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ABSTRACT
The term Participatory Guarantee Systems (PGS) refers to quality

certification systems based on the active participation of stakehold-

ers, i.e., producers, consumers, and experts. Unlike to the more

common Third Party Certification system, quality standards are

guaranteed by peer review: visits of production sites by producers

themselves. A critical issue in PGS is the assignment of the peers

carrying each review visit, in a way that incentivizes participation.

This paper explores algorithmic aspects of this peer assignment, so

as to better address challenges faced by PGS. First, we propose a

mathematical model of this task that can express diverse local PGS

situations, as well as possible extensions. Then, we show that this

model leads to computationally challenging problems and identify

restrictions that are easy to handle. Finally, we develop an encod-

ing of the model in Answer Set Programming and use it to solve

realistic scenarios of PGS.
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1 INTRODUCTION
The term Participatory Guarantee Systems (PGS) refers to locally

focused social organisations providing guarantees on production

quality, typically organic standards in farming.
1
Contrary to the

dominant Third Party Certification (TPC), PGS are grounded on the

active participation of stakeholders, predominantly producers but

also consumers and experts, in local communities. PGS are generally

considered cheaper and more concerned with local socio-technical

situations, and thus more suitable to small-scale producers than

TPC [28, 29, 32]. Since the formalisation of the concept of PGS by the

International Federation of Organic Agriculture (IFOAM) [8], PGS
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intiatives have received increasing attention and approximately

240 PGS initiatives were operating or developping in more than 60

countries as of 2017.
2

However, PGS are facing challenges that the scientific commu-

nity is only starting to identify and address [16, 21, 22]. Securing

and maintaining the level of participation of producers is the main

challenge and it is influenced by producers’ workload, the overall

credibility of the system or the lack thereof, and by how personal

conflicts are mitigated [2, 3, 29]. The PGS activity that weighs most

on these questions is the reviewing visits of the production sites by

producers, whether for initial certification or regular monitoring.

Therefore, a critical issue is the peer review selection process, i.e.,

how to assign producers to production sites reviewing visits in a

way that incentivise their participation. This paper aims at explor-

ing the algorithmic aspects of this selection, so as to better address

the challenges faced by PGS.

Diverse requirements are imposed by PGS regulations on the

peer review selection process: Each production site has to receive a

fixed number of peer reviews, i.e., reviews from producers. Some

PGS may also require additional reviews from non-producer stake-

holders, i.e., consumers and experts. A minimal number of skilled

stakeholders are required at each review of production site. To re-

duce the possibility of collusion, regulations usually forbid pairs

of producers to review each other production site. Finally, some

reviews can be considered infeasible because of external constraints

or personal conflicts. The outcome of the peer review selection is

a multiple assignment where each producer is assigned several

stakeholders that review his production site.

1.1 Related Works
To the best of our knowledge, this is the first formal investigation

of peer review assignment in PGS. Various assignment problems

similar to PGS have been investigated in the literature, but they

address different problems with different constraints and objectives.

First, the Conference Assignment problem (CA) considers the

setting where a set of papers has to be evaluated by a set of re-

viewers, in order to select the papers that will be published [14].

As the most popular AI conferences involve thousands of papers

and reviewers, the assignment process is critical. Some aspects of

CA are similar to PGS. A paper has to receive a minimal number

of evaluation. Reviewers have a capacity limit over the number of

evaluation they provide. Moreover, reviewers can express conflict

of interest with specific papers. However, contrary to PGS, papers

2
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and reviewers form two disjoint sets that allow to model CA as

a matching problem. Moreover, reviewers are allowed to report

preferences over the set of papers and the goal of CA is then to

find an assignement that reflect as much as possible the preferences

[5, 6, 23, 33]. A recent review on how AI tools are used to solve CA

has been published in [31].

Next, the assignment of judges to competition considers similar

constraints as CA, i.e., capacity constraints and conflict of interests

[20]. In addition, an expertise level/requirement is associated to

judges/competitions, and judges do not express preferences over

the set of competition. However, the set of judges and competition

are also disjoints and thus judges to competition differs strongly

from PGS. Closely related is the assignment of referees to league

match, where there exist periodic constraints due to repetition of

matches [1, 24, 25].

Another interesting domain is peer evaluation, which studies

situations where agents are evaluated by agents with the same

status. In this general setting, the focus is usually on how to grade
and not on how to choose peer-reviewers. There exist two main

trends in peer evaluation. The first one has educational purposes

and studies the benefit of different methods or peer-grading on

learning performances [7, 26, 34]. The second one is related to

Massive Open Online Courses (MOOCs), where issues are how

to reveal the true grade of students given that each student only

receives few grades and students are not experts in grading [4, 17–

19].

1.2 Contributions and outline
Our contributions in this paper are threefold. First, we propose a

mathematical model of the peer review selection in PGS, as well

as possible extensions, in Section 3. Our parametric model is rich

enough to let one express diverse local PGS situations. Then, we

unveil a correspondence between the graph-theoretical problem

of 𝑟 -factors and peer review selection in PGS. We investigate the

algorithmic properties of the PGS model and while we show that

it leads to computationally challenging problems, we also identify

tractable restrictions, in Section 4. Our computational results are

summarized in Table 1. Finally, we develop an Answer Set Program-

ming (ASP) encoding of our PGS model, together with selected

extensions, and demonstrate that solving realistic scenarios of PGS

is within reach of modern ASP implementations, in Section 5.

2 MATHEMATICAL PREREQUISITES
2.1 Some Notions on Graphs
A graph is a pair𝐺 = (𝑉 , 𝐸), where𝑉 = {1, . . . , 𝑛} is a set of vertices
and 𝐸 is a set of unordered (resp. ordered) pairs, called edges (resp.
arrows). For two vertices 𝑥,𝑦 ∈ 𝑉 , we denote (𝑥,𝑦) if the pair is
ordered and {𝑥,𝑦} otherwise. Graph𝐺 is called directed if 𝐸 is a set

of ordered pairs, i.e., 𝐸 ⊆ {(𝑥,𝑦) ∈ 𝑉 ×𝑉 : 𝑥 ≠ 𝑦}, and undirected
if the pairs are unordered, i.e., 𝐸 ⊆ {{𝑥,𝑦} ∈ 𝑉 ×𝑉 : 𝑥 ≠ 𝑦}. In an

undirected graph 𝐺 , the degree of a node 𝑣 ∈ 𝑉 , denoted 𝑑𝑒𝑔𝐺 (𝑣),
is the number of edges to which 𝑣 belongs. In a directed graph

𝐺 , the indegree (resp. outdegree) of a node 𝑣 , denoted 𝑑𝑒𝑔−
𝐺
(𝑣)

(resp. 𝑑𝑒𝑔+
𝐺
(𝑣)), is the number of arrows whose ending point (resp.

starting point) is 𝑣 . A crucial notion for PGS is the notion of 𝑓 -factor

(see the survey from Plummer [30]). Given a function 𝑓 : 𝑉 ↦→ N,

Veto Skills (𝜖) 𝑘 𝑘 ′ 𝑧 Complexity

Empty Input

Input Any = 0

NP-c (Th. 4.15)
Any Input = 0

Sym.

No (= 0)

Any Any = 2 P (Th. 4.9)

= 1 Any = 3 P (Th. 4.8)

= 1 Any ≥ 5 NP-c (Th. 4.11)

Yes (≥ 1)

= 1 = 0 = 0 P (Prop. 4.10)

≥ 2 Any ≥ 2 NP-c (Th. 4.14)

General Any = 1 Any = 2 NP-c (Th. 4.12)

Table 1: Summary of the results for PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖, veto) (see
Definition 3.5). Vetos can be empty, symmetric between pro-
ducers, or general. Variable 𝜖 represents the number of dif-
ferent skills. Variables 𝑘 and 𝑘 ′ refer to the number of re-
views from producers and consumers, respectively. Variable
𝑧 refers to the minimal size of any cycle in a feasible assign-
ment. Inputmeans that the variable is part of the input.Any
means that the result holds for each value of the variable.

an undirected subgraph 𝐺 ′ = (𝑉 , 𝐸 ′ ⊆ 𝐸) of 𝐺 is called an f-factor
if for all 𝑣 ∈ 𝑉 , 𝑑𝑒𝑔𝐺′ (𝑣) = 𝑓 (𝑣). In this paper, we are interested

in 𝑓 -factors for constant functions, i.e., for all 𝑣 ∈ 𝑉 , 𝑓 (𝑣) = 𝑟 , for

𝑟 ∈ N, which we denote 𝑟 -factor.

2.2 Primer on Complexity
In computational complexity theory, a decision problem is a set of

instances that is partitioned into YES-instances and NO-instances.

Depending on their inherent complexity, decision problems are

categorized into complexity class, among which class P and class NP
are the most studied.

Class P corresponds to decision problems that can be solved

in polynomial time in the size of the instance. Problems in P are

generally considered tractable or easy to solve.

Class NP represents the decision problems for which the ver-

ification of a YES-instance admits a polynomial time algorithm.

The most difficult problems in NP are called NP-complete and it

is generally assumed that there exists no polynomial algorithm to

solve NP-complete problems. In our complexity proof, we use the

NP-complete Set Cover problem [9].

Set Cover:
Instance: 𝑋 a set of elements,𝐶 a collection of subsets of 𝑋 , and 𝑡 a

positive integer.

Question: Do 𝑡 subsets exist in 𝐶 such that their union covers 𝑋?

2.3 Primer on Answer Set Programming
Answer set programming (ASP) is a paradigm of declarative pro-

gramming oriented towards combinatorial search problems [12].

It is based on the stable model semantics of logic programming.

The main idea is to reduce a search problem to a logic program, by

formulating constraints in terms of rules, such that minimal stable

models correspond exactly to problem solutions.

Most ASP systems are composed of a grounder and a solver. The

grounder “grounds” the problem file by replacing all variables in
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the program by grounded (variable-free) terms, then a solver reads

the obtained propositional logic program and solves the problem

by generating answers sets.

In our implementation, we used the program Clingo from the

collection Potassco, the Potsdam Answer Set Solving Collection

bundles tools for Answer Set Programming developed at the Uni-

versity of Potsdam. Clingo combines the grounder Gringo and the

answer set solver Clasp [11, 13].

3 FORMAL MODEL
3.1 Peer Review Selection Model for PGS
As a first approximation, we identify producers and production sites.

Let 𝑃 = {1, . . . , 𝑛} be a set of producers and𝐶 = {𝑛+1, . . . , 𝑛+𝑚} be a
set of consumers constituting a set of stakeholders S = {1, . . . , 𝑛+𝑚}.
The goal is to find an assignment𝐴 ⊆ S×𝑃 , where (𝑖, 𝑗) ∈ 𝐴 means

that stakeholder 𝑖 reviews producer 𝑗 , that satisfies the following

requirements.

Infeasible review Some reviews can be infeasible because of

personal conflicts or external constraints (e.g. distance between

production sites). We model infeasible reviews with a binary re-

lation between S and 𝑃 , denoted V , where (𝑖, 𝑗) ∈ V means that

stakeholder 𝑖 cannot evaluate producer 𝑗 .

Definition 3.1 (V -respecting). An assignment 𝐴 is said to be V -
respecting if 𝐴 ∩ V = ∅.

Number of reviews Each production site should receive a re-

view committee comprising 𝑘 producers (𝑘 ≥ 1) and 𝑘 ′ consumers

(𝑘 ′ ≥ 0). The workload is equally distributed across producers by

imposing that each producer participates in the same number of

review committees. Consumers’ workload is not as crucial for PGS

and thus we do not impose equal distribution of reviews across

consumers.

Definition 3.2 ((𝑘, 𝑘 ′)-reviewable). An assignment 𝐴 is said to be

(𝑘, 𝑘 ′)-reviewable if each producer 𝑝 ∈ 𝑃 performs 𝑘 reviews, i.e.,

|𝐴 ∩ ({𝑝} × 𝑃) | = 𝑘 , receives 𝑘 reviews from other producers, i.e.,

|𝐴 ∩ (𝑃 × {𝑝}) | = 𝑘 , and receives 𝑘 ′ reviews from consumers, i.e.,

|𝐴 ∩ (𝐶 × {𝑝}) | = 𝑘 ′.

Credibility of the PGS A possible critic against PGS is the

possibility of collusion between producers. A first step towards

reducing collusion opportunity is to forbid situations where two

producers review each other. We generalize this idea and forbid

reviewing cycles of length smaller than a threshold 𝑧. In practice,

most PGS are looking for a threshold 𝑧 = 2.

Definition 3.3 (𝑧-credible). An assignment𝐴 is said to be 𝑧-credible
if there exists no sequence of producers (𝑝1, 𝑝2, . . . , 𝑝𝑙 ) of length
𝑙 ≤ 𝑧 such that (𝑝𝑖 , 𝑝𝑖+1) ∈ 𝐴 for 1 ≤ 𝑖 < 𝑙 and (𝑝𝑙 , 𝑝1) ∈ 𝐴.

Necessary expertise Some skills (e.g., knowledge on agroeol-

ogy, or experience in reviewing) may be required to handle reviews.

Let E denote the set of possible skills, and, given a field of expertise

𝑒 ∈ E, let E𝑒 denote the set of producers having expertise 𝑒 . For

each skill 𝑒 in E, we impose that at least one stakeholder should

possess skill 𝑒 at each visit.

Definition 3.4 (E-compatible). An assignment 𝐴 is said to be E-
compatible if for all 𝑝 ∈ 𝑃 and all 𝑒 ∈ E, 𝐴 ∩ (E𝑒 × {𝑝}) ≠ ∅

3.2 Possible Extensions
Several extensions that better reflect the issues faced in PGS can be

straightforwardly handle by our model.

Diversity of stakeholders. In many PGS, stakeholders include

producers and consumers as well as experts, as a way of building

trust in the community and facilitate access to the market. Experts

may actively participate in the review process, inducing constraints

which are similar to those implied by consumers participation.

Hence, we can model experts as consumers by adding appropriate

skills in E.

Knowledge exchange. One promoted benefit of PGS is to foster

knowledge creation and exchange. Knowledge exchange can be

fostered by taking into account past reviews, e.g., by promoting

review between producers who have not reviewed each other yet.

A simple way of implementing this idea is adding past reviews

into the set of infeasible reviews of the following review selection

process, as done in our ASP implementation in Section 5.

3.3 Decision Problems
Let us now formally define the decision problems that we investi-

gate in this paper. Our analysis depends on the values of parameter

𝑘 ,𝑘 ′, 𝑧, the number of skills 𝜖 , and whether V is empty (vetos are not

allowed), includes only symmetric relations between producers, or

also includes asymmetric relations between producers. Symmetric

vetos arise from external constraints such as prohibiting distance

between two production sites, whereas asymmetric vetos represent

infeasibility from personal conflicts.

Definition 3.5. For a number of producer reviews 𝑘 ≥ 1, of con-

sumer reviews 𝑘 ′ ≥ 0, a credibility 𝑧 ≥ 2, a number of skills

𝜖 ≥ 0, and a parameter veto ∈ {empty, symmetric, general}, we
define PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , veto) as the following decision problem.

PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖, veto):
Instance: A set of producers 𝑃 , a set of consumers 𝐶 , a set of vetos

V , and, for 1 ≤ 𝑒 ≤ 𝜖 , the subset of stakeholders E𝑒 ⊆ 𝑃 having

skill 𝑒 .

Question: Is there a reviewing assignment 𝐴 that is V -respecting,
(𝑘, 𝑘 ′)-reviewable, 𝑧-credible, and E-compatible?

Note that each parameterization of {𝑘, 𝑘 ′, 𝑧, 𝜖, veto} leads to an

individual decision problem PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , veto). Furthermore,

when presenting our complexity results, we may replace variables

of PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , veto) by the notation “INPUT”, which means that

the corresponding variable is considered as part of the input.

The PGS decision problem can be defined from a graph-theoretic

perspective. Indeed, we can associate to any PGS instance a graph,

that we call the potential review graph, where nodes represent stake-
holders and edges represent feasible reviews.

Definition 3.6 (potential review graph). Given a PGS instance, the

potential review graph is the graph 𝐺 = (𝑆 = 𝑃 ∪𝐶, (𝑆 × 𝑃) \ V ).

Similarly, any assignment 𝐴 can be seen as a directed graph

𝐺 ′ = (𝑆,𝐴), and the following characterization is immediate: 𝐴 is

V -respecting if 𝐴 ⊆ (𝑆 × 𝑃) \ V , that is, if 𝐺 ′ is a subgraph of 𝐺 ;

𝐴 is (𝑘, 𝑘 ′)-reviewable if each vertex in 𝑃 has an indegree equal to
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𝑘 = 1 𝑘 ≥ 2

𝑧 ≤ 2 Equivalent notions according to Lemma 4.2

𝑧 ≥ 3 and Lemma 4.3

Counterexamples

exist (Proposition 4.4)

Table 2: Summary of Section 4.1 on the equivalence between
assignments in symmetric PGS and factors in potential
graphs. If a symmetric PGS instance admits a 𝑘-reviewable,
𝑧-credible assignment, then its potential graph admits a 2𝑘-
factor with no cycles of length smaller than 𝑧 (Lemma 4.1).
The converse is only guaranteed for some values of 𝑘 and 𝑧,
as indicated above.

𝑘 + 𝑘 ′ and an outdegree equals to 𝑘 ; and 𝐴 is 𝑧-credible if 𝐺 ′ has
no cycles of length smaller than 𝑧.

4 ALGORITHMIC ANALYSIS
Let us first mention that while our model is faithful to the diversity

of PGS situations (see Table 3), the parameter 𝑘 ′ has little computa-

tional impact in theory. Hence, unless stated otherwise, we assume

in this section that there are no consumers in the review process

(𝐶 = ∅, 𝑘 ′ = 0) and we use the notations PGS(𝑘 , 𝑧, 𝜖 , veto) and
𝑘-reviewable.

We start our algorithmic analysis by examining the connections

between finding reviewable credible assignments in symmetric PGS

instances and the graph-theoretic problem of finding 𝑟 -factors with

no short cycles. The correspondence is summarized in Table 2 and

will let us transfer some complexity results in graph theory to the

symmetric PGS problem.

4.1 Correspondence between PGS peer review
selection and 𝑟 -factors

PGS peer review selection is closely related to the graph-theoretic

problem of finding 𝑟 -factors, when consumers do not participate

in the review process (𝐶 = ∅, 𝑘 ′ = 0), when no skills are required

(𝜖 = 0), and when V is symmetric. Lemmas 4.1, 4.2, and 4.3 present

the condition under which the two problems are equivalent.

Lemma 4.1. For any 𝑘 and 𝑧, an instance of PGS(𝑘 , 𝑧, 0, symmetric)
has a solution if the potential review graph has a 2𝑘-factor that does
not include cycles of length smaller than 𝑧.

Proof. Assume that the potential review graph admits a 2𝑘-

factor, denoted (𝑃, 𝐸0), which does not include cycles of length

smaller than 𝑧. Algorithm 1 computes an assignment 𝐴 for PGS(𝑘 ,

𝑧, 0, symmetric). Intuitively, Algorithm 1 turns cycles from 𝐸0 into

directed circuits and adds them to 𝐴. Notice that it satisfies the

following loop invariants.

• 𝐸0 = 𝐸 ∪ {{𝑥,𝑦} | (𝑥,𝑦) ∈ 𝐴}.
• Each producer 𝑝 provides as many reviews as it receives in

𝐴: |{𝑥 | (𝑥, 𝑝) ∈ 𝐴}| = |{𝑦 | (𝑝,𝑦) ∈ 𝐴}| .
• For each producer 𝑝 , edges are conserved going from 𝐸 to 𝐴,

that is

2𝑘 = deg(𝑃,𝐸) (𝑝) + |{𝑥 | (𝑥, 𝑝) ∈ 𝐴}| + |{𝑦 | (𝑝,𝑦) ∈ 𝐴}| .

Algorithm 1: 2𝑘-factor to Assignment (𝐸0)

1 𝐸 ← 𝐸0

2 𝐴← ∅
3 while 𝐸 ≠ ∅ do
4 select an arbitrary cycle 𝐶 from 𝐸

5 orientate it to obtain a directed circuit 𝐶 ′

6 𝐸 ← 𝐸 \𝐶
7 𝐴← 𝐴 ∪𝐶 ′
8 return 𝐴

At the end of the loop, since 𝐸 is empty, we derive from the loop

invariants that 𝐴 is V -respecting, 𝑘-reviewable, and 𝑧-credible. □

Lemma 4.2. For any 𝑘 , if an instance of PGS(𝑘 , 2, 0, symmetric)
admits a solution then its potential review graph has a 2𝑘-factor.

Proof. Assume that 𝐺 admits a solution for PGS(𝑘 , 2, 0, sym-

metric), described as a directed subgraph 𝐺 ′ = (𝑃,𝐴). In𝐺 ′, since
each producer provides and receives 𝑘 reviews, the degree of each

node is 2𝑘 . Hence, by removing the orientation of the arrows in 𝐴,

graph 𝐺 ′ is a 2𝑘-factor for 𝐺 . □

Lemma 4.3. For any 𝑧, if an instance of PGS(1, 𝑧, 0, symmetric)
admits a solution then its potential review graph has a 2-factor that
does not include cycles of length smaller than 𝑧.

Proof. Assume that 𝐺 admits a solution for PGS(1, 𝑧, 0, sym-

metric), described as a directed subgraph 𝐺 ′ = (𝑃,𝐴). It implies

that 𝐴 is a partition of 𝑃 into disjoint oriented cycles that does not

contain any cycle of length smaller than 𝑧. Hence, by removing the

orientation of arrows in 𝐴, graph 𝐺 ′ is a 2𝑘-factor for 𝐺 that does

not contain any cycle of length smaller than 𝑧. □

Given an instance of PGS(𝑘 , 𝑧, 0, symmetric), Lemma 4.1 states

that a 2𝑘-factor in its potential review graph provides a solution for

this instance. Conversely, Lemma 4.2 and 4.3 show that, when 𝑘 = 1

or 𝑧 = 2, a solution for a PGS(𝑘 , 𝑧, 0, symmetric) instance implies a

2𝑘-factor without cycle of size lower than 𝑧 in its potential review

graph. Therefore, when either𝑘 = 1 or 𝑧 = 2, PGS(𝑘 , 𝑧, 0, symmetric)
is equivalent to finding a 2𝑘-factor in the potential review graph.

However, Proposition 4.4 shows that this relation does not extend

to arbitrary 𝑘 and 𝑧.

Proposition 4.4. For any 𝑘 ≥ 2 and 𝑧 ≥ 3, there exists a PGS(𝑘 ,
𝑧, 0, symmetric) instance that admits a 𝑘-reviewable, 𝑧-credible, and
V -respecting assignment while any 2𝑘-factors of the potential review
graph includes cycles of length 𝑐 for every 3 ≤ 𝑐 ≤ 𝑧.

Proof. Given 𝑘 ≥ 2 and 𝑧 ≥ 3, we define the potential review

graph 𝐺 = (𝑃, 𝐸), with 𝑃 = {𝑝 𝑗
𝑖
| 0 ≤ 𝑖 ≤ 𝑧, 0 ≤ 𝑗 < 𝑘} and

𝐸 ={{𝑝 𝑗
𝑖
, 𝑝𝑙𝑖 } | 0 ≤ 𝑖 ≤ 𝑧, 0 ≤ 𝑗 < 𝑘 − 1, 𝑗 < 𝑙 ≤ 𝑘}

∪ {{𝑝 𝑗
𝑖
, 𝑝𝑙𝑖+1} | 0 ≤ 𝑖 < 𝑧, 0 ≤ 𝑗 < 𝑘, 0 ≤ 𝑙 ≤ 𝑗}

∪ {{𝑝 𝑗𝑧 , 𝑝𝑙0} | 0 ≤ 𝑗 < 𝑘, 0 ≤ 𝑙 ≤ 𝑗}.
First note that𝐺 is 2𝑘-regular, and thus𝐺 admits a unique 2𝑘-factor

which is 𝐺 itself. Moreover, given 𝑐 such that 3 ≤ 𝑐 ≤ 𝑧, the set

of edges {{𝑝0
𝑖
, 𝑝0

𝑖+1} | 0 ≤ 𝑖 ≤ ⌈𝑐
2
⌉ − 1} ∪ {{𝑝1

𝑖
, 𝑝1

𝑖+1} | 0 ≤ 𝑖 ≤
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𝑝1
3

𝑝0
3

𝑝1
2

𝑝0
2

𝑝1
1

𝑝0
1

𝑝1
0

𝑝0
0

(a) Potential review graph𝐺

𝑝1
3

𝑝0
3

𝑝1
2

𝑝0
2

𝑝1
1

𝑝0
1

𝑝1
0

𝑝0
0

(b) Assignment graph𝐺′

Figure 1: Counterexample showing that PGS assignments
that are 𝑘-reviewable and 𝑧-credible do not always entail 2𝑘-
factors without cycles of length 𝑧. Prop. 4.4 gives a generic
counterexample construction and we display here the 𝑘 = 2,
𝑧 = 3 case. On the one hand, any 4-factor of the potential
review graph in Figure 1a has cycles of length 3. On the
other hand, the PGS instance admits an assignment that is
3-credible, depicted in Figure 1b.

⌊ 𝑐
2
⌋ − 1} ∪ {{𝑝0

0
, 𝑝1

0
}, {𝑝0⌈ 𝑐

2
⌉−1, 𝑝

1

⌊ 𝑐
2
⌋−1}} forms a cycle of size 𝑐 in

𝐺 . Now, consider the assignment graph 𝐺 ′ = (𝑃,𝐴) where

𝐴 ={(𝑝 𝑗
𝑖
, 𝑝𝑙𝑖 ) | 0 ≤ 𝑖 ≤ 𝑧, 0 ≤ 𝑗 < 𝑘 − 1, 𝑗 < 𝑙 ≤ 𝑘}

∪ {(𝑝 𝑗
𝑖
, 𝑝𝑙𝑖+1) | 0 ≤ 𝑖 < 𝑧, 0 ≤ 𝑗 < 𝑘, 0 ≤ 𝑙 ≤ 𝑗}

∪ {(𝑝 𝑗𝑧 , 𝑝𝑙0) | 0 ≤ 𝑗 < 𝑘, 0 ≤ 𝑙 ≤ 𝑗}.

By definition of𝐴, each producer provides 𝑘 reviews and, since𝐺 is

a 2𝑘-factor, each producer also receives 𝑘 . Hence 𝐴 is 𝑘-reviewable.

Furthermore, assignment 𝐴 contains only arrows (𝑝 𝑗
𝑖
, 𝑝

𝑗 ′

𝑖′ ) such
that 𝑖 < 𝑖 ′ (except for 𝑖 = 𝑧) or such that 𝑖 = 𝑖 ′ and 𝑗 > 𝑗 ′. Hence,
the smallest cycles in 𝐴 are of the form {(𝑝 𝑗

𝑖
, 𝑝

𝑗

𝑖+1) | 0 ≤ 𝑖 <

𝑧} ∪ {(𝑝 𝑗𝑧 , 𝑝
𝑗

0
)}, for 𝑗 = 0, . . . 𝑘 , which are all of size 𝑧 + 1. Hence, 𝐴

is 𝑧-credible. Finally, 𝐴 is trivially V -respecting. □

The proof of Proposition 4.4 involves the construction of a PGS

instance generic over the parameters 𝑘 and 𝑧. This construction

is illustrated by Figure 1a and 1b which respectively depicts the

potential review graph and the corresponding assignment, when

the values are 𝑘 = 2 and 𝑧 = 3.

4.2 Complexity Results
We start our complexity analysis by obtaining a computational

upper-bound on any parameterization of PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , veto).

Proposition 4.5. For any fixed 𝑘 , 𝑘 ′, 𝑧, 𝜖 , and veto, PGS(𝑘 , 𝑘 ′, 𝑧,
𝜖 , veto) is in NP.

Proof. Given a solution for PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , veto), checking whe-
ther it is V -respecting, (𝑘, 𝑘 ′)-reviewable, and E-compatible is triv-

ial. Furthermore, since finding the cycles of a graph is polynomial,

𝑧-credibility can also be checked in polynomial time. □

Now we identify parameterizations of PGS(𝑘 , 𝑧, 𝜖 , veto) and
PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , veto) that lead to tractable problems. We start by

showing how PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , veto) reduces to PGS(𝑘 , 𝑧, 𝜖 , veto) when
no skill is required, i.e., 𝜖 = 0.

Lemma 4.6. Deciding PGS(𝑘 , 𝑘 ′, 𝑧, 0, veto) reduces to deciding
PGS(𝑘 , 𝑧, 0 , veto) in polynomial time.

Proof. Notice that a producer 𝑝 can receive 𝑘 ′ reviews from
consumers if and only if 𝑝 does not veto more than |𝐶 | − 𝑘 ′ con-
sumers. Hence, computing an assignment of the consumers such

that each producer receives 𝑘 ′ reviews is polynomial. Since 𝜖 = 0,

combining this partial assignment with an assignment for PGS(𝑘 ,

𝑧, 0, veto) forms a solution for PGS(𝑘 , 𝑘 ′, 2, 0, symmetric). □

The two first tractability results that we present rely on the

equivalence between peer review selection in PGS and 𝑟 -factors.

Theorem 4.7. For any 𝑘 , PGS(𝑘 , 2, 0, symmetric) is in P.

Proof. Given a PGS instance 𝑃, V and a producer review target

𝑘 , we can compute in polynomial time whether its potential review

graph admits a 2𝑘-factor [27]. We can then invoke Lemmas 4.1

and 4.2 to conclude. □

Theorem 4.8. PGS(1, 3, 0, symmetric) is in P.

Proof. Given a PGS instance 𝑃 and V , we can compute in poly-

nomial time whether its potential review graph admits a 2-factor

that does not contain cycles of size smaller than 3 [15]. We can then

invoke Lemmas 4.1 and 4.3 to conclude. □

Both results extend to the case where consumers do participate

in the review process, as the following theorem shows.

Theorem 4.9. For any 𝑘 and 𝑘 ′, PGS(𝑘 , 𝑘 ′, 2, 0, symmetric) and
PGS(1, 𝑘 ′, 3,0, symmetric) are in P.

Proof. Given a PGS instance 𝑆 = (𝑃,𝐶), V , and review targets 𝑘

and 𝑘 ′, we first reduce PGS(𝑘 , 𝑘 ′, 2, 0, symmetric) and PGS(1, 𝑘 ′, 3,
0, symmetric) to PGS(𝑘 ,2, 0, symmetric) and PGS(1, 3, 0, symmetric),
respectively, in polynomial time by Lemma 4.6. Then, computing

an assignment for PGS(𝑘 , 2, 0, symmetric) or PGS(1, 3, 0, symmetric)
is polynomial by Theorems 4.7 and 4.8. □

Theorems 4.7, 4.8, and 4.9 also give rise to a polynomial time

algorithms when considering a weighted model of PGS with an

utilitarian score (see future works in Section 6). Indeed, Meijer

et al. [27]’s algorithm produces a 𝑟 -factor by computing a perfect

matching in a modified graph. This construction can be adapted to

find a maximum weight perfect matching, which is known to be

polynomial.

Next result identifies a tractable case for PGS(𝑘 , 𝑧, 𝑠 , symmetric)
when some skills are required at each reviewing visit, which doesn’t

easily extend to the presence of consummers.

Proposition 4.10. For any fixed 𝑠 , PGS(1, 2, 𝑠 , symmetric) is in P.

Proof. When 𝑘 = 1, each producer has to possess all the skills,

otherwise he cannot provide a review. Hence, if any producermisses

a skill, i.e., if there exists 𝑖 ∈ 𝑆 such that 𝑆𝑖 ⊊ 𝑉 , then we have a

NO-instance. Otherwise, PGS(1, 2, 𝑠 , symmetric) is equivalent to
PGS(1, 2, 0, symmetric) which is in P by Theorem 4.7. □
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Now, we show that parameterizations of PGS(𝑘 , 𝑧, 𝜖 , veto) lead to
computationally hard problems in general. We start with the cases

where no skill is required.

Theorem 4.11. For any 𝑧 ≥ 5, PGS(1, 𝑧, 0, symmetric) is NP-
complete.

Proof. By Lemmas 4.1 and 4.3, PGS(1, 𝑧, 0, symmetric) is equiv-
alent to finding a 2-factor that contains no cycle of length smaller

than 𝑧, which is a NP-complete problem when 𝑧 ≥ 5 [15]. □

Notice that the complexity of PGS(𝑘 , 4, 0, symmetric) appears
difficult to decide since the complexity of finding a 2-factor which

does not contain cycles of length smaller than 4 is still under inves-

tigation by the graph-theory community.

Theorem 4.12. PGS(1, 2, 0, general) is NP-complete.

Proof. A solution of an instance of PGS(1, 2, 0, general) parti-
tions the vertices of the potential review graph into cycles. Hence,

PGS(1, 2, 0, general) is equivalent to finding a partition of the ver-

tices into hamiltonian subgraphs, which isNP-completewhen cycles

have to be of size greater than 3 [9]. □

By Lemma 4.6, both results extend to the presence of consumers

in the review process.

Theorem 4.13. For any 𝑘 ′ and 𝑧 ≥ 5, PGS(2, 𝑘 ′, 𝑧, 0, symmetric)
and PGS(1, 𝑘 ′, 2, 0, general) are NP-complete.

Our main results, Theorem 4.14 and 4.15, show that the most

realistic PGS settings lead to computationally hard problems.

Theorem 4.14. For any fixed number of reviews 𝑘 ≥ 2, any fixed
credibility 𝑧 ≥ 2, and any fixed number of skills 𝜖 ≥ 1, PGS(𝑘 , 𝑧, 𝜖 ,
symmetric) is NP-complete.

Proof. We give a reduction for the result in the case of 𝑘 = 2,

𝑧 = 2, and 𝜖 = 1. For other cases, the reduction can be adapted by

introducing dummy producers and dummy skills as needed.

We reduce PGS(1, 2, 0, general), which is NP-complete by The-

orem 4.11, to PGS(2, 2, 1, symmetric) as follows. Let (𝑉 , 𝐸) be the
potential review graph of an instance 𝐼 of PGS(1, 2, 0, general). We

create an instance 𝐼 ′ of to PGS(2, 2, 1, symmetric) with potential

review graph (𝑉 ′, 𝐸 ′) and skilled producer set 𝑆1, by using gadgets

described in Figure 2.

To simplify notations, we assume in the following that producer

indices are considered modulo 5, i.e., 𝑥𝑖+5 is the same producer 𝑥𝑖 .

𝑉 ′ = 𝑉 ∪ {𝑥𝑖 | 𝑥 ∈ 𝑉 , 0 ≤ 𝑖 < 5}
∪ {𝑥𝑦

𝑖
| (𝑥,𝑦) ∈ 𝐸, 0 ≤ 𝑖 < 5}

𝑆1 ={𝑥1, 𝑥2, 𝑥3 | 𝑥 ∈ 𝑉 } ∪ {𝑥𝑦
1
, 𝑥

𝑦

2
, 𝑥

𝑦

3
, 𝑥

𝑦

4
| (𝑥,𝑦) ∈ 𝐸}

𝐸 ′ = {{𝑥, 𝑥0}, {𝑥4, 𝑥} | 𝑥 ∈ 𝑉 }
∪ {{𝑥𝑖 , 𝑥𝑖+1} | 𝑥 ∈ 𝑉 , 0 ≤ 𝑖 < 4}
∪ {{𝑥𝑖 , 𝑥𝑖+2} | 𝑥 ∈ 𝑉 , 0 ≤ 𝑖 < 5}
∪ {{𝑥, 𝑥𝑦

0
}, {𝑥𝑦

4
, 𝑦} | (𝑥,𝑦) ∈ 𝐸}

∪ {{𝑥𝑦
𝑖
, 𝑥

𝑦

𝑖+1}, {𝑥
𝑦

𝑖
, 𝑥

𝑦

𝑖+2} | (𝑥,𝑦) ∈ 𝐸, 0 ≤ 𝑖 < 5}

𝑥

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

(a) Vertex gadget rep-
resenting 𝑥 .

𝑥 𝑦𝑥
𝑦

0

𝑥
𝑦

1

𝑥
𝑦

2

𝑥
𝑦

3

𝑥
𝑦

4

(b) Edge gadget representing the directed edge
(𝑥, 𝑦) .

Figure 2: Gadgets. A circle around a producer signifies that
they are skilled.

Intuitively, for each vertex 𝑥 ∈ 𝑉 , we create a vertex gadget (see

Fig.2 (a)) which ensures that 𝑥 provides and receives one review

to/from (𝑥𝑖 )0≤𝑖<5. In addition, for each directed edge (𝑥,𝑦) in 𝐸, we
create an edge gadget (see Fig.2 (b)) which ensures that (𝑥𝑦

𝑖
)0≤𝑖<5

can only provide a skilled review to vertex 𝑦.

Let us first prove that if instance 𝐼 admits a solution, then the

constructed instance 𝐼 ′ also admits a solution. Let 𝐴 ⊆ 𝐸 be the

solution assignment for 𝐼 . Then we construct an assignment for 𝐼 ′,
by selecting all edges in the vertex gadgets and most edges in the

edge gadgets, and orienting them as follows.

𝐴′ = {(𝑥, 𝑥0), (𝑥4, 𝑥) | 𝑥 ∈ 𝑉 }
∪ {(𝑥𝑖 , 𝑥𝑖+1) | 𝑥 ∈ 𝑉 , 0 ≤ 𝑖 < 4}
∪ {(𝑥𝑖 , 𝑥𝑖+3) | 𝑥 ∈ 𝑉 , 0 ≤ 𝑖 < 5}
∪ {(𝑥𝑦

𝑖
, 𝑥

𝑦

𝑖+1) | (𝑥,𝑦) ∈ 𝐸, 0 ≤ 𝑖 < 4}
∪ {(𝑥𝑦

𝑖
, 𝑥

𝑦

𝑖+3) | (𝑥,𝑦) ∈ 𝐸, 0 ≤ 𝑖 < 5}
∪ {(𝑥, 𝑥𝑦

0
), (𝑥𝑦

4
, 𝑦) | (𝑥,𝑦) ∈ 𝐴}

∪ {(𝑥𝑦
4
, 𝑥

𝑦

0
) | (𝑥,𝑦) ∈ 𝐸 \𝐴}

One can directly check that 𝐴′ is indeed a solution since every

vertex is assigned two reviewers at least one of whom is skilled.

Let us now prove that if the constructed instance 𝐼 ′ has a solu-
tion, then instance 𝐼 also has a solution. Let 𝐴′ ⊆ 𝐸 be the solution

assignment for 𝐼 ′. Then we construct the assignment for 𝐼 by se-

lecting edges based on which skilled reviewer reviews the original

vertices in 𝑉 ′.

𝐴 = {(𝑥,𝑦) | 𝑥,𝑦 ∈ 𝑉 , (𝑥𝑦
4
, 𝑦) ∈ 𝐴′}

To prove that 𝐴 is a satisfying assignment, let us first show that

each producer 𝑦 ∈ 𝑉 receives at least one review. Producer 𝑦 is also

a producer in 𝐼 ′ and thus receives at least one skilled review in 𝐴′.
Since the only skilled producers adjacent to 𝑦 in 𝐴′ are of the form
𝑥
𝑦

4
for some 𝑥 ∈ 𝑉 , there exists an 𝑥 such that (𝑥𝑦

4
, 𝑦) ∈ 𝐴′. Thus

there is 𝑥 such that (𝑥,𝑦) ∈ 𝐴 and so 𝑦 receives at least one review

in 𝐴.

We now prove that no producer 𝑥 ∈ 𝑉 participate in more than

one review in𝐴. Consider the producers 𝑥0, . . . , 𝑥4. There exist only

9 edges linking them in 𝐸 ′, which is not enough for all of them to

receive two reviews. Therefore, at least one review among (𝑥, 𝑥0)
and (𝑥, 𝑥4) belongs to 𝐴′. As a result, for any 𝑥 ∈ 𝑉 , there cannot
be more than one 𝑦 ∈ 𝑉 such that (𝑥, 𝑥𝑦

4
) ∈ 𝐴′. □
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Theorem 4.15. For any fixed 𝑘 ≥ 1 and 𝑧 ≥ 0, PGS(INPUT, 𝑧,
INPUT, empty) is NP-complete.

Proof. We give an explicit reduction for the case PGS(INPUT,

0, INPUT, empty). The reduction easily adapts to other values of 𝑧.

We reduce from Set Cover, a classic NP-complete problem de-

fined in Section 2.2.

Let 𝑋,𝐶, 𝑡 be a Set Cover instance. Without loss of generality,

we may assume that the subsets in the collection are numbered:

𝐶 = {𝑐0, . . . , 𝑐𝑚−1}. We construct a PGS instance as follows. The

set of producers is

𝑃 ={𝑣𝑖 , 𝑓𝑖 | 0 ≤ 𝑖 < 𝑚}

∪ {𝑒 𝑗
𝑖
| 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑡 − 2} ∪ {𝑒}

where 𝑣𝑖 are called the subset producers, 𝑓𝑖 are the full producers, and
𝑒
𝑗
𝑖
and 𝑒 are the empty producers. We create one skill per element

of 𝑋 and define the skill sets such that all full producers have all

skills, no empty producer has any skill, and a subset producer has

the skills corresponding to its subset. That is, for 𝑥 ∈ 𝑋 , we have
𝑆𝑥 = {𝑣𝑖 | 𝑥 ∈ 𝑐𝑖 } ∪ {𝑓𝑖 | 0 ≤ 𝑖 < 𝑚}.

We will prove that (𝑃, (𝑆𝑥 )𝑥 ∈𝑋 ) admits a (𝑡, 0)-reviewable and
E-compatible assignment if and only if 𝑋,𝐶 admits of cover of size

𝑡 .

To simplify notations, we will assume that the producer indices

are cyclical so that 𝑓𝑚+𝑖 is the same producer as 𝑓𝑖 , and 𝑒
𝑡−2+𝑗
𝑚+𝑖 is

the same as 𝑒
𝑗
𝑖
. Let 𝐷 ⊆ 𝐶 be a subcollection of subsets, we can

create an assignment as follows

𝐴𝐷 = {(𝑓𝑖 , 𝑓𝑖+1) | 0 ≤ 𝑖 < 𝑚}
∪ {(𝑓𝑖 , 𝑣𝑖 ), (𝑣𝑖 , 𝑓𝑖+1) | 0 ≤ 𝑖 < 𝑚, }

∪ {(𝑓𝑖 , 𝑒 𝑗𝑖 ), (𝑒
𝑗
𝑖
, 𝑓𝑖+1) | 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑡 − 2}

∪ {(𝑣𝑖 , 𝑒 𝑗𝑖 ), (𝑒
𝑗
𝑖
, 𝑣𝑖+1) | 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗 < 𝑡 − 2}

∪ {(𝑒 𝑗
𝑖
, 𝑒

𝑗+𝑘
𝑖+1 ) | 0 ≤ 𝑖 < 𝑚, 0 ≤ 𝑗, 𝑘 < 𝑡 − 2}

∪ {(𝑣𝑖 , 𝑒), (𝑒, 𝑣𝑖+1) | 0 ≤ 𝑖 < 𝑚,𝑐𝑖 ∈ 𝐷}
∪ {(𝑣𝑖 , 𝑣𝑖+1) | 0 ≤ 𝑖 < 𝑚,𝑐𝑖 ∉ 𝐷}

It is straightforward to observe that if 𝐷 has size 𝑡 and covers 𝑋

then 𝐴𝐷 is a (𝑡, 0)-reviewable and E-compatible assignment. Thus,

if the Set Cover instance admits a solution, then so does the PGS

instance.

For the other direction, observe first that there are 𝑡𝑚 + 1 pro-
ducers and𝑚 full producers. In any (𝑡, 0)-reviewable assignment

𝐴, each full producer reviews 𝑡 other people, so at the very least

one producer 𝑝 is not reviewed by a full producer. Choose one such

producer 𝑝 arbitrarily and define 𝐷𝐴 = {𝑐𝑖 | (𝑣𝑖 , 𝑝) ∈ 𝐴} to be the

subsets corresponding to the subset producers reviewing 𝑝 in 𝐴.

Since 𝐴 is (𝑡, 0)-reviewable, we have |𝐷𝐴 | ≤ 𝑡 , we can easily add

other subsets to 𝐷𝐴 until it has size 𝑡 . It is then easy to see that if 𝐴

is E-compatible, then 𝐷𝐴 is cover of 𝐶 . Thus, if the PGS instance

admits a solution, then so does the Set Cover instance. □

Notice that Theorem 4.14 and Theorem 4.15 can be extended to

the presence of consumers by adding dummy consumers. Further-

more, with a similar reduction as the one for Theorem 4.15, we can

show that PGS(𝑘 , INPUT, 𝑧, INPUT, empty) is also NP-complete.

Theorem 4.16. For any fixed 𝑘 ≥ 2 and 𝑘 ′ ≥ 0, any fixed 𝑧 ≥ 2,
and any fixed 𝜖 ≥ 1, PGS(𝑘 , 𝑘 ′, 𝑧, 𝜖 , symmetric) is NP-complete. For
any fixed 𝑘 ≥ 1 and 𝑘 ′ ≥ 0, and 𝑧 ≥ 0, PGS(INPUT, 𝑘 ′, 𝑧, INPUT,
empty) and PGS(𝑘 , INPUT, 𝑧, INPUT, empty) are NP-complete.

5 ANSWER SET PROGRAMMING
MODELISATION

While some parameterizations of the PGS decision problem are

tractable, they require restrictions that are not desirable for end-

users. However, the membership in the class NP (Proposition 4.5)

means that we can encode the problem in existing solving for-

malisms (such as SAT, Integer Programming, or Answer Set Pro-

gramming) and invoke high-performance off-the-shelf software to

solve our PGS instances.

We chose to develop an Answer Set Programming approach

to solve PGS scenarios which will be made available to the PGS

community.
3
In our approach, and in accordance with practice in

ASP, we separate the encoding of the problem from the encoding of

the instances. Specifically, we have a 3-layered approached: in the

first layer, a single file (spg.constraints.lp) contains the logic
and constraints relevant to PGS in a generic way; in the second layer,

a file contains the parameterization corresponding to the rules of a

specific PGS organization or country (e.g., spg.config.india.lp);
the last layer contains the data corresponding to an instance we

want to solve, i.e., the name of the stakeholders and which skills

they possess as well as the vetoes between them, if any (for instance

the file spg.data.india.2019.lp).
In Section 5.1, we describe three distinct parameterizations of

our PGS model that correspond to real-world PGS organizations.

The specific data we used in our experimentation is presented in

Section 5.2.

We experimented with six scenarios altogether, and all our sim-

ulations can be solved within 1 second on a standard laptop ma-

chine with the Clingo Answer Set Programming solver [10]. This

demonstrates that although PGS is intractable in theory, real-world

instances are small enough to be addressed automatically.

5.1 Modeling real-world PGS organizations
The initial motivation for this model comes from real-life PGS

stakeholders in three countries: Morocco, France and India. The

model, which is built to easily adapt to the diversity of PGS, was

tested on several instances of these three cases. In all cases, only a

minimal credibility rule is applied: 𝑧 = 2. We describe these cases

in this section. See Table 3 for a summary of parameterizations.

Reviewers’ assignments differ from one year to the following,

both to promote knowledge exchange and to increase the credibility

of the system (by decreasing the risk of collusion). Nevertheless,

some groups prefer to keep an identical reviewer from one year

to the following (e.g. a producer or a consumer in Morocco, or the

3
The ASP encoding and the data files can be found at https://bitbucket.org/Abdallah/

participatory-guarantee-systems/. Our experiments can be reproduced using the ASP

solver Clingo [10].
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Table 3: Instantiation of three organizations’ PGS in our
mathematical model.

Organization Model

Name Country 𝑘 𝑘 ′ 𝑧 𝜖 veto

SPG Agroécologie Morocco 2 1 2 2 general

Nature & Progrès France 1 1 2 1 general

PGS India Organic India 3–5 0 2 1 empty

consumer in France) to maintain knowledge on the history and

evolution of the farm.

SPG Agroécologie (Morocco) was created in 2017 and has ex-

perienced two years of certification process, in 2018 and 2019.
4

The rounds of reviews imply that each producer is evaluated by

2 producers and one consumer and has to evaluate 2 producers:

𝑘 = 2 and 𝑘 ′ = 1. The PGS takes into account two skills: E =

{review, agroecology}. Valid reviews require that each skill should

be possessed by at least one reviewer. All producers undertake to

participate to at least two farm reviews.

Nature & Progrès (France) was created in 1964 and keeps evolv-

ing and expanding.
5
It is organized as a network of 23 relatively

independent groups. Local groups account from 20 to 60 members

producer members plus consumers. All groups organize reviewing

in the same fashion. Each production site is reviewed by one pro-

ducer and one consumer: 𝑘 = 1 and 𝑘 ′ = 1. All producers undertake

to participate to at least one farm review. For now, a single skill

is taken into account: E = {review}. Each producer needs to be

reviewed by at least one person that is skilled in reviewing.

PGS India Organic is a governmental system, which was created

in 2011.
6
In 2019, the PGS comprised 18 179 local groups organized

into 326 regional councils. Local groups include from a minimum

of five to several dozen members. Each farm is reviewed by three

to five peer reviewers (according to the group). In the case of small

groups, members from other PGS groups are invited to perform

reviews. Each producer participates to at least one farm review.

Reciprocal review between two producers of the same group is not

allowed. A single skill is taken into account: at least one reviewer

must be literate to be able to fill the evaluation report: E = {literate}.

5.2 Typical data Experimental evaluation of an
ASP encoding

In 2018, SPG Agroécologie had 16 producers and 10 consumers, of

which 11 (7 producers and 4 consumers) were skilled in reviewing

and 12 producers skilled in agroecology. One member was in an

unusual position that generated an important number of vetoes.

In 2019, including newcomers, the PGS had 27 producers and 19 con-

sumers. In total, taking into account new skills acquired by initial

members, 16 were experienced in reviewing and 16 in agroecology.

To solve this case, we added the 2018 review assignment as vetoes.

All interpersonal vetoes from the previous year were lifted, except

4
http://reseauriam.org/upload/documents/rispgmarocvdef5juin.pdf

5
https://www.natureetprogres.org/

6
https://www.pgsindia-ncof.gov.in/

one concerning two brothers. Finally, we simulated a review round

for 2020 adding the assignment of 2019.

In 2019, in the specific Nature & Progrès group (from Hérault

region, South of France) we tested the model with 20 producers (of

which 15 skilled in review) and 8 consumers (all skilled in review).

For PGS India Organic, we tested the model by simulating a

group from South Andaman Islands of 20 members, 12 of whom

are literate. We ran 3 rounds to simulate 2019, 2020, and 2021.

6 CONCLUSION AND FUTUREWORKS
This paper focused on peer review selection in PGS. It emerged

from real-life PGS stakeholders’ demand and was modeled accord-

ing to authors’ knowledge of such systems. We proposed a formal

model encompassing the diversity of PGS local situations. While

we showed that peer review selection in PGS may lead to com-

putationally hard problems, we identified tractable cases. Finally,

our encoding in ASP shows that modern solvers can handle this

problem in practice.

The proposed model and its ASP implementation are now being

tested with stakeholders in real PGS settings - first in February 2020

in Morocco - to ensure they are adapted to practical use. During

these tests, new development needs will certainly emerge. We can

already forsee future works that comprise extensions of our formal

model and results on parameterized complexity.

Dynamic model Regular monitoring reviews, generally on a

yearly basis, introduce a dynamic component to PGS. The

stakeholders population can change, typically new producers

may join an emerging PGS, or a PGS could split when it

becomes too large to be managed locally. A dynamic model

would allow us to model constraints over multiple years,

e.g., ensuring that producers are not reviewed by the same

producers each year.

Weighted model PGS are considered cheaper and less time

consuming than traditional third-party certification systems.

Our model can be extended by adding weights between pro-

ducers which would correspond to the cost of making one

producer review the other. An interesting solution would

then minimize some functions of the costs that it induces.

Few vetos Producers usually express few vetos towards other

producers. A study on parameterized complexity with re-

spect to the number of vetos would help us identify cases

that are tractable in practice.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

121

http://reseauriam.org/upload/documents/rispgmarocvdef5juin.pdf
https://www.natureetprogres.org/
https://www.pgsindia-ncof.gov.in/


REFERENCES
[1] Fernando Alarcón, Guillermo Durán, and Mario Guajardo. 2014. Referee assign-

ment in the Chilean football league using integer programming and patterns.

International Transactions in Operational Research 21, 3 (2014), 415–438.

[2] Laurel Bellante. 2017. Building the local food movement in Chiapas, Mexico:

rationales, benefits, and limitations. Agriculture and human values 34, 1 (2017),
119–134.

[3] Herve Bouagnimbeck, Roberto Ugas, and Jannet Villanueva. 2014. Preliminary

results of the global comparative study on interactions between PGS and social

processes. Building Organic Bridges 2 (2014), 435–438.
[4] Ioannis Caragiannis, George A Krimpas, and Alexandros A Voudouris. 2015.

Aggregating partial rankings with applications to peer grading in massive online

open courses. In AAMAS. 675–683.
[5] Laurent Charlin, Richard Zemel, and Craig Boutilier. 2011. A framework for

optimizing paper matching. In UAI. 86–95.
[6] Don Conry, Yehuda Koren, and Naren Ramakrishnan. 2009. Recommender

systems for the conference paper assignment problem. In RecSys. 357–360.
[7] Nancy Falchikov. 2013. Improving assessment through student involvement: Practi-

cal solutions for aiding learning in higher and further education. Routledge.
[8] Maria Fernanda Fonseca. 2004. Alternative certification and a network conformity

assessment approach. The Organic Standard 38, 37 (2004), 1–7.

[9] Michael R Garey and David S Johnson. 2002. Computers and intractability. Vol. 29.
wh freeman New York.

[10] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. 2012.

Answer set solving in practice. Synthesis lectures on artificial intelligence and
machine learning 6, 3 (2012), 1–238.

[11] Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. 2007.

clasp: A Conflict-Driven Answer Set Solver. In Logic Programming and Nonmono-
tonic Reasoning, Chitta Baral, Gerhard Brewka, and John Schlipf (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 260–265.

[12] Martin Gebser and Torsten Schaub. 2016. Modeling and language extensions. AI
Magazine 37, 3 (2016), 33–44.

[13] Martin Gebser, Torsten Schaub, and Sven Thiele. 2007. GrinGo: A New Grounder

for Answer Set Programming. In Logic Programming and Nonmonotonic Reasoning,
Chitta Baral, Gerhard Brewka, and John Schlipf (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 266–271.

[14] Judy Goldsmith and Robert H Sloan. 2007. The AI conference paper assignment

problem. In AAAI Workshop on Preference Handling for Artificial Intelligence.
53–57.

[15] Pavol Hell, David Kirkpatrick, Jan Kratochvíl, and Igor Kříž. 1988. On restricted

two-factors. SIAM Journal on Discrete Mathematics 1, 4 (1988), 472–484.
[16] Sonja Kaufmann and Christian R Vogl. 2018. Participatory Guarantee Systems

(PGS) in Mexico: a theoretic ideal or everyday practice? Agriculture and human
values 35, 2 (2018), 457–472.

[17] Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn Papadopoulos,

Justin Cheng, Daphne Koller, and Scott R Klemmer. 2013. Peer and self assessment

in massive online classes. ACM Transactions on Computer-Human Interaction
(TOCHI) 20, 6 (2013), 33.

[18] David Kurokawa, Omer Lev, Jamie Morgenstern, and Ariel D. Procaccia. 2015.

Impartial peer review. In IJCAI. 582–588.
[19] Igor Labutov and Christoph Studer. 2017. JAG: a crowdsourcing framework for

joint assessment and peer grading. In AAAI. 1010–1016.
[20] Amina Lamghari and Jacques A Ferland. 2010. Metaheuristic methods based on

Tabu search for assigning judges to competitions. Annals of Operations Research
180, 1 (2010), 33–61.

[21] Sylvaine Lemeilleur and Gilles Allaire. 2018. Système participatif de garantie

dans les labels du mouvement de l’agriculture biologique. Une réappropriation

des communs intellectuels. Économie rurale 365, 3 (2018), 7–27. https://doi.org/
10.4000/economierurale.5813

[22] Sylvaine Lemeilleur and Gilles Allaire. 2019. Participatory Guarantee Systems for
organic farming: reclaiming the commons. Technical Report 201902. UMR MOISA.

https://ideas.repec.org/p/umr/wpaper/201902.html

[23] Xinlian Li and Toyohide Watanabe. 2013. Automatic paper-to-reviewer assign-

ment, based on the matching degree of the reviewers. Procedia Computer Science
22 (2013), 633–642.

[24] Rodrigo Linfati. 2012. Referee Assignment Problem Case: Italian Volleyball Cham-
pionships. Ph.D. Dissertation. Università di Bologna.

[25] Rodrigo Linfati, Gustavo Gatica, and J Escobar. 2019. A flexible mathematical

model for the planning and designing of a sporting fixture by considering the as-

signment of referees. International Journal of Industrial Engineering Computations
10, 2 (2019), 281–294.

[26] Ngar-Fun Liu and David Carless. 2006. Peer feedback: the learning element of

peer assessment. Teaching in Higher education 11, 3 (2006), 279–290.

[27] Henk Meijer, Yurai Núñez-Rodríguez, and David Rappaport. 2009. An algorithm

for computing simple k-factors. Inform. Process. Lett. 109, 12 (2009), 620–625.
[28] Erin Nelson, Laura Gómez Tovar, Elodie Gueguen, Sally Humphries, Karen Land-

man, and Rita Schwentesius Rindermann. 2016. Participatory guarantee systems

and the re-imagining of Mexico’s organic sector. Agriculture and Human Values
33, 2 (2016), 373–388.

[29] Erin Nelson, Laura Gómez Tovar, Rita Schwentesius Rindermann, and Manuel

Ángel Gómez Cruz. 2010. Participatory organic certification in Mexico: an

alternative approach to maintaining the integrity of the organic label. Agriculture
and Human Values 27, 2 (2010), 227–237.

[30] Michael D Plummer. 2007. Graph factors and factorization: 1985–2003: a survey.

Discrete Mathematics 307, 7-8 (2007), 791–821.
[31] Simon Price and Peter A Flach. 2017. Computational support for academic peer

review: a perspective from artificial intelligence. Commun. ACM 60, 3 (2017),

70–79.

[32] Giovanna Sacchi, Vincenzina Caputo, and Rodolfo Nayga. 2015. Alternative

labeling programs and purchasing behavior toward organic foods: The case of

the participatory guarantee systems in Brazil. Sustainability 7, 6 (2015), 7397–

7416.

[33] Ivan Stelmakh, Nihar B Shah, and Aarti Singh. 2018. PeerReview4All: Fair and

Accurate Reviewer Assignment in Peer Review. preprint arXiv:1806.06237 (2018).

arXiv:1806.06237

[34] Keith J Topping. 2009. Peer assessment. Theory into practice 48, 1 (2009), 20–27.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

122

https://doi.org/10.4000/economierurale.5813
https://doi.org/10.4000/economierurale.5813
https://ideas.repec.org/p/umr/wpaper/201902.html
http://arxiv.org/abs/1806.06237

	Abstract
	1 Introduction
	1.1 Related Works
	1.2 Contributions and outline

	2 Mathematical Prerequisites
	2.1 Some Notions on Graphs
	2.2 Primer on Complexity
	2.3 Primer on Answer Set Programming

	3 Formal Model
	3.1 Peer Review Selection Model for PGS
	3.2 Possible Extensions
	3.3 Decision Problems

	4 Algorithmic Analysis
	4.1 Correspondence between PGS peer review selection and r-factors
	4.2 Complexity Results

	5 Answer Set Programming Modelisation
	5.1 Modeling real-world PGS organizations
	5.2 Typical data Experimental evaluation of an ASP encoding

	6 Conclusion and Future Works
	References



