← t + 1.

15 end

16 end

17 Output π̃our
rank
(A,Y) = π̂ .

remove all scores of these two reviewers from future use, and jump

to the next pair that does not contain these two items.

The following theorem presents the main result of this section.

Theorem 3.6. Suppose that the true ranking π∗ is drawn uni-

formly at random from the collection of all possible rankings, and

consider any ordinal estimator π̂rank for π
∗. Then the cardinal esti-

mator π̃ our
rank

strictly uniformly dominates the ordinal estimator π̂rank.

Proof sketch. Since the prior distribution of the true ranking

π∗ is uniform, we show that an ordinal estimator is optimal for

the 0-1 loss, if and only if the (possibly randomized) output of this

ordinal estimator belongs to the set of all topological orderings

with probability 1.

Now consider our cardinal estimator π̃our
rank

from Algorithm 1.

We call a pair of items łlippablež, if Algorithm 1 uses the canonical

estimator to decide the relative ordering of this pair (that is, the if-

condition in Line 6 in Algorithm 1 is true). If there exist no lippable

pairs, then Algorithm 1 makes no change to the initial topological

ordering π̂ . We show that in this case, the cardinal estimator is

equivalent to an optimal ordinal estimator. Now consider the case

when there exists at least one lippable pair. It can be veriied that

this case happens with non-zero probability. Since the reviewers are

assigned to items uniformly at random, we can apply Theorem 3.2 to

each lippable pair. The probability that the canonical estimator π̃our
can

outputs the correct relative ordering of each lippable pair is strictly

greater than 0.5. Finally, it can be veriied that an improvement on

the probability of correctness on each lippable pair translates to

an improvement on the probability of success of the ranking. □

We note that Algorithm 1 runs in polynomial time (in the num-

ber of items n) because the two major operations of this estimator ś

inding a topological ordering, and checking if a ranking is a topo-

logical ordering on the DAG ś can be implemented in polynomial

time [11]. Theorem 3.6 thus demonstrates again the power of the

canonical estimator π̃our
can as a plug-in component to illustrate the

superiority of cardinal data vs. ordinal data in a variety of applica-

tions. Extensions of our result to the Kendall-tau distance and the

Spearman’s footrule distance are presented in Appendix B of the

extended version [44].

4 TRADEOFF BETWEEN ESTIMATION

UNDER PERFECT CALIBRATION VS.

MISCALIBRATION

In this section, we present a preliminary experiment showing the

tradeof between estimation under perfect calibration (all reviewers

reporting the true values of the items) and estimation under mis-

calibration. For simplicity, we consider the canonical setting from

Section 3.1. We evaluate the performance of our estimator under

two scenarios: (1) perfect calibration, where fj (x) = x for j ∈ {1, 2};

(2) miscalibration with one biased reviewer, where f1(x) = x and

f2(x) = x + 1. We consider the function w in our estimator as

w(x) =
γ x

1+γ x , where γ ∈ {2
k | −10 ≤ k ≤ 10,k ∈ Z}. We sample

x1 and x2 uniformly at random from the interval [0, 1].

The relative improvement ρπ̂ (π̃ ) of an estimator π̃ as compared

to a baseline estimator π̂ is deined as: ρπ̂ (π̃ ) =
E[L(π ∗, π̂ )]−E[L(π ∗, π̃ )]

E[L(π ∗, π̂ )]
×

100%. A positive value of the relative improvement ρπ̂ (π̃ ) indicates

the superiority of estimator π̃ over estimator π̂ . Figure 1 shows the

relative improvement of our estimator over the random-guessing

baseline under perfect calibration and under miscalibration. Let us

focus on a few regimes in this plot. First, when γ is close to 0, we

have w(x) close to 0. The estimator is close to random-guessing,

corresponding to the left end of the curve. At the other extreme,

when γ goes to ininity, we have w(x) close to 1. The estimator

always outputs the item with the higher score, and hence gives

perfect estimation under perfect calibration. Under miscalibration,

the biased reviewer always gives the higher score, and the esti-

mator always chooses the item assigned to this biased reviewer.

The probability of success of this estimator is the same as random

guess, corresponding to the right end of the curve. Past the maxi-

mum point of the function at γ = 1, the value of the curve starts

decreasing, suggesting a tradeof of estimation accuracy under per-

fect calibration and under miscalibration. It is clear that points to

the left of the maximum point are suboptimal, since there exist

points with the same accuracy under miscalibration but improved

accuracy under perfect calibration.

We thus see that robustness under arbitrarymiscalibration comes

at a cost of lower accuracy under perfectly calibration. Establishing

a formal understanding of this tradeof and designing estimators

that are provably optimal (in terms of this tradeof) are important

open problems.
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Figure 1: Relative improvement of our canonical estimator

π̃our
can under perfect calibration and under miscalibration of

one biased reviewer, withw(x) =
γ x

1+γ x . The error bars are too

small to display.

5 CONNECTIONS TO THE LITERATURE

The canonical setting has a close connection to the randomized

version of the two-envelope problem [10]. In the two-envelope

problem, there are two arbitrary numbers. One of the two numbers

is observed uniformly at random, and the other remains unknown.

The goal is to estimate which number is larger. This problem can

also be viewed from a game-theoretic perspective [17] as ours,

where one player picks an estimator and the other player picks the

two values. Cover [10] proposed a randomized estimator whose

probability of success is strictly larger than 0.5 uniformly across all

arbitrary pairs of numbers. The proposed estimator samples a new

random variable Z whose distribution has a probability density

function p with p(z) > 0 for all z ∈ R. Then if the observed number

is smaller than Z , the estimator decides that the observed number

is the smaller number; if the observed number is larger than Z , the

estimator decides that the observed number is the larger number.

Our canonical setting can be reduced to the two-envelope prob-

lem as follows. Consider the two values f1(x1)− f2(x2) and f1(x2)−

f2(x1). Since the two items are assigned to the two reviewers uni-

formly at random, we observe one of these two values uniformly

at random. By the assumption that f1 and f2 are monotonically

increasing, we know that these two values are distinct, and fur-

thermore, f1(x1) − f2(x2) > f1(x2) − f2(x1) if and only if x1 > x2.

Hence, the relative ordering of these two values is identical to

the relative ordering of x1 and x2, reducing our canonical setting

to the two-envelope problem. Our estimator π̃our
can also carries a

close connection to Cover’s estimator to the two-envelope problem.

Speciically, Cover’s estimator can be equivalently viewed as being

designated by a łswitching functionž [23]. This switching function

speciies the probability to łswitchž (that is, to guess that the unob-

served value is larger), and is a monotonically decreasing function

in terms of the observed value. The use of the monotonic function

w in our estimator in (2) is similar in spirit.

Our original inspiration for our proposed estimator arose from

Stein’s phenomenon [41] and empirical Bayes [34]. This inspiration

stems from the fact that the two items are not to be estimated in

isolation, but in a joint manner. That said, a signiicant fraction

of the work (e.g., [4, 8, 20, 34, 41, 43]) in these areas is based on

deterministic estimators. In comparison, our negative result for

all deterministic estimators (Theorem 3.1) and the positive result

for our randomized estimator (Theorem 3.2) provide interesting

insights in this space.

Broadly speaking, our work also shares similar motivation with

incommensurable belief base merging in logic (e.g., [6, 7, 32]), and

works in social choice theory that consider reviewer biases [27] or

ordinal vs. cardinal data [3]. We take a statistical perspective and,

motivated by challenges in peer review, focus on the setting where

every reviewer only grades a small subset of the papers, and their

grades share some extent of consistency (monotonicity).

6 CONCLUSIONS

Breaking the barrier of using only ranking data in the presence

of arbitrary (and potentially adversarial) miscalibrations, we show

that cardinal ratings can yield strict and uniform improvements

over ordinal rankings. This result uncovers a novel, strictly-superior

point on the tradeof between cardinal scores and ordinal rankings,

and provides a new perspective on this eternally debated tradeof.

Our (randomized) estimator allows for easily plugging into a variety

of algorithms, thereby yielding it wide applicability.

In addition to the utility of cardinal ratings, the results of this

paper provide an important takeaway for practitioners. In the

application of conference peer review (which was a key motivation

for this work), paper decisions are typically made in a determinis-

tic fashion. However, our results suggest that for papers near the

acceptance border, the diference in their scores is small, and could

very well be due to issues of calibration of reviewers rather than

inherent qualities of the papers. Our work thus suggests that a more

fair alternative is to randomize the paper decisions at the border

in a fashion along the lines of our proposed estimators in order to

mitigate biases due to miscalibration.

This paper also leads to several open problems. First, while our

estimators indeed uniformly outperform ordinal estimators, further

improvements in our estimators (e.g., how to choose the function

w in the canonical estimator, and how to design better estimators

for A/B testing and ranking) may yield even better results. Second,

it is of interest to obtain statistical bounds on the relative errors of

the cardinal and ordinal estimators in terms of the unknown mis-

calibration functions. Third, although we consider the rating scales

as continuous intervals, it is not hard to see that they extend to

discrete scales as well (but with the strict inequality in Equation (1)

sometimes replaced by a non-strict inequality to account for ties).

Using our results to guide the choice of the scale used for elicitation

is an open problem of interest. Finally, practical applications such

as peer review do not sufer from the problem of miscalibration in

isolation. It is a useful and challenging open problem to address

miscalibration simultaneously with other issues such as noise [42],

subjectivity [26] and strategic behavior [46].

ACKNOWLEDGMENTS

This work was supported in part by NSF grants CRII: CIF: 1755656

and CCF: 1763734. The authors thank Bryan Parno for very useful

discussions on biases in conference peer review, and Pieter Abbeel

for pointing out the related work on the two-envelope problem.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

871



REFERENCES
[1] Ammar Ammar and Devavrat Shah. 2012. Eicient rank aggregation using

partial data. In SIGMETRICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems. 355ś366.

[2] Yukino Baba andHisashi Kashima. 2013. Statistical Quality Estimation for General
Crowdsourcing Tasks. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 554ś562.

[3] Michel Balinski and Rida Laraki. 2007. A theory of measuring, electing, and
ranking. Proceedings of the National Academy of Sciences 104, 21, 8720ś8725.

[4] A. J. Baranchik. 1970. A Family of Minimax Estimators of the Mean of a Multi-
variate Normal Distribution. Ann. Math. Statist. 41, 2 (1970), 642ś645.

[5] Jacob P. Baskin and Shriram Krishnamurthi. 2009. Preference aggregation in
group recommender systems for committee decision-making. In ACM Conference
on Recommender Systems, RecSys. 337ś340.

[6] Salem Benferhat, Sylvain Lagrue, and Julien Rossit. 2007. An Egalitarist Fusion
of Incommensurable Ranked Belief Bases under Constraints. In AAAI Conference
on Artiicial Intelligence. 367ś372.

[7] Salem Benferhat, Sylvain Lagrue, and Julien Rossit. 2009. An Analysis of Sum-
Based Incommensurable Belief Base Merging. In International Conference on
Scalable Uncertainty Management. 55ś67.

[8] M. E. Bock. 1975. Minimax Estimators of the Mean of a Multivariate Normal
Distribution. Ann. Statist. 3, 1 (1975), 209ś218.

[9] Wade D. Cook, Boaz Golany, Michal Penn, and Tal Raviv. 2007. Creating a con-
sensus ranking of proposals from reviewers’ partial ordinal rankings. Computers
& Operations Research 34, 4 (2007), 954ś965.

[10] Thomas M. Cover. 1987. Pick the Largest Number. Springer New York, New York,
NY, 152ś152.

[11] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. 2008. Algo-
rithms (1 ed.). McGraw-Hill, Inc.

[12] John R Douceur. 2009. Paper rating vs. paper ranking. ACM SIGOPS Operating
Systems Review 43, 2 (2009), 117ś121.

[13] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. 2001. Rank Aggre-
gation Methods for the Web. In International Conference on World Wide Web.
613ś622.

[14] Peter A. Flach, Sebastian Spiegler, Bruno Golénia, Simon Price, John Guiver, Ralf
Herbrich, Thore Graepel, and Mohammed J. Zaki. 2010. Novel Tools to Streamline
the Conference Review Process: Experiences from SIGKDD’09. SIGKDD Explor.
Newsl. 11, 2 (2010), 63ś67.

[15] Yoav Freund, Raj D. Iyer, Robert E. Schapire, and Yoram Singer. 2003. An Eicient
Boosting Algorithm for Combining Preferences. Journal of Machine Learning
Research 4 (2003), 933ś969.

[16] Hong Ge, Max Welling, and Zoubin Ghahramani. 2013. A
Bayesian model for calibrating conference review scores. (2013).
http://mlg.eng.cam.ac.uk/hong/unpublished/nips-review-model.pdf [On-
line; accessed 03/01/2019].

[17] Alexander Gnedin. 2016. Guess the Larger Number. preprint arXiv:1608.01899
(2016).

[18] Dale Griin and Lyle Brenner. 2008. Perspectives on Probability Judgment Cali-
bration. Wiley-Blackwell, Chapter 9, 177ś199.

[19] Anne-Wil Harzing, Joyce Baldueza, Wilhelm Barner-Rasmussen, Cordula
Barzantny, Anne Canabal, Anabella Davila, Alvaro Espejo, Rita Ferreira, Axele
Giroud, Kathrin Koester, et al. 2009. Rating versus ranking: What is the best way
to reduce response and language bias in cross-national research? International
Business Review 18, 4 (2009), 417ś432.

[20] William James and Charles Stein. 1961. Estimation with quadratic loss. In Proceed-
ings of the fourth Berkeley symposium on mathematical statistics and probability,
Vol. 1. 361ś379.

[21] John Langford. 2012. ICML acceptance statistics. (2012). http://hunch.net/?p=2517
[Online; accessed 05/14/2018].

[22] R. S. MacKay, R. Kenna, R. J. Low, and S. Parker. 2017. Calibration with conidence:
a principled method for panel assessment. Royal Society Open Science 4, 2 (2017).

[23] Mark D. McDonnell and Derek Abbott. 2009. Randomized switching in the two-
envelope problem. In Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences. The Royal Society, 3309ś3322.
[24] Ioannis Mitliagkas, Aditya Gopalan, Constantine Caramanis, and Sriram Vish-

wanath. 2011. User rankings from comparisons: Learning permutations in high
dimensions. In Allerton Conference on Communication, Control, and Computing.
1143ś1150.

[25] Sahand Negahban, Sewoong Oh, and Devavrat Shah. 2012. Iterative ranking from
pair-wise comparisons. In Advances in Neural Information Processing Systems.
2474ś2482.

[26] Ritesh Noothigattu, Nihar B. Shah, and Ariel Procaccia. 2018. Choosing how to
choose papers. arXiv preprint arxiv:1808.09057 (2018).

[27] António Osório. 2017. Judgement and ranking: living with hidden bias. Annals
of Operations Research 253, 1 (2017), 501ś518.

[28] S. R. Paul. 1981. Bayesian methods for calibration of examiners. Brit. J. Math.
Statist. Psych. 34, 2 (1981), 213ś223.

[29] Chris Piech, Jonathan Huang, Zhenghao Chen, Chuong Do, Andrew Ng, and
Daphne Koller. 2013. Tuned models of peer assessment in MOOCs. preprint
arXiv:1307.2579 (2013).

[30] Robin S. Poston. 2008. Using and ixing biased rating schemes. Commun. ACM
51, 9 (2008), 105ś109.

[31] Ariel D. Procaccia, Nisarg Shah, and Yair Zick. 2016. Voting rules as error-
correcting codes. Artif. Intell. 231 (2016), 1ś16.

[32] Guilin Qi, Weiru Liu, and David A. Bell. 2006. Merging Stratiied Knowledge
Bases under Constraints. In AAAI Conference on Artiicial Intelligence. 281ś286.

[33] Arun Rajkumar, Suprovat Ghoshal, Lek-Heng Lim, and Shivani Agarwal. 2015.
Ranking from stochastic pairwise preferences: Recovering Condorcet winners
and tournament solution sets at the top. In International Conference on Machine
Learning. 665ś673.

[34] Herbert Robbins. 1956. An empirical Bayes approach to statistics. In Proceedings
of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1.
157ś163.

[35] Milton Rokeach. 1968. The Role of Values in Public Opinion Research. Public
Opinion Quarterly 32, 4 (1968), 547ś559.

[36] Magnus Roos, Jörg Rothe, and Björn Scheuermann. 2011. How to Calibrate the
Scores of Biased Reviewers by Quadratic Programming. In AAAI Conference on
Artiicial Intelligence.

[37] Nihar B. Shah, Sivaraman Balakrishnan, Joseph Bradley, Abhay Parekh, Kannan
Ramchandran, and Martin J. Wainwright. 2016. Estimation from pairwise com-
parisons: Sharp minimax bounds with topology dependence. Journal of Machine
Learning Research 17, 1 (2016), 2049ś2095.

[38] Nihar B. Shah, Joseph K Bradley, Abhay Parekh, Martin Wainwright, and Kannan
Ramchandran. 2013. A case for ordinal peer-evaluation in MOOCs. In NIPS
Workshop on Data Driven Education.

[39] Nihar B. Shah, Behzad Tabibian, Krikamol Muandet, Isabelle Guyon, and Ulrike
Von Luxburg. 2017. Design and Analysis of the NIPS 2016 Review Process.
preprint arXiv:1708.09794 (2017).

[40] Nihar B. Shah and Martin J. Wainwright. 2018. Simple, Robust and Optimal
Ranking from Pairwise Comparisons. Journal of Machine Learning Research
(2018).

[41] Charles Stein. 1956. Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution. In Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, Vol. 1. 197ś206.

[42] Ivan Stelmakh, Nihar B. Shah, and Aarti Singh. 2019. PeerReview4All: Fair and
Accurate Reviewer Assignment in Peer Review. In Algorithmic Learning Theory.

[43] Kevin Tian, Weihao Kong, and Gregory Valiant. 2017. Learning Populations of
Parameters. In Advances in Neural Information Processing Systems. 5778ś5787.

[44] Jingyan Wang and Nihar B. Shah. 2018. Your 2 is My 1, Your 3 is My 9: Handling
Arbitrary Miscalibrations in Ratings. preprint arXiv:1806.05085 (2018).

[45] Larry Wasserman. 2010. All of Statistics: A Concise Course in Statistical Inference.
Springer Publishing Company, Incorporated.

[46] Yichong Xu, Han Zhao, Xiaofei Shi, and Nihar B. Shah. 2018. On Strategyproof
Conference Review. arXiv preprint arxiv:1806.06266 (2018).

[47] H. P. Young. 1988. Condorcet’s Theory of Voting. American Political Science
Review 82, 4 (1988), 1231ś1244.

Session 3D: Social Choice Theory 2 AAMAS 2019, May 13-17, 2019, Montréal, Canada

872


	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	3.1 A canonical setting
	3.2 A/B testing
	3.3 Ranking

	4 Tradeoff between estimation under perfect calibration vs. miscalibration
	5 Connections to the literature
	6 Conclusions
	References



