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ABSTRACT
Detection of anomalies and faults is a key element for long-term
robot autonomy, because, together with subsequent diagnosis and
recovery, allows to reach the required levels of robustness and
persistency. In this paper, we propose an approach for detecting
anomalous behaviors in autonomous robots starting from data col-
lected during their routine operations. The main idea is to model
the nominal (expected) behavior of a robot system using Hidden
Markov Models (HMMs) and to evaluate how far the observed
behavior is from the nominal one using variants of the Hellinger
distance adopted for our purposes. We present a method for online
anomaly detection that computes the Hellinger distance between
the probability distribution of observations made in a sliding win-
dow and the corresponding nominal emission probability distri-
bution. We also present a method for o�ine anomaly detection
that computes a variant of the Hellinger distance between two
HMMs representing nominal and observed behaviors. The use of
the Hellinger distance positively impacts on both detection per-
formance and interpretability of detected anomalies, as shown by
results of experiments performed in two real-world application do-
mains, namely, water monitoring with aquatic drones and socially
assistive robots for elders living at home. In particular, our approach
improves by 6% the area under the ROC curve of standard online
anomaly detection methods. The capabilities of our o�ine method
to discriminate anomalous behaviors in real-world applications are
statistically proved.
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1 INTRODUCTION
Autonomous robots are increasingly becoming part of human every-
day life. From driverless cars to assistive robots for elderly people,
these systems are leaving the factories and entering unconstrained
scenarios with close interaction with humans. Complex and dy-
namic environments are characterized by large degrees of uncer-
tainty and pose big challenges to robot designers. One of the key
competences required to newly conceived robots is to reliably op-
erate over long periods of time under changing and unpredictable
environmental conditions, which is referred to as long-term auton-
omy (LTA) [26]. Exhibiting LTA means that robots are persistent,
robust, and able to adapt to changes in their operational environ-
ments. Fault Detection and Diagnosis (FDD) approaches [22] are a
fundamental ingredient of LTA in order to identify anomalies and
recover a robot system in time for continuing its operations.

Hidden Markov Models (HMMs) [33] have been successfully used
for learning robot behaviors, especially in the context of Learning
from Demonstration (LfD) for manipulators and humanoid robots
[2, 5]. An HMM is a statistical model in which the system being
modeled is assumed to be a Markov process with unobservable
(hidden) states, each characterized by an emission distribution gov-
erning the probability of producing any of the observable system
outputs and a transition distribution indicating which are the likely
next states. Because of their robustness to spatiotemporal variations
of sequential data, HMMs are also commonly used for encoding
and abstracting noisy time series [7–9]. We advocate that HMMs
can provide good representations also of robot behaviors in LTA
contexts, where similar sequences of actions (tasks) are typically
repeated multiple times. Representing robot behaviors in these do-
mains is still wildly unexplored because of the di�culty to predict
the diverse situations in which the robot may have to deal with.

In this paper, we propose an approach for detecting anomalous
behaviors of robot systems involved in complex LTA scenarios, both
online, while robots are operating, and o�ine, after robots have
completed a run of their tasks. The behavior of robots is modeled
using HMMs and, originally, the Hellinger distance [16] is used to
compute (i) the dissimilarity between the probability distribution of
subsequences of observations in a sliding window and the emission
probability of related HMM hidden states (online approach) and
(ii) the distance between pairs of HMMs representing nominal
and actual behaviors (o�ine approach). The advantage of using
such a distance measure instead of standard measures (such as the
likelihood of observation subsequences for online approaches) is
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twofold:� rst, the Hellinger distance is bounded and thus lends
itself to simpler interpretation and thresholding; second, it is less
noisy and hence more informative and discriminative.

Experiments on two robot systems operating in real-world set-
tings show that the proposed online and o�ine approaches out-
perform standard fault detection methods. The online approach
allows to discover both trajectory and speed anomalies of aquatic
drones performing water monitoring. In the same application, the
o�ine approach signi�cantly discriminates regular and anomalous
behaviors observed in di�erent runs of the same task. Anomalous
execution traces are also detected in a long-term deployment of a
socially assistive mobile robot supporting independence of elderly
people living alone at home.

The main original contribution of this paper is the novel appli-
cation of two theoretical tools, HMMs and Hellinger distance, to
autonomous robots and LTA. Speci�cally, we contribute:

• A new online anomaly detection algorithm based on HMMs
and Hellinger distance.

• Anew o�ine anomaly detection algorithm based on a bounded
distance between HMMs derived from the Hellinger distance.
This distance abstracts the comparison between two behav-
iors from the level of observations to the level of learned
HMMs, providing interpretability and diagnostic capabilities.

• An extensive experimental campaign on real robots involved
in two applications requiring LTA.

2 RELATEDWORK
Fault Detection in Autonomous Robots. FDD approaches can be

divided into three categories: model-based, knowledge-based, and
data-driven [22]. Model-based approaches [19] require explicit ana-
lytical models (i.e., mathematical equations or logic formulas) of
robotic components and therefore need expert knowledge to be
built. Knowledge-based approaches typically associate each known
fault to a detection rule which is triggered when the speci�c be-
havior is observed. Data-driven approaches are instead based on
(usually probabilistic) descriptions of behaviors or faults that are au-
tomatically learnt from previous observations of the system. Their
advantage is that they do not need any explicit prior knowledge of
the system and of the faults.

Online data-driven methods are mostly used for autonomous
robots and generate probabilistic representations of system behav-
iors in real-time, from data streams, and use them to statistically dif-
ferentiate potential faults from normal behavior. Some approaches
use statistical� ltering such as Kalman and particle� lters [1, 12, 36].
Other works propose supervised machine learning approaches [6]
to classify data produced in real-time by a robot. The problem with
supervised methods is that they need fully labelled data, which
are not always available; hence, recent developments tend to focus
on unsupervised and semi-supervised approaches to FDD. Unsu-
pervised techniques do not require a labeled training set, while
techniques that operate in a semi-supervised mode assume that the
training data have labeled instances for only the nominal class [10].
In [23], the authors introduce an online multivariate data-driven
fault detection approach which uses the Mahalanobis-distance to
compare correlated streams of data with previously observed data.

In [14], a self-awareness approach is proposed which builds a prob-
abilistic model on the basis of the whole discrete event-based data
interchange inside the robot. Finally, some works [21, 23] explicitly
deal with contextual faults [10], namely faults that depend on the
fact that observations which are legitimate under one context might
not be legitimate under another. We consider a similar scenario,
with the di�erence that our proposed approach represents di�erent
contexts as di�erent states of an HMM, while those in the literature
consider recent past observations as context.

HMM-Based Fault Detection. HMMs have been often used for
anomaly detection. Most of the works in the literature train HMMs
with data recorded during non-anomalous executions and use one
of the following two approaches for detecting anomalies: (i) com-
pute the likelihood of current observations and classify them as
anomalous if the likelihood is lower than a threshold, (ii) compute
the probability of the underlying Markov chain and compare it with
a� xed threshold [15, 37, 38].

The works that most resemble ours are [30] and [32], in which
HMMs are trained using multimodal sensory signals for detecting
anomalies in assistive robots. At run time, the trained HMMs pro-
vide likelihood scores for data inside a window, which are compared
to an adaptive detection threshold to identify putative anomalies.
In this paper, we substitute the likelihood estimation with the com-
putation of a more informative and interpretable measure, and also
provide a new o�ine methodology for detecting long-term shifts
from the nominal behavior. Another similar work, but with a di�er-
ent application focus, is [34], in which anomalies represent credit
card frauds and are identi�ed by directly comparing HMMs� t at
consecutive periods rather than comparing acceptance probabilities
(i.e., likelihoods). Our approach is di�erent in the fact that, instead
of just comparing the emission probabilities of the states of two
HMMs, we propose a single-value metric representing the overall
dissimilarity between two HMMs.

Deep Learning-Based Spatio-Temporal Modeling. Recently, deep
learningmodels have been used to re-address many spatio-temporal
modeling tasks providing improvements over the state-of-the-art
methods. Few works employ deep neural networks for online anom-
aly detection in robot systems, two recent examples are [31, 35],
which employ LSTM variational autoencoders. However, these
works cannot be considered as alternatives to our online method
since they require datasets composed of thousands of execution
traces sampled at high frequency. Moreover, the dataset employed
in [35] is fully labeled (i.e., also anomalies are labeled, setting a
problem di�erent from ours), and both datasets of [31, 35] are heav-
ily high-dimensional (e.g., [31] considers, in addition to joints’ data,
also video and sound recordings). In the settings we consider, there
are few execution traces (for example, 11 for the� rst experiment
and 149 for the second experiment of Section 4 ) with low dimension-
ality, so we cannot perform direct comparisons with those models.
For o�ine anomaly detection, to the best of our knowledge, no
method exists in the literature for computing the distance between
two trained neural networks by directly comparing their learned
weights. Being model explainability and interpretability at the core
of our o�ine method, deep learning models are not adequate, since
they are hard to interpret and explain, despite some initial results
toward explainable AI [11, 18].
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3 THE PROPOSED METHOD
In this section, we� rst de�ne the problem we address, then in-
troduce some mathematical background, and� nally present the
proposed online and o�ine anomaly detection methods.

3.1 Problem De�nition
We represent byO = {o1, ...,on } a d-dimensional time series com-
posed of n observations, where ot is a d-dimensional vector rep-
resenting the multivariate (multi-valued) observation at time t .
The nominal behavior of a robot system is then represented as
O
N = {oN1 , ...,oNnN } and the observed behavior of the same system

along some time period asOO = {oO1 , ...,oOnO }.
If we consider OO as a (possibly in�nite) data stream, online

anomaly detection at time t is the task of classifying the portion of
the stream included in a sliding window (up to t ) as anomalous or
non-anomalous wrtON .

Given a� nite batch of observationsOO , o�ine anomaly detection
is the task of classifying the behavior displayed by the system in
O
O as anomalous or non-anomalous wrtON .
We assume the availability ofON and, for this reason, our ap-

proach belongs to the semi-supervised family. This choice is mo-
tivated by the fact that, in robotics, the availability of nominal
observations for repetitive tasks, which are the kind of tasks on
which we focus, is quite common, since it is often plausible to make
ad hoc executions in nominal conditions.

3.2 Mathematical Background
We use HMMs [33] as a probabilistic model for the system that
generated a given multivariate time seriesO . An HMM is a statisti-
cal model in which the system being modeled is assumed to be a
Markov process with K hidden states. The mathematical notation
� = {� ,A,B} is used to represent an HMM, where � = {�i }Ki=1
is the set of initial state probabilities, A = {ai j }Ki, j=1 is the set of
state transition probabilities (i.e., ai j is the probability to move from
state i to state j), and B = {bi (o)}Ki=1 is the set of the probability dis-
tributions over observations in each state (emission probabilities).
In our setting, we assume a multivariate Gaussian distribution for
the emission probabilities, which means that B = {N(µi , �i )}Ki=1,
where µi and �i are the mean and the covariance matrix for state
i , respectively. Theory of HMMs provides algorithms to solve three
important problems:

• Compute the probability (i.e., likelihood) that an observed
(sub)sequenceO is represented by an HMM, e.g., using the
Forward algorithm [3].

• Find the parameters of an HMM, �, to maximize the �t (likeli-
hood) to an observed sequenceO , e.g., using the Baum-Welch
algorithm [4].

• Compute the optimal HMM state sequence (known as Viterbi
path) that best explains a given observed (sub)sequenceO ,
e.g., using the Viterbi algorithm [13].

The optimal number of hidden states and the covariance type can
be found by minimizing the Bayesian information criterion (BIC),
which� nds the optimal trade-o� between maximizing the likeli-
hood of the training data wrt the model and minimizing the number
of parameters required (i.e., the number of hidden states) [6].

The Hellinger distance [16], used in both our online and o�ine
anomaly detection methods described below, is a [0, 1]-bounded
metric that quanti�es the similarity between two probability density
functions f (x) and �(x). It is computed as follows:

H
2(f ,�) = 1

2

π ⇣p
f (x) �

p
�(x)

⌘2
dx . (1)

For the case of twomultivariate Gaussian distributions f (x) ⇠ N(µ1, �1)
and �(x) ⇠ N(µ2, �2), the Hellinger distance can be computed in
closed form as:

H
2(f ,�) = 1 � det(�1)1/4det(�2)1/4

det

⇣
�1+�2

2

⌘ 1/2 ·

· exp
(
�1
8
(µ1 + µ2)T

✓
�1 + �2

2

◆�1
(µ1 � µ2)

)
.

(2)

3.3 Online Anomaly Detection
The nominal behavior of the robot system is modeled as an HMM
�
N that is trained fromO

N using the Baum-Welch algorithm. The
number of hidden states and the covariance type are selected by
minimizing the BIC. Online anomaly detection at time step t is
performed by means of a sliding windowWt = {oOt�w+1, ...,oOt } of
lengthw which includes the lastw observations. For each window
Wt , a score is computed and, when the score exceeds a prede�ned
threshold � , the behavior is considered anomalous. The score is the
Hellinger distance between the estimated distribution of the ob-
servations corresponding to the state ŝt occurring most frequently
in the Viterbi path St = {st�w+1, ..., st } of windowWt and the
emission probability of the same state in �

N .
The detailed procedure for online anomaly detection is in Algo-

rithm 1. The algorithm starts by� tting the nominal HMM �
N with

the number of hidden states suggested by the BIC score (lines 1-2).
After having speci�ed the desired window length w (line 3) and
threshold � (line 4), the algorithm waits until w observations are
collected (line 5) and then starts the online procedure (lines 6-17).
The online procedure computes the Viterbi path of the multivariate
time series inside the window (line 8). For the state ŝt occurring
most frequently in the Viterbi path (line 9) a multivariate Gaussian
distribution N(µ, �) is� t through maximum likelihood with the
data inside the window (lines 10-12). Then the Hellinger distance is
computed (using equation (2)) between N(µ, �) and the emission
probability of state ŝt in �

N (line 13). If the distance is larger than
� , then a warning is reported (line 14).

3.4 O�line Anomaly Detection
O�ine anomaly detection is performed by learning two di�erent
HMMs, �N and �O , and computing the distance between them in
order to discover if (and how) the behavior of a robot system has
changed over time.

To this end, we� rst need to learn �
N and �O fromO

N andOO ,
respectively, with the Baum-Welch algorithm. We constrain the two
models to have the same number of hidden states (i.e., the number
of states of �N ), which is reasonable since we assume the overall
behavior of the robot system we model is the same.
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Algorithm 1: Online anomaly detection
1 K  number of hidden states
2 �N  Baum-Welch(ON , K )
3 w  window size
4 �  threshold
5 t  w
6 repeat
7 Wt  {oOt�w+1, ..., oOt }
8 St  Viterbi(�N ,Wt )
9 ŝt  most frequent state in St

10 X  {oOj 2Wt : sj = ŝt }
11 µ  E[X ]
12 � E[(X � µ)(X � µ)T ]
13 if H 2(bNŝt , N(µ, �)) > � then
14 echo warning
15 end
16 t = t + 1
17 until new data keep coming;

Given the model parameters of two HMMs, de�ning an appro-
priate similarity measure between the two models is not straight-
forward. Most of the works in the literature employ the Kullback-
Leiber (KL) divergence [25] as a distance measure between two
HMMs [20]. Given two probability density functions f (x) and �(x),
the KL divergence can be computed as:

DKL(f ,�) =
π

f (x) lo� f (x)
�(x) dx . (3)

The KL divergence has a closed-form expression for many prob-
ability distributions, including Gaussians and, more generally, the
exponential family. For more complex distributions, such as mixture
models and HMMs, the integral involves the logarithm of sums of
component densities, and no simple closed-form expression exists.
As a consequence, the KL divergence between HMMs can only be
approximated via Monte Carlo sampling [20] or through variational
approximation [17]. In this paper we are interested in computing
the Hellinger distance between HMMs instead of the KL divergence,
since, as seen before, it is a bounded measure that can provide in-
terpretability to the anomaly detection model. Furthermore, to the
best of our knowledge, no work in the literature has attempted to
compute the Hellinger distance between HMMs.

We start the derivation of our Hellinger-based distance between
HMMs (for o�ine anomaly detection) observing that although no
closed-form solution exists for the KL divergence between two
HMMs, some upper bounds have been proposed which can be
computed in closed form. One such bound is proposed by [39] for
left-to-right HMMs:

D(�1, �2) 
K’
i=1

⇢
l
1
i


contribution
of emission
probabilitiesz         }|         {
DKL

⇣
b
1
i ,b

2
i

⌘
+

contribution
of transition
matricesz     }|     {

log

 
a
1
ii

a
2
ii

! �
+

+ l2i


DKL

⇣
b
2
i ,b

1
i

⌘
+ log

 
a
2
ii

a
1
ii

! � �
,

(4)

where DKL
⇣
b
1
i ,b

2
i

⌘
is the KL divergence between the emission

probabilities of state i in the two models and represents how the
emission probabilities di�er, log (a1

ii/a2
ii ) is the log-likelihood ratio

of the transition probabilities, representing how much the two tran-
sition matrices di�er, and li = 1/(1 � aii ) approximates the expected
duration of state i . The second term of equation (4) makes the
distance symmetric.

The problem with equation (4) is that all of its components are
unbounded, resulting in an overall unbounded measure very di�-
cult to interpret and threshold in practical applications. Moreover,
the contribution of the emission probabilities and that of the transi-
tion matrices can grow with di�erent orders of magnitude, making
it even more di�cult to intuitively interpret the overall distance.

We take inspiration from equation (4) maintaining the idea of
the two contributions and propose a new bounded (with values in
[0, 1]) approximation of the distance between two HMMs which is
based on the Hellinger distance and on the long-term probabilities
of a Markov chain:

D(�1, �2) ⇡
K’
i=1

(
l
1
i
1
2

"
contribution of

emission probabilitiesz       }|       {
H
2
⇣
b
1
i ,b

2
i

⌘
+

+
1p
2

vuut K’
j=1

⇣q
a
1
i j �

q
a
2
i j

⌘2
|                           {z                           }

contribution of transition matrices

#)
,

(5)

where H2
⇣
b
1
i ,b

2
i

⌘
is the Hellinger distance between the emission

probabilities of state i in the two models (i.e., the contribution to the
distance of the emission probabilities for state i) and the sum under
the square root is the Hellinger distance between the rows of state
i in the transition matrices of the two models (i.e., the contribution
to the distance of the transition matrices for state i).

We drop the term corresponding to the second half of equa-
tion (4), which would make the distance symmetric, since we are
only interested in how �

O is dissimilar from �
N and not vice-versa.

Computing the contribution of the transition matrices as in equa-
tion (5) instead of as in equation (4) has the advantage of taking into
account the di�erence between the transition probabilities to all the
states, while the log-likelihood ratio in equation (4) considers only
the transition probabilities on the main diagonal that correspond
to transitions to the same state.

In equation (5), l1i is computed as the long term probability
of remaining in state i

1 wrt the transition matrix A
1. Let A be

a regular transition matrix (i.e., such that some power of A has
all positive entries) with states {1, 2, ...,K}, long-term probabilities
l = {l1, l2, ..., lK } are the unique solution to:

(
lj =

ÕK
k=1 lkak j , j = 1, 2, ...,KÕK

i=1 li = 1
(6)

Long-term probabilities have two advantages over their approx-
imations used in equation (4): (i) they are a better proxy of the
time spent in each state, since they are obtained by simulating the
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(a) Day 1 (b) Day 2 (c) Day 11

Figure 1: Water drone trajectories

system’s behavior on the long run, and (ii) they sum up to 1, making
equation (5) a weighted average.

To compute equation (5), we perform a bijective matching be-
tween states of �N and states of �O using the Hungarian algorithm
[24] and considering the Hellinger distance between each pair of
states, namely, the distance between the emission probability dis-
tributions of those states.

In practice, for diagnostic purposes, equation (5) can be unrolled
and its components can be inspected separately. In particular, for
each state, the two contributions can be inspected and, depending
on the value of l1i the impact of state i on the overall distance can
be identi�ed. This could greatly help in the diagnostic process to
identify the precise reason(s) why two behaviors are dissimilar and
to possibly recover to a non-anomalous behavior.

Beyond interpretability, one of the main strengths of our o�ine
approach is that it is not negatively a�ected by di�erences in the
lengths of the sequencesON andOO (as the standard likelihood)
or by possible misalignments in such sequences, since it abstracts
the comparison of behaviors to the level of learned HMMs.

The detailed procedure for o�ine anomaly detection is reported
in Algorithm 2, which starts by� tting the nominal HMM �

N with
the number of hidden states suggested by the BIC score (lines 1-2).
Then the observed HMM �

O is learned with the same number of
hidden states as �N (line 3) and the detection threshold � is selected
(line 4). Long-term probabilities of the nominal model are computed
with equation 6 (line 5). Then, after having matched the states in
the two models with the Hungarian algorithm (line 6), the distance
between �N and �O is computed with equation (5). If such distance
is larger than � , a warning is issued (lines 7-9).

The use of HMMs makes both our online and o�ine approaches
capable of dealing with reactive and adaptive behaviors recorded
in O

N and O
O (such as dynamic obstacle avoidance) as long as

they do not jeopardize completely the global behavior of the ro-
bot. Relatively small deviations from the expected behavior could
slightly increase the variance of the emission probability. However,
if examples of perturbations of robot behavior are present inON ,
they will be considered non-anomalous when they appear inOO .

Algorithm 2: O�ine anomaly detection
1 K  number of hidden states
2 �N  Baum-Welch(ON , K )
3 �O  Baum-Welch(OO , K )
4 �  threshold
5 lN  long-term probabilities of AN

6 Hungarian(BN , BO )
7 if D(�N , �O ) > � then
8 echo warning
9 end

4 EXPERIMENTAL RESULTS
In this section we present the results obtained by applying the
proposed approach to detect anomalies of two robots operating in
real-world LTA scenarios.

4.1 Water Monitoring Robot
The� rst robot operates in the context of the INTCATCH Project1,
a H2020 EU project aiming to develop a new paradigm for water
monitoring in river and lakes by harmonizing a range of innovative
tools into a single e�cient and user-friendly model. A dataset (see
Figure 1(a)) has been gathered that contains 11 runs of a prede�ned
path traveled by a Platypus drone (see Figure 2) in the Lake Garda
(Italy). The dataset consists of 76213 observations, collected at 1Hz
frequency, of the following variables concerning the robot state:
heading (i.e., compass direction), speed, acceleration, power signals
to the left and right propellers, latitude, and longitude. A domain
expert has certi�ed the readings of the� rst day (see Figure 1(a))
as representing the nominal behavior and we use them to train an
HMM. The BIC score suggests an optimal number of states K =3
intuitively corresponding to:

• going upward, line segment A-B in Figure 3(a);
• going downward, line segment C-D in Figure 3(a);

1http://www.intcatch.eu
2http://senseplatypus.com/
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Figure 2: Platypus2 Lutra boat usedin the context of the INT-
CATCH project, about 1 m long and 0.5 m wide.

A

B C

D A A

B C

D A

(a)

A

B C

D A A

B C

D A

(b)

Figure 3: Nominal (a) and anomalous (b) behaviors

• going right, line segments B-C and D-A in Figure 3(a).
The domain expert classi�ed the runs from day 2 to day 10 as non-
anomalous (Figure 1 just reports the trajectory of day 2) and the
run of day 11 as anomalous (as it can be clearly seen from the
corresponding trajectory in Figure 1. Figure 3 schematically shows
the di�erence between the regular (days 1-10) and the anomalous
(day 11) behaviors.

4.1.1 Online anomaly detection. We compare our technique to
two standard approaches (e.g., used in [30, 37, 38]): the negative
log-likelihood with respect to the nominal HMM and the negative
of the logarithm of the probability of the Viterbi path. The former
one (which for brevity will be referred to as likelihood) is computed
with the Forward algorithm as the negative of the logarithm of
P(Wt |�N ). The latter is obtained by computing the Viterbi path of
Wt with the Viterbi algorithm and then by taking the negative of
the logarithm of the multiplication of the transition probabilities
between the states in the Viterbi path.

The window sizew must be set to a value between a minimum,
which allows to robustly estimate a multivariate Gaussian distri-
bution from data inside the window, and a maximum, which de-
pends on the dynamics of the analyzed behavior (ifw is too large,
anomalies relative to short behaviors could be missed). After some
empirical tests, we selected a window size of 50 samples.

In Figure 4, our anomaly measure (in red) and the likelihood (in
blue) for the second day are depicted. As expected, our measure
maintains always a very low value while the likelihood seems to
be high during the downward segments, which visually appear to
be regular. As we will see, a negative log-likelihood of 1000 is not
very high (when compared to the values reached in the eleventh
day), anyway, being the likelihood unbounded, it would be hard to
decide a priori that such a value of likelihood does not re�ect an
anomaly.

Figure 4: Online anomaly detection day 2 (w =50)

Figure 5: Online anomaly detection day 11 (w =50)

Figure 5 reports themeasures for the eleventh day, the anomalous
one. The following remarks can be made:

• During the� rst upward segment 1� an anomaly occurs,
due to the fact that the speed of the robot is much higher
than that observed during the nominal upward behavior.
Our technique empasizes this anomaly (which is not evident
from the trajectories of Figure 1) better than the likelihood.

• Our anomaly score better re�ects the anomalies present in
the downward segments. Indeed, our approach correctly
assigns an higher Hellinger distance to the� rst half of the C-
D segment 2� (when the drone moves away from the optimal
trajectory) and assigns a lower value to the second half 3�
(when the drone gets back on track), while the negative log-
likelihood reaches a plateau and does not decrease during
the second half. In this sense, we can say that our approach
is more expressive in capturing and representing anomalies.

• The second spike in the C-D segment 4� is correctly identi-
�ed by both techniques and is due to an anomalous increase
in the speed of the robot.

Figure 6 shows the ROC curves as � is varied for the three meth-
ods considered. Our method outperforms the others, improving the
area under the curve (AUC) of the standard approach based on the
likelihood by 6%. We omit the plots of the negative logarithm of the
Viterbi path in Figures 4 and 5 since it does not detect anomalies as
good as the other two approaches (as evidenced also by the lower
AUC in Figure 6).
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Figure 6: ROC curves day 11

Besides re�ecting anomalies more expressively, another advan-
tage of the technique we propose is the ease with which it is possible
to set a threshold due to its bounded nature.

If diagonal covariance matrices for the emission probabilities
are used, the computational complexity of our online algorithm
is linear in the number of dimensions and in the window length,
while it is quadratic in the number of hidden states (i.e., the same
as the two baseline methods we consider). For each window, the
anomaly score can be computed in approximately 5 ms in our case
study, making our method de�nitely suitable for online settings.

4.1.2 O�line anomaly detection. We consider the observations
of the� rst day as representing the nominal behavior and we use
them to� t an HMM �

1. We then� t ten more HMMs, one for each
of the remaining days, called �2 to �11, respectively. We then com-
pute the distance between each HMM and �1. Table 1 reports the
distance between �

1 and �
2 (which serves as a representative for

days from 2 to 10, i.e., non-anomalous days) and between �
1 and

�
11. The results show a much bigger distance for the eleventh day
highlighting the presence of an anomaly, mainly caused by the
downward state, which contributes 87% of D(�1, �11). The contri-
bution of the downward state can be, in turn, further decomposed
by inspecting the two contributions of equation (5) separately. By
looking at the contribution of the transition matrices, an higher
self-transition probability suggests a lower velocity. By looking at
H
2(b1downward,b11downward), the contribution of the emissions probabilities,

we can notice a lower mean for the velocity, con�rming that the
downwards segments are traversed slower than in the nominal case,
and also an higher variance for the heading, which suggests that
during the downward state the water drone does not manage to
maintain rectilinear motion. This is an example of how the distance
can be interpreted for diagnostic purposes. Note that expecting a
very high distance between �

1 and �
11 (i.e., close to 1) would be

incorrect, since only one of the three states corresponds to anoma-
lous behavior. In fact, the overall coverage task can be considered
as partially accomplished even in presence of anomalies.

A rule of thumb to set the detection threshold � is to choose the
value of the average distance between two nominal behaviors plus
x times the standard deviation. For instance, x = 3 provides a good
statistical con�dence that the observed behavior is not nominal. In
our experiments, the behavior of day 11 is considered anomalous
since its distance from the nominal behavior of day 1 is signi�cantly

Models State Distance Total

D(�1, �2)
upward 0,0048

0.0112downward 0,0052
right 0,0012

D(�1, �11)
upward 0,0063

0.2424downward 0.2103
right 0.0258

Table 1: O�line anomaly detection

Figure 7: Gira�-X socially assistive robot, developed for the
MoveCare project [28]

far away from the distribution of distances between day 1 and days
2 to 10. The z-score of day 11 with respect to this distribution is
69.08 (i.e., much greater than the standard threshold of 3). The
p-value is < 0.0001.

4.2 Socially Assistive Robot
The second set of experiments is performed on data collected during
the testing phase of the MoveCare project [27], a H2020 EU project
developing an innovative, multi-actor platform centered around
an autonomous robot for supporting the independence of elderly
people living alone at home. The socially assistive autonomous
mobile robot is called Gira�-X (Figure 7) and moves in domestic
environments, which represent a typical context for LTA [28]. The
goal of the robot is to provide noti�cations to the user. For doing so,
the robot searches, identi�es, and approaches the elder, and interact
with him/her for stimulation by suggesting activities that aim to
counteract physical and cognitive decline, as well as isolation. To
localize the person, the robot starts from its charging base and
visits in sequence three di�erent rooms (living room, bedroom, and
bathroom) of the test house until the elder is found. When the elder
is found, the robot approaches him/her following a path suitable for
Human-Robot-Interaction (HRI). After the noti�cation is provided
to the user, the robot autonomously returns back to its charging
base [29]. When idle, the robot stays at its charging base.

Data are collected in a 9-day experiment simulating the same
number of interventions performed in a month of use of this social
assistive robot, thus performing multiple interventions per day
for assessing LTA [28]. The dataset contains 149 runs, each one
composed of a sequence of observations collected at 1 Hz and
including: heading, speed, acceleration, position wrt the x-axis, and
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Figure 8: Runs of Gira� robot

position wrt the �-axis (see Figure 8, di�erent runs are depicted in
di�erent colors).

Out of the 149 runs, 4 are labeled as anomalous by a domain
expert (denoted as A1, A2, A3, and A4 in Figure 8). Runs A1, A3,
and A4 represent anomalous behaviors due to departures from the
expected trajectories, while run A2 constitutes an anomaly since
the robot moves at a higher speed than the nominal one. More
precisely, anomalies in runs A1 and A3 are due to the fact that the
robot identi�ed the user at a di�erent location than expected, and
had to modify its path in order to� nd a suitable location for HRI. In
run A4, after performing HRI, the robot placed itself in a position
too close to furniture and got stuck there.

In this dataset a run is assessed as anomalous by considering it as
a whole, thus we present only results about o�ine anomaly detec-
tion. A ROC curve computed online, as in Section 4.1, would require
knowledge of which observations are actually anomalous within
an overall anomalous run. Since we have not such information, we
cannot apply online anomaly detection in this case.

For each task of reaching one of the three rooms, an HMM
�
N is trained with a single run labeled as non-anomalous by the

expert and considered as representing the nominal behavior. The
remaining runs are tested for anomaly using our o�ine method.
For each test run, an HMM �

Ot is trained and compared with the
nominal one for the task of reaching the same room. Results are
shown in Figure 9. Our approach successfully identi�es all four
anomalies while reporting a low distance for all the other (correct)
runs. Note that, although computing the negative log-likelihood of
each whole run wrt its nominal HMM could result in a plot similar
to that of Figure 9 (yet unbounded on the �-axis), it would not be
theoretically sound since each run consists of a di�erent number
of observations and, being the likelihood sensitive to trace length,
the scores obtained would not actually be comparable.

5 CONCLUSIONS
In this work we have presented two novel approaches based on
HMMs and Hellinger distance for online and o�ine anomaly detec-
tion, and showed how they improve over traditional methods both
in detection performance and in interpretability of the results.

Unlike other works in the literature, we show that even a single
run is enough for learning the nominal behavior, making the semi-
supervised setting e�ectively applicable in practical real-world

Figure 9: D(�N , �Ot ) for runs of the Gira� robot

scenarios. Note that, in the context of LTA, a small initial supervi-
sion e�ort by a domain expert may be acceptable, given that the
robots will operate autonomously for a long time.

In our experiments, we show that a constant detection threshold
� is enough and that the bounded nature of our anomaly scores
gives a semantic meaning to such threshold. A suitable threshold �
should be chosen depending on the speci�c application, for example
to minimize false alarms (e.g., when human veri�cation is very
costly) or to be sure to detect all anomalies also permitting false
alarms (e.g., when the robot could harm people). Although for the
online approach it is easy to give a semantic interpretation to the
selected threshold, for the o�ine approach one should choose the
threshold trying to answer the question “How much am I willing
to let the observed behavior be di�erent from the nominal one
and still consider it as non-anomalous?”. For example, consider a
case with K = 3 (equally important) states and two behaviors that
overlap perfectly except for one state, in which they are completely
di�erent. In this case, the o�ine anomaly score is approximately 1/3
and, if the application requires that an anomaly is detected when
the behaviors are di�erent in at least one state, the threshold �

should be set to a value less than 1/3.
Future work includes employing HMMs with Gaussian Mixture

emission probabilities (GM-HMM) and developing a variation of
the Maximum Mean Discrepancy (MMD) in order to overcome the
assumption on the same number of hidden states for the HMMs
representing nominal and observed behaviors. Finally, we plan to
apply the proposed approach to other autonomous robot applica-
tions involving the need of detecting anomalies in the context of
LTA.
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