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ABSTRACT
The ability to cooperate is one of the key features of many multi-

agent systems. In this paper, we extend the well-known model of

graph-restricted games due to Myerson to signed graphs, where the

link between any two players may be either positive or negative.

Hence, in our model, it is possible to explicitly define not only that

some players are friends (as in Myerson’s model) but also that some

other players are enemies. As such our games can express a wider

range of situations, e.g., animosities between political parties. We

say that a coalition is feasible if every two players are connected

by a path of positive edges and no two players are connected by a

negative edge. We define the value for signed graph games using

the axiomatic approach that closely follows the celebrated char-

acterisation of the Myerson value. Furthermore, we propose an

algorithm for computing an arbitrary semivalue, including the one

proposed by us. Moreover, we consider signed graph games with a

priori defined alliances (unions) between players and propose an

algorithm for the extension of the Owen value to this setting.
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1 INTRODUCTION
The ability to cooperate is one of the key features of many multi-

agent systems [5, 32]. The conventional model of cooperative games

is defined by the set of players and the characteristic function that

assigns to each coalition (subset) of players a numerical value that

reflects the performance of this coalition. The explicit assumption

here is that all coalitions are feasible, i.e., each player is able and

willing to cooperate in any possible group of players. Since this

assumption does not hold in various realistic scenarios, a number
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of cooperative games with restrictions on the set of coalitions have

been proposed in the literature [9, 21].

The most popular such model is a graph-restricted game due

to Myerson [16]. In this formalism, cooperation between any two

agents is possible if and only if there exists a direct or indirect

(i.e., through intermediaries) link between them. This rule naturally

extends to coalitions—a coalition can cooperate if and only if all the

agents involved induce a connected subgraph. While such model

of restricted cooperation seems natural in some settings, it is too

simple to describe certain others. For instance, it is hard to expect

that, if political parties A and B want to cooperate with each other,

as well as parties B and C , then it automatically means that A and

C also want to do so. In fact, political parties are often so polarized

that any attempt to start cooperation would be very badly received

by their supporters [11, 12]. This is the case, for example, in some

European countries, where various non-liberal election winners

find it hard to create a government without having the overall

majority, as more moderate political parties refuse to cooperate. A

recent example is the Polish senate, where the ruling party PiS won

the most seats (48%) but failed to choose the speaker from PiS, as

no other party decided to support them [22]. This was consistent

with the election-campaign declarations as all the major opposition

parties declared that they would not form a coalition with PiS. A

similar situation can be observed in other countries, such as Italy,

German and Dutch local governments [4, 28].

Compatibility games, the model introduced by See et al. [23],

proposes a way to elevate this restrictive assumption of Myerson’s

model by requiring that only coalitions that induce cliques can

collaborate. Intuitively, while Myerson’s games focus on model-

ing positive relations between players, compatibility games focus

on negative relation between players. In more detail, in these lat-

ter games, the lack of edge represents a strong negative relation

between players as it means that these two players cannot work

together. This approach, however, has problems on its own, as its

not possible to specify whether a relation is neutral or positive.

In this paper, we propose signed graph games—a formalism that

encompasses graph-restricted games and compatibility games and

is more general than both of them. Specifically, in our model, a game

is restricted by a signed graph in which every edge is either positive

or negative. Positive edges represent the friendship or ability of the

adjacent players to directly cooperate, just like in graph-restricted

games. In turn, negative edges represent the animosity or lack of
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such ability, just like the lack of an edge in compatibility games. The

lack of an edge in our formalism represents the ability to cooperate

but only through (friendly) intermediaries. For this model:

• We extend to our formalism the concept of the Myerson

value [16] which is arguably the most well-known solution

concepts for graph-restricted games. Our axiomatic charac-

terization is a direct extension of to the celebrated axiomati-

zation of the standard Myerson value;

• Next, we propose an algorithm for computing the Myerson

value for signed graphs in time O(|F |(|N | + |E+ |)) where
|F | is the number of feasible coalitions, |N | is the number

of players and |E+ |—the number of positive edges. Our algo-

rithm is more general as it can compute any semivalue for

signed-graph games, where semivalues are a broad family

of values which Myerson value belongs to [6];

• Finally, we propose an algorithm for computing the Owen

value extended to signed-graph games with an aim to model

a priori alliances between players. Our algorithm is the first

one in the literature for computing the Owen value for any

graph-restricted game.

2 PRELIMINARIES
In this section, we introduce basic definitions and notation.

Coalitional games: Let N = {1, . . . ,n} be a fixed set of players.

A game is a pair (N ,v), where v : 2
N → R is the characteristic

function which assigns a real number to each subset of players, or

coalition, S . A solution concept, or a value, of the game is a function

that for every game assigns a vector of players’ payoffs. For a

solution concept φ the payoff of player i in game (N ,v) is denoted
by φi (N ,v). Arguably, the most well-known solution concept for

coalitional games is the Shapley value [24]. It is denoted by SV and

defined as follows: for every game (N ,v) and every player i ∈ N ,

SVi (N ,v) =
∑

S ⊆N \{i }

ζn (|S |) (v(S ∪ {i}) −v(S)) ,

where ζn (s) = s(n − s − 1)!/n!. The expression v(S ∪ {i}) −v(S) is
known as the marginal contribution of player i to coalition S and

denotedmci (S) when game is known from the context.

The Shapley value belongs to the class of semivalues [6]. Specifi-

cally, a solution concept φ is a semivalue if it is of the form:

φi (N ,v) =
∑

S ⊆N \{i }

β(|S |)(n−1
|S |

) (v(S ∪ {i}) −v(S)) , (1)

for some β : {0, . . . ,n − 1} → [0, 1] such that

∑n−1
k=0 β(k) = 1.

We will denote a semivalue based on weights β by φβ and write

β∗(k) as a shorthand notation for β(k)/
(n−1
k
)
. For the Shapley value,

we have β(k) = 1

n . For the Banzhaf value—another well-known

semivalue—we have β(k) =
(n−1
k
)
/2n−1.

Owen value: Owen [18] generalized the Shapley value to games

with a priori alliances (or unions). Let such a priori alliances form a

coalition structure, P = {T1, . . . ,Tk }. Each coalition in P should be

considered an inseparable group which naturally affects the value

of players. In particular, Owen proposed to assess player i by i’s
marginal contributions not to all coalitions, but to coalitions that

consist of some entire coalitions in P and a subset of players from

the coalition in P that contains i . Specifically, assume i ∈ Tj and for
M ⊆ {1, . . . ,k} let us define TM =

⋃
l ∈M Tl . Owen proposed the

following value of player i:

OV P
i (N ,v) =

∑
M ⊆{1, ...,k }\{j }

∑
R⊆Tj \{i }

ζ Pi (TM∪R)mci (TM∪R), (2)

where ζ Pi (TM ∪R) = ζk (|M |)ζ |Tj |(|R |). This solution concept is now

known as the Owen value.

Note that the Owen value is not a semivalue since not all coali-

tions of the same size are treated equally.

Graphs: A graph (undirected, unweighted) is a pair G = (N ,E),
where N is the set of nodes, and E is the set of edges, i.e., unordered

pairs of nodes. Two nodes are adjacent if there is an edge between

them. Nodes adjacent to node i are called neighbors of i; the set of
neighbors of i is denoted by N(i). For a set of nodes S ⊆ N , we

define the set of neighbors as follows: N(S) =
⋃
i ∈S N(i) \ S .

A graph is a clique if every two nodes are adjacent. A graph is

an empty graph if it has no edges (i.e., E = ∅). For any subset of

edges M ⊆ E we define M[S] = {{i, j} ∈ M : i, j ∈ S}. Now, for
any subset of nodes S ⊆ N the subgraph induced by S is denoted by

G[S] and is defined as follows: G[S] = (S,E[S]).
A path is a sequence of nodes (i1, . . . , ik ) such that every two

consecutive nodes are adjacent. A graph is connected if there exists

a path between every two nodes in the graph. If graph G is not

connected, then its nodes can be uniquely partitioned into maxi-

mal connected subsets of nodes, called (connected) components; we

denote this partition by K(G).
A signed graph is a graph (N ,E) with a label function l : E →

{+,−}. All of the above concepts naturally apply to signed graphs

by ignoring the labels. For notational convenience, we will denote

a signed graph by a triple G± = (N ,E+,E−), where N is the set of

nodes, E+ is the set of positive edges (edges labeled +) and E− is the
set of negative edges (edges labeled −) with the assumption that

E+ ∩E− = ∅. We also defineN+(i) = {j ∈ N : {i, j} ∈ E+},N−(i) =
{j ∈ N : {i, j} ∈ E−} and N±(i) = N+(i) ∪ N−(i). For S ⊆ N , we

define G±[S] = (S,E+[S],E−[S]) and N±(S) =
⋃
i ∈S N±(i) \ S .

Graph Games: A graph-restricted game [16], or shortly a graph

game, is a tuple (N ,v,E) where (N ,v) is a coalitional game and

G = (N ,E) is a communication graph. In graph games, a coalition S
is feasible if G[S] is a connected graph.

For a game (N ,v) and a graphG = (N ,E), Myerson [16] defined

game v/G as follows:

v/G(S) =
∑

C ∈K (G[S ])

v(C), (3)

and proved that the Shapley value of this game is the only solution

concept that satisfies two desirable properties: Fairness and Compo-

nent Efficiency. This solution concept is now known as the Myerson

value and denoted byMV :MV (N ,v,E) = SV (N ,v/G).
Two Myerson’s axioms are defined as follows:

Fairness φi (N ,v,E) − φi (N ,v,E \{e})=φ j (N ,v,E) − φ j (N ,v,E \
{e}) for every game (N ,v,E) and edge e = {i, j} ∈ E.

Component Efficiency
∑
i ∈C φi (N ,v,E) = v(C), for every graph

game (N ,v,E) and component C ∈ K(G).
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Figure 1: A sample signed graph. Positive edges are
green/solid and negative edges are red/dashed.

Fairness states that adding or removing an edge between two play-

ers affects values of both of them equally. Component Efficiency

states the the sum of values of all players in a connected component

is equal to the value of a component.

Other solution concepts have also been defined for graph games

by applying their standard definition to game v/G. In particular,

the Banzhaf value of game v/G was studied by Owen [19]; it is

now called the restricted Banzhaf value [29]. On the other hand, the

Owen value of game v/G was studied by Vázquez-Brage et al. [30].

Compatibility Games: A compatibility game is a tuple (N ,v,E),
where (N ,v) is a coalitional game and (N ,E) is a compatibility

graph. In these games, a coalition S is feasible if G[S] is a clique.
Compatibility games were proposed by See et al. [23], but specif-

ically for weighted voting games. Our definition generalizes this

concept to arbitrary coalitional games. See et al. [23] proposed the

Shapley-Shubik index and the Banzhaf index for these games. We

refer the reader to the original paper for their definition, noting

that both values do not satisfy basic properties, such as Fairness.

3 OUR MODEL
Let us now introduce coalitional games restricted by signed graphs:

Definition 3.1. A signed graph game, is a quadruple (N ,v,E+,E−),
where (N ,v) is a coalitional game andG± = (N ,E+,E−) is a signed
graph. In signed graph games, a coalition S is feasible if G±[S] is
connected and does not contain negative edges from E−. That is,
the set of all feasible coalitions, F (G±), is defined as:

F (G±) = {S ⊆ N : G±[S] is connected and E−[S] = ∅}.

We will write simply F when the graph is known from the context.

In signed graph games, positive edges represent sympathy be-

tween players or ability to cooperate directly. In turn, negative

edges represent antipathy between players or inability to cooper-

ate. Furthermore, no edge means that the players might cooperate

through intermediaries.

Example 3.2. Consider a signed graph game (N ,v,E+,E−)where
the signed graph, G± = (N ,E+,E−), is depicted in Figure 1 and

v(S) = 2|S | − 1 for every S ⊆ N . The set of feasible coalitions is:

F (G±) = {{1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 2, 3}}.

Signed graph games are a combination of graph games by Myer-

son [16] and compatibility games by See et al. [23]. Let us describe

this relation in more detail.

Consider graph game (N ,v,E+) by Myerson [16] with G+ =
(N ,E+). In this game, the set of feasible coalitions consists of con-

nected coalitions:

FM (G
+) = {S ⊆ N : G+[S] is connected}.

graph (N ,E+,E−)

is a clique

graph (N ,E+,E−)

is not a clique

no negative edges

|E− | = 0

coalitional

games

graph

games

negative edges

|E− | > 0

compatibility

games

signed graph
games

Table 1: Signed graph games generalize standard coalitional
games, graph games and compatibility games.

Now, consider compatibility games. In particular, since in a

signed graph game, two players are compatible if they are not

connected by a negative edge, then let us consider compatibility

game (N ,v,E−) with G− = (N ,E−), where E− = {{i, j} ⊆ N : i ,
j, {i, j} < E−} is a complement of E−, i.e., it is the set of pairs of
nodes which are not connected with a negative edge. In this game,

the set of feasible coalitions consists of coalitions that form a clique

in graph G−, i.e., coalitions without negative edges in graph G±:

Fc (G
−) = {S ⊆ N : E−[S] = ∅}.

Now, we observe that the set of feasible coalitions in a signed graph

game is the intersection of both sets:

F (G±) = FM (G
+) ∩ Fc (G

−).

In particular, if graph is a clique without negative edges, then

FM (G
+) = Fc (G

−) = 2
N

and a signed graph game is equivalent to

a standard coalitional game (N ,v). In turn, if graph does not contain
negative edges, but it is not a clique, then Fc (G

−) = 2
N
and a signed

graph game is equivalent to graph game (N ,v,E+). Finally, if graph
is a clique, but it contains negative edges, then Fc (G

−) ⊆ FM (G
+)

and a signed graph game is equivalent to a compatibility game

(N ,v,E−). Table 1 summarizes these observations.

4 THE MYERSON VALUE FOR SIGNED
GRAPHS

The Myerson value is defined as the Shapley value of coalitional

game v/G that defines values not only of feasible, but also of in-

feasible coalitions (Eq. (3)). Following this, one could try to extend

the Myerson value to signed graphs by first specifying game v/G±

for signed graph G±. However, it is not immediately clear what

the value of an infeasible coalition, S , in game v/G± should be. We

illustrate this in the following example:

Example 4.1. Consider again the signed graph game from Exam-

ple 3.2. What should be the value of v/G±(S) for S = {1, 2, 4, 5}?

• In the most strict approach, every coalition that contains

incompatible players should have value zero. In result, we

get that v/G±(S) = 0.

• In the most liberal approach, every infeasible coalition can

partition themselves into smaller parts that can work with

each other. In particular, coalition S can partition themselves

into three connected parts {1, 2}, {4} and {5} and get the

valuev/G±(S) = 3+1+1 = 5. Note, however, that such a par-

tition is not unique and choosing an optimal partition would

violate Linearity of the solution. Moreover, according to such

a definition, if game is not superadditive, then negative edges
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could increase the value of a coalition which is counterin-

tuitive. To see this, assume v({1, 2, 3}) < v({1, 2}) +v({3})
(e.g., v({1, 2, 3}) = 3). Now, adding a negative edge between

2 and 3 increases the value of v/G±({1, 2, 3}), as coalition
{1, 2, 3} partitions itself into two groups: {1, 2} and {3}.

Given this, instead of trying to specify gamev/G±, we followMy-

erson’s approach and focus on axioms. As we will see, the definition

of v/G± will naturally follow from them.

Consider the following two axioms:

Signed Fairness φi (N ,v,E+,E−) − φi (N ,v,E+ \ {e},E− \ {e}) =
φ j (N ,v,E+,E−) −φ j (N ,v,E+\{e},E−\{e}) for every signed
graph game (N ,v,E+,E−) and edge e = {i, j} ∈ E+ ∪ E−.

Signed Component Efficiency∑
i ∈C

φi (N ,v,E+,E−) =

{
v(C) if C ∈ F ,

0 otherwise,

for every signed graph game (N ,v,E+,E−) and component

C ∈ K(N ,E+,E−).

Both axioms are the direct translations ofMyerson’s original axioms

(see Section 2). Signed Fairness states that adding or removing a

positive or a negative edge should have equal impact on the incident

nodes. The definition of Signed Component Efficiency focuses on

components in G±, i.e., coalitions such that no player inside is con-

nected to any player outside with a positive or negative edges. We

observe that only these coalitions can be considered independent

of the rest of the graph. The axiom states that if such a component

contains incompatible players, i.e., two players connected by a neg-

ative edge, then it is infeasible and it cannot achieve anything; if

all players are (pairwise) compatible, then the coalition is feasible

and can obtain their value in game v .
In the following theorem, we prove that these axioms uniquely

characterize a value. This value, that we call the Myerson value for

signed graphs, is defined as the Shapley value of game v/G±, i.e.:

MV (N ,v,E+,E−) = SV (N ,v/G±), (4)

where game v/G± restricted by a signed graphG± = (N ,E+,E−) is
defined as follows:

v/G±(S) =
∑

C ∈K (G±[S ])∩F

v(C). (5)

Let us comment on this formulation. Eq. (5) can be interpreted in

the following way: coalition S splits into its components K(G±[S])
and then each componentC contributes either its value v(C) or 0 if
it contains incompatible players. Hence, groups of players which

are not aware of (or not in contact with) an incompatible pair of

players are not affected by their conflict.

As an illustration, consider a problem of sitting wedding recep-

tion guests at (separate) tables. We consider a table acceptable if it

does not contain strongly conflicted guests and every two people

know each other directly or through common friends sitting at the

same table. Now, consider a hypothetical table with two or more

separate groups of friends that do not know each other at all. If there

are some conflicted guests in one of these groups, the remaining

guests of this group may feel uncomfortable which will minimize

their satisfaction. However, this does not affect other groups at the

table not aware of this conflict.

The following theorem is our main result in this section:

Theorem 4.2. The Myerson value for signed graphs (Eq. (4)) is the

unique value that satisfies Signed Fairness and Signed Component

Efficiency.

Proof. Let us begin by showing that the Myerson value for

signed graphs satisfies Signed Fairness and Signed Component

Efficiency. We begin with the former axiom. Fix a signed graph

game (N ,v,E+,E−)withG
± = (N ,E+,E−) and e = {i, j} ∈ E+∪E−.

Consider graph G±∗ = (N ,E+ \ {e},E− \ {e}). From Eq. (4) and

Linearity of the Shapley value (recall that the Shapley value is a

semivalue, hence it satisfies Linearity) we get:

MV (N ,v,E+,E−) −MV (N ,v,E+\{e},E−\{e}) =

SV (N ,v/G±) − SV (N ,v/G±∗ ) = SV (N ,v/G± −v/G±∗ ). (6)

Consider game (N ,v/G± −v/G±∗ ). From Eq. (5) we know that for

every coalition S ⊆ N values v/G±(S) and v/G±∗ (S) depend solely

on the subgraph induced by S ; hence, they are equal if {i, j} ⊈ S :

v/G±(S) = v/G±∗ (S) for every S ⊆ N : {i, j} ⊈ S .

In result, in game (N ,v/G± − v/G±∗ ) only coalitions containing

both i and j have non-zero values. From Symmetry of the Shapley

value, we get SVi (N ,v/G
± −v/G±∗ ) = SVj (N ,v/G

± −v/G±∗ ) which
combined with Eq. (6) implies Signed Fairness.

Let us turn out attention to Signed Component Efficiency. We

will prove that the Myerson value for signed graphs is equal to

the Myerson value for a (standard) graph game with a modified

characteristic function. Specifically, define ṽ : 2
N → R as follows:

ṽ(S) =

{
v(S) if E−[S] = ∅,

0 otherwise.

(7)

We will prove thatMV (N ,v,E+,E−) = MV (N , ṽ,E+ ∪ E−).
Note that ṽ is a game obtained from v by assigning value 0 to

every coalition that contains players connected by a negative edge.

Consider graph G = (N ,E+ ∪ E−) obtained from G± by ignoring

signs of edges. Now, for an arbitrary coalition S ⊆ N we get that:

ṽ/G(S) =
∑

C ∈K (G[S ])

ṽ(C) =
∑

C ∈K (G±[S ])∩F

v(C) = v/G±(S).

Here, we used Eq. (3), (7) and (5) in this order and the fact that

K(G[S]) = K(G±[S]). Hence, ṽ/G=v/G± and SV (ṽ/G)=SV (v/G±)
which implies thatMV (N ,v,E+,E−) = MV (N , ṽ,E+ ∪ E−).

Now, from the Component Efficiency of the Myerson value we

get that for every C ∈ K(G±) we have
∑
i ∈C MVi (N ,v,E+,E−) =

ṽ(C) which, by the definition, is equal to v(C) if C ∈ F and to 0

otherwise. This concludes the proof that the Myerson for signed

graph games satisfies both axioms.

In the remainder of the proof, we show uniqueness. We will use

the scheme of the proof proposed by Myerson [16] in his seminal

work. Specifically, assume φ,φ ′ both satisfy Signed Fairness and

Signed Component Efficiency. We will prove by contradiction that

φ(N ,v,E+,E−) = φ ′(N ,v,E+,E−) for every game (N ,v,E+,E−).
Assume otherwise and let (N ,E+,E−) be a signed graph with the

minimal number of edges s.t. φ(N ,v,E+,E−) , φ ′(N ,v,E+,E−). If
|E+ | + |E− | = 0 (i.e., E+ = E− = ∅), then from Signed Component

Efficiency for every i ∈ N we have φi (N ,v,E+,E−) = v({i}) =
φ ′i (N ,v,E+,E−) which is a contradiction. Assume otherwise that
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|E+ | + |E− | > 0 and let e = {i, j} ∈ E+ ∪ E− be an arbitrary edge.

From Signed Fairness we know that for φ∗ ∈ {φ,φ ′} we have:

φ∗i (N ,v,E+,E−) − φ
∗
j (N ,v,E+,E−) =

φ∗i (N ,v,E+ \ {e},E− \ {e}) − φ
∗
j (N ,v,E+ \ {e},E− \ {e}). (8)

For a player k ∈ N , let us denote by δk the difference in payoffs of

k according to both values φ and φ ′ (i.e., δk = φk (N ,v,E+,E−) −
φ ′k (N ,v,E+,E−)). Since the right-hand side of Eq. (8) is equal for

both values φ and φ ′, we get δi = δj for every edge {i, j} ∈ E+∪E−.
Moreover, for an arbitrary path (i, j, . . . ,k) we get δi = δj = · · · =
δk . Now, fix an arbitrary i ∈ N and let C ∈ K(G±) be a component

containing i . Then, we have:

|C | · δi =
∑
j ∈C

δj =
∑
j ∈C

φ j (N ,v,E+,E−) −
∑
j ∈C

φ j (N ,v,E+,E−) = 0,

where the last equality comes from Signed Component Efficiency.

We have just showed that δi = 0 for every i ∈ N which yields a

contradiction. This concludes the proof of Theorem 4.2. □

Example 4.3. Consider again the signed graph game from Exam-

ple 3.2. Recall that the feasible coalitions have the following values:

v({i}) = 1 for i ∈ N , v({1, 2}) = v({1, 3}) = 3 and v({1, 2, 3}) = 5.

Thus, game v/G± is defined as follows:

S v/G± S v/G± S v/G± S v/G±

∅ 0 {2} 1 {3, 4} 2 {2, 3, 4} 3

{1} 1 {1, 2} 3 {3, 5} 2 {2, 3, 5} 3

{3} 1 {2, 3} 2 {4, 5} 0 {2, 4, 5} 1

{4} 1 {2, 4} 2 {1, 3, 4} 4 {1, 2, 3, 4} 6

{5} 1 {2, 5} 2 {1, 3, 5} 4 {1, 2, 3, 5} 6

{1, 3} 3 {1, 2, 3} 5 {1, 4, 5} 1 {1, 2, 4, 5} 3

{1, 4} 2 {1, 2, 4} 4 {3, 4, 5} 1 {2, 3, 4, 5} 2

{1, 5} 2 {1, 2, 5} 4 {1, 3, 4, 5} 3 {1, 2, 3, 4, 5} 5

As expected, the highest value is obtained by coalitions that contain

all three cooperating players {1, 2, 3}, and—to avoid a conflict—

only one of the remaining two players. By looking at the marginal

contributions we get that MV2 = 3/2. From Symmetry, we have

MV3 = 3/2 and from Signed Component Efficiency: MV1 = 2.

Finally, from Symmetry and Signed Component Efficiency we have

MV4 = MV5 = 0.

5 ALGORITHM FOR SEMIVALUES
In this section, we extend the definition of the Myerson value to all

semivalues for signed graphs and propose an algorithm to compute

every such semivalue in linear time in the size of the (potentially

exponential) input. Note that since values of infeasible coalitions

will not be taken into account by semivalues, the input for the

computational problem is a function v from feasible coalitions into

real values: v : F → R; hence, the size of the input is |F |.
Recall that the Myerson value for signed graphs was defined as

the Shapley value of game v/G±. In the same spirit, we define a

semivalue for signed graph games as the semivalue of game v/G±

that takes into account restrictions of the signed graph:

φβ (N ,v,E+,E−) = φβ (N ,v/G±),

We start our analysis with the following lemma that characterizes

a marginal contribution of a player in signed graph games.

Lemma 5.1. For every signed graph game (N ,v,E+,E−)with graph
G± = (N ,E+,E−), player i ∈ N and coalition S ⊆ N \ {i} we have:

v/G±(S∪{i})−v/G±(S) =
∑

C ∈K (G±[S∪{i }])
C ∈F,i ∈C

v(C)−
∑

C ∈K (G±[S ])
C ∈F,i ∈N±(C)

v(C).

Proof. Letmci (S) = v/G
±(S ∪ {i}) −v/G±(S). From Eq. (5):

mci (S) =
∑

C ∈K (G±[S∪{i }]):C ∈F

v(C) −
∑

C ∈K (G±[S ]):C ∈F

v(C).

Consider a component C ∈ K(G±[S]). If i is not a neighbor of

coalitionC , thenC is also a component of K(G±[S ∪ {i}]) and v(C)
appears in both sums on the right-hand side. Otherwise, C is not

a component of K(G±[S ∪ {i}]), but only a part of the component

that contains player i . This component can be identified as C ∈
K(G±[S ∪ {i}]) ∩ F such that i ∈ C . This concludes the proof. □

We illustrate Lemma 5.1 with the following example.

Example 5.2. Consider the contribution of player 1 to coalition

{2, 3, 4} in game v/G± from Example 3.2. From the definition of

game v/G±, we have:

mc1({2, 3, 4}) = v({1, 2, 3}) +v({4}) −v({2}) −v({3}) −v({4}).

This simplifies to v({1, 2, 3}) −v({2}) −v({3}). Hence, inmc1: (a)
there appears with the positive sign only the value of the component

in G±[{1, 2, 3, 4}] that player 1 belongs to and (b) there appear

with the negative sign all the values of components ofG±[{2, 3, 4}]
adjacent to player 1.

The following theorem characterizes an arbitrary semivalue as a

sum over feasible coalitions.

Theorem 5.3. The semivalue φβ for signed graph games satisfies

the following formula:

φ
β
i (N ,v,E+,E−) =

∑
C ∈F,i ∈C

γ
β
i (C)·v(C)−

∑
C ∈F,i ∈N±(C)

γ
β
i (C)·v(C)

for every signed graph game (N ,v,E+,E−) and player i ∈ N , where

γ
β
i (C) =

∑n−|C |− |N±(C) |
t=0

(n−|C |− |N±(C) |
t

)
β∗(t + |C \ {i}|) .

Proof. From Lemma 5.1 combined with Eq. (1) we get that

φ
β
i (N ,v,E+,E−) equals:∑
C ∈F
i ∈C

∑
S ⊆N \{i }

C ∈K (G±[S∪{i }])

β∗(|S |)v(C) −
∑
C ∈F

i ∈N±(C)

∑
S ⊆N \{i }

C ∈K (G±[S ])

β∗(|S |)v(C).

Now, a feasible coalition C that contains player i is a component of

graphG±[S∪{i}] if and only if: (1)C ⊆ S∪{i}; and (2)N±(C)∩S = ∅.
Hence, each such a coalition is of the form S = (C \ {i}) ∪T , where

T ⊆ N \ (C ∪ N±(C)). There are
(n−|C |− |N±(C) |

t
)
such coalitions of

size t + |C | for every t ∈ {0, . . . ,n − |C | − |N±(C)|}. In result, we

get that the sum of weights β∗ of all such coalitions equals γ
β
i (C)

for function γ
β
i defined in the theorem statement.

The analogous analysis of the second sum on the right-hand side

concludes the proof. □
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Example 5.4. Consider again the signed graph game from Ex-

ample 3.2. We will calculate the Myerson value of player 2 again,

but this time using Theorem 5.3. Recall, that the Myerson value

is, equivalently, the Shapley value of a signed graph game and the

Shapley value is a semivalue with weights β∗(k) = 1

5
/
(
4

k
)
for n = 5.

There are three feasible coalitions with player 2: {2}, {1, 2} and

{1, 2, 3}. We get that γ
β
2
({2}) =

(
3

0

)
1

5
+
(
3

1

)
1

20
+
(
3

2

)
1

30
+
(
3

3

)
1

20
= 1/2.

Analogously, γ
β
2
({1, 2}) = 1/6 and γ

β
2
({1, 2, 3}) = 1/3.

Then, there are two feasible coalitions for which player 2 is a

neighbor: {1} and {1, 3}. For them, we get: γ
β
2
({1}) = 1/6 and

γ
β
2
({1, 3}) = 1/3. Eventually, we have:

MV2 =
v({2})

2

+
v({1, 2})

6

+
v({1, 2, 3})

3

−
v({1})

6

−
v({1, 3})

3

=
3

2

.

From Theorem 5.3 we know that it is enough to traverse all fea-

sible coalitions in order to compute the semivalue of all the players

in the game. Every feasible coalition induces a connected subgraph.

Hence, to enumerate them all, we will modify the existing algorithm

that traverses all induced connected subgraphs used in calculation

of the (standard) Myerson value [26]. Note that this algorithm ap-

plied directly would yield worse than linear complexity because the

number of feasible coalitions (i.e., |F |) can be significantly smaller

than the number of induced connected subgraphs.

Theorem 5.5. Algorithm 1 computes the semivalue φβ for signed

graph games in time O(|F |(|N | + |E+ |)).

Proof. The input of Algorithm 1 is the graph G and function v
that given a feasible coalition outputs its value. As standard in the

literature, we assume that the function v is given by a black box,

i.e., an oracle [5]. The graph is represented as adjacency lists,N+(i)
andN−(i) for every i ∈ N ; these lists provide two functions: дet(it)
(returns a player at position it ) and дetIndex(j) (returns a position
of player j).

The heart of the algorithm is the recursive function Rec that enu-

merates all feasible coalitions consistent with the color table. The
color table contains information which players are in the coalition

(Gray) and which are not (Red); the remaining players are White.

Additionally, among Red players neighbors of Gray players are

marked as RedN and for Gray players, instead of a color, the index

of a player from which this one was reached (i.e., a “parent”) is kept

in the color table.
To consider all feasible coalitions consistent with the color table,

Rec focuses on aGray player i (given by a parameter) and considers

i’s neighbors. We have two cases:

• If this is the first time Rec is called with i as a parameter, then

all players connected with i by a negative edge are marked

as forbidden neighbors (lines 10–12)—in this way, we make

sure that we list only feasible coalitions. Then all neighbors

connected with i by a positive edge are considered one by

one (lines 13–21).

• If this is not the first time Rec is called with i as a parameter,

then the function goes directly to the first not-yet considered

neighbor—its index is given by the parameter startIt .

Lines 14–20 consider player j that is a neighbor of i . If j is Gray or
RedN, then the algorithm does not do anything. If j is Red, then its

color is changed to RedN to mark that it is a neighbor of a Gray

Algorithm 1: Computing a semivalue for signed graph games

Input: A signed graph G± = (N , E+, E−), function v : F → R

Output: A semivalue φβi (N , v, E+, E−) for every i ∈ N

1 begin
2 foreach i ∈ N do φβi ← 0

3 color ← array [1,. . . ,n] of {White, Red, RedN} ∪ N
4 for i ← 1 to n do
5 color ← [Red, . . . , Red︸            ︷︷            ︸

i−1

, i, White, . . . , White︸                    ︷︷                    ︸
n−i

]

6 Rec(color , i , 1, UpdateSemivalues)
7 end
8 end
9 Function Rec(color , i , star t I t , updateFun):

10 if star t I t = 1 then
11 foreach j ∈ N−(i) : color [j] < N do color [j] ← RedN

12 end
13 while star t I t ≤ |N+(i) | do
14 j ← N+(i).дet (star t I t )
15 if color [j] = White then
16 color [j] ← i
17 Rec(color (array clone), j , 1, updateFun)
18 color [j] ← RedN

19 else if color [j] = Red then color [j] ← RedN

20 star t I t ← star t I t + 1
21 end
22 if color [i] , i then
23 star t I t ← N+(color [i]).дet Index (i) + 1
24 Rec(color , color [i], star t I t , updateFun)
25 else call updateFun(color )
26 Function UpdateSemivalues(color ):
27 C ← {j ∈ N : color [j] ∈ N }
28 NC ← {j ∈ N : color [j] = RedN}

29 γ βin ←
∑n−|C |−|NC |
t=0

(n−|C |−|NC |
t

)
β ∗(t + |C | − 1)

30 if NC , ∅ then γ βout ←
∑n−|C |−|NC |
t=0

(n−|C |−|NC |
t

)
β ∗(t + |C |)

31 foreach j ∈ C do φβj ← φβj + γ
β
in · v(C)

32 foreach j ∈ NC do φβj ← φβj − γ
β
out · v(C)

player. Now, assume j is White; then the algorithm has to account

for all feasible coalitions with and without player j. To enumerate

coalitions with j, player j is colored Gray and player i is stored as

a parent of player j in the color table. Then, function Rec is called

with a new color table and player j as the starting player. In turn,

to enumerate coalition without j , player j is colored RedN to avoid

repetitions and the algorithm moves on to the next neighbor of i .
After considering all neighbors, in lines 22-25, function Rec

backtracks, i.e., goes back to the parent of player i , i.e., color [i],
by calling function Rec with color [i] as the starting player and

parameter startIt set in a way that considering neighbors of color [i]
will start from a player that appears on the list of neighbors N+

right after player i (lines 23-24). Note that cloning the table is not
necessary here, as color table will not longer be used in this Rec call.

If color [i] = i (line 25), it means that i was the starting player of the
initial call to Rec from line 6. Thus, all neighbors of all Gray players

have been considered (and colored RedN), a feasible coalition is
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found. Hence, function updateFun given by a parameter is called to

update the values of players. In Algorithm 1, updateFun is always

equal to UpdateSemivalues, which is based on Theorem 5.3.

Finally, let us discuss the main body of the algorithm (lines 1–8).

To enumerate all feasible coalitions, function Rec is called n times:

i-th iteration enumerates all feasible coalitions in which player i
is the player with the minimal index. This is obtained by coloring

all players with smaller indices Red and player i Gray and calling

function Rec with player i as the starting player (lines 5–6).

Note that, for every feasible coalition C , the number of steps

performed in all the calls of the Rec function with the color table in
which only players fromC areGray is bounded by |N |+ |E+ |. Hence,
the time complexity of our algorithm is O(|F |(|N | + |E+ |)). □

Example 5.6. Consider Algorithm 1 for the signed graph game

from Example 3.2. The consecutive calls of function Rec are:

# color i sIt # color i sIt

#1 [1,W ,W ,W ,W ] 1 1 #8 [R, 2,W ,W ,W ] 2 1

. #2 [1, 1,W ,W ,W ] 2 1 #9 [R,R, 3,W ,W ] 3 1

.. #3 [1, 1,W ,W ,W ] 1 2 #10 [R,R,R, 4,W ] 4 1

... #4 [1, 1, 1,W ,W ] 3 1 #11 [R,R,R,R, 5] 5 1

.... #5 [1, 1, 1,W ,W ] 1 3

. #6 [1,R, 1,W ,W ] 3 1

.. #7 [1,R, 1,W ,W ] 1 3

Here, we usedW to denoteWhite and R to denote Red or RedN in

the color table. Also, the first column illustrates the call hierarchy.

The number in the first column is bold if a given Rec call changes

semivalues, i.e., calls the UpdateSemivalues function.

6 ALGORITHM FOR THE OWEN VALUE
Our model allows for the representation of friendship or enmity be-

tween players. In this section, we extend our model by considering

a priori alliances between players. Specifically, following Owen’s

model of a priori given coalition structure, we will assume that

some groups of players form inseparable groups; these groups form

a coalition structure, P that we will take into account when assess-

ing importance of the players in the sign graph game. We will make

a natural assumption that all the coalitions from P are feasible,

i.e., Tl ∈ F for every Tl ∈ P . In words, each coalition induces a

connected subgraph with no negative edges.

We define the Owen value for a signed graph game as follows:

OV P
i (N ,v,E+,E−) = OV

P
i (N ,v/G

±),

for G± = (N ,E+,E−). Throughout this section, we will focus on
computing the Owen value of a single player i ∈ Tj ∈ P .

We start by introducing some additional notation. Let us denote

by S(i) the set of coalitions values of which are taken into account

by the Owen value:

S(i) = {TM ∪ R : M ⊆ {1, . . . ,k} \ {j},R ⊆ Tj }.

Now, consider an intersection of S(i) and F , denoted by F (i):

F (i) = S(i) ∩ F . In what follows, we will show that only val-

ues of coalitions from F (i) are taken into account by the Owen

value for player i in signed graph games.

For a feasible coalition C ∈ F (i), we denote by M∗C a subset of

indexes of coalitions from P that do not overlap with C ∪ N±(C),

1

2

3

4

5

6

7

4

[1] [2]

6

⇒
+

–

++

+

+

+

–

+

–

+

+

–

– –

+

Figure 2: Graph G± (on the left) and the correspond-
ing graph G(i) (on the right) for i = 6 and partition
P = {{1, 2}, {3, 5, 7}, {4, 6}} depicted with the colors of
nodes: white, light gray and dark gray. Positive edges are
green/solid and negative edges are red/dashed.

and by R∗C the part ofTj which does not belong toC∪N±(C):M
∗
C =

{l ∈ {1, . . . ,k} : Tl ∩ (C ∪N±(C)) = ∅} and R
∗
C = Tj \ (C ∪N±(C)).

Example 6.1. Consider a signed graph game (N ,v,E+,E−)where
the signed graph, G± = (N ,E+,E−), is depicted in Figure 2 and let

P = {{1, 2}, {3, 5, 7}, {4, 6}}. Fix i = 6. We have {5, 6} < S(6) and

{1, 2, 6} ∈ S(6), but {1, 2, 6} < F (6). Set F (6) consists of 7 coalitions:

F (6) = {{4}, {6}, {4, 6}, {1, 2}, {1, 2, 4}, {1, 2, 4, 6}, {3, 5, 7}}.

Let us focus on coalition C = {6}. As all coalitions from F (6), C
can be represented as C = TM ∪ R for M = ∅ and R = {6}. We

have N±(C) = {4, 5}, hence M∗C = {1} (because only coalition

T1 = {1, 2} from P does not overlap with C ∪ N±(C)) and R
∗
C = ∅.

In the following theorem, we show that the Owen value of player

i can be characterized as a sum over coalitions from F (i).

Theorem 6.2. The Owen value for signed graph games satisfies

the following formula:

OV P
i (N ,v,E+,E−) =

∑
C ∈F(i ),i ∈C

δ (C)v(C)−
∑

C ∈F(i ),i ∈N (C)

δ (C)v(C)

for every signed graph game (N ,v,E+,E−), player i ∈ N and partition

P , where δ (C) =
∑ |M∗C |
m=0

∑ |R∗C |
r=0

( |M∗C |
m

) ( |R∗C |
r

)
ζk (|M | + m)ζ |Tj |(|R \

{i}| + r ) for every C = TM ∪ R.

Proof. Fix S ∈ S(i) such that i < S and consider the marginal

contribution of player i to coalition S . From Lemma 5.1 we get:

v(S ∪ {i}) −v(S) =
∑

C ∈K (G±[S∪{i }])
C ∈F,i ∈C

v(C) −
∑

C ∈K (G±[S ])
C ∈F,i ∈N±(C)

v(C).

ConsiderTl for an arbitrary l ∈ {1, . . . ,k} \ {j}. From the definition

of S(i) we know that either Tl ⊆ S or Tl ∩ S = ∅. If Tl ⊆ S , then
all players from Tl must belong to one component of G±[S] and of

G±[S ∪ {i}]. This is because we assumed that Tl is feasible which
implies that it induces a connected subgraph. Hence, we get that

C ∈ F (i) for everyC ∈ K(G±[S ∪ {i}]) andC ∈ K(G±[S]). This fact
combined with Eq. (2) implies that OV P

i (N ,v,E+,E−) equals:∑
C ∈F(i )
i ∈C

∑
S ∈S(i ):i<S

C ∈K (G±[S∪{i }])

ζ Pi (S)v(C) −
∑

C ∈F(i )
i ∈N±(C)

∑
S ∈S(i ):i<S
C ∈K (G±[S ])

ζ Pi (S)v(C).

Now, it remains to prove that the sum of weights ζ Pi (S) equals

δ (C) from the thesis of the theorem. To this end, fix C ∈ F (i)

such that i ∈ C and assume C = TM ∪ R ∪ {i}. Consider arbitrary
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S = TM ′ ∪ R
′ ∈ S(i) such that i < S . The necessary and sufficient

conditions so that C ∈ K(G±[S ∪ {i}]) are:

• M ⊆ M ′ (otherwise C ⊈ S ∪ {i});
• R ⊆ R′ (otherwise C ⊈ S ∪ {i});
• M ′⊆M∪M∗ (ifTM ′∩N±(C) , ∅, thenC is not a component);

• R′ ⊆ R ∪ R∗ (if R′ ∩ N±(C) , ∅, then C is not a component).

We get that M ′ = M ∪ M ′′ for arbitrary subset M ′′ ⊆ M∗ and
R′ = R ∪ R′′ for arbitrary subset R′′ ⊆ R∗. In result, we have that∑
S ∈S(i ):i<S,C ∈K (G±[S∪{i }]) ζ

P
i (S) = δ (C).

An analogous analysis for C ∈ F (i) such that i ∈ N±(C) of the
form C = TM ∪ R concludes the proof. □

Example 6.3. Consider again the signed graph game from Ex-

ample 6.1. We will calculate the Owen value of player 6 using

Theorem 6.2. Note that ζ3(0) = ζ3(2) = 1/3, ζ3(1) = 1/6 and

ζ2(0) = ζ2(1) = 1/2.

There are three feasible coalitions from F (i) with player 6: {6},

{4, 6}, {1, 2, 4, 6}. We get that δ ({6}) =
(
1

0

) (
0

0

)
1

3

1

2
+
(
1

1

) (
0

0

)
1

6

1

2
= 1

4

(note that for C = {6} we have |M | = 0, |R | = 1, |M∗C | = 1 and

|R∗C | = 0, as determined in Example 6.1). Analogously, δ ({4, 6}) =
1/6 and δ ({1, 2, 4, 6}) = 1/12.

Then, there are three feasible coalitions from F (i) for which

player 6 is a neighbor: {4}, {1, 2, 4} and {3, 5, 7}. For them, we get:

δ ({4}) = 1/6, δ ({1, 2, 4}) = 1/12 and δ ({3, 5, 7}) = 1/12. Eventually,

we have that the Owen value of player 6 equals:

v({6})

4

+
v({4,6})

6

+
v({1,2,4,6})

12

−
v({4})

6

−
v({1,2,4})

12

−
v({3,5,7})

12

.

From Theorem 6.2, we know that the Owen value is based only

on values of coalitions from F (i). Hence, traversing all feasible

coalitions no longer leads to an algorithm linear in the size of the

input. To cope with this problem we will define an auxiliary graph

and traverse the subgraphs therein.

Let us define graph G(i) obtained from G± by merging for each

coalitionTl ∈ P \ {Tj } all the players into a single node, denoted by
[l]. If some player is adjacent to several players from the merged

group we leave only one edge: if all edges were positive the edge

between the group and this player will be positive; otherwise, this

edge will be negative. See Figure 2 for an illustration. Formally:

Definition 6.4. G(i) = (N (i),E
(i)
+ ,E

(i)
− ) is a signed graph where:

• N (i) = Tj ∪ {[l] : l ∈ {1, . . . ,k} \ {j}},

• E
(i)
− = E−[Tj ]∪{{[l], [l

′]} ⊆N (i) : l , l ′,∃a∈Tl ∃b ∈Tl ′ {a,b} ∈
E−} ∪ {{[l],m} ⊆ N (i) :m ∈ Tj ,∃a∈Tl {a,m} ∈ E−},
• E
(i)
+ = E+[Tj ]∪{{[l], [l

′]} ⊆N (i) : l , l ′,∃a∈Tl ∃b ∈Tl ′ {a,b} ∈
E+} ∪ {{[l],m} ⊆ N (i) :m ∈ Tj ,∃a∈Tl {a,m} ∈ E+} \ E(i)− .

We note that there exists a one-to-one mapping between coali-

tions from F (i) and F (G(i)), i.e., feasible coalition in G(i). Specif-

ically, arbitrary coalition C = TM ∪ R ∈ F (i) maps to coalition

C ′ = ({[l] : l ∈ M} ∪ R) and it can be shown that C ′ ∈ F (G(i)).
Clearly, this mapping is injective, but it is also surjective, since it is

reversible. Now, using Definition 6.4 from Theorem 6.2 we have:

Theorem 6.5. The Owen value of player i for signed graph games

can be computed in time O(|F |(|N | + |E+ |)) for F = {C ∈ F
(i)

: i ∈
C ∨ i ∈ N±(C)}.

Proof. Based on Theorem 6.2, our goal is enumerate all feasible

coalitions in G± that contain player i or any neighbor of i . Follow-
ing the discussion, we will equivalently enumerate such feasible

coalitions in G(i). To enumerate all feasible coalition with player

i , we call function Rec from Algorithm 1 with the color table in

which color [i] = i , and all other colors are White. After this, we

mark player i as RedN. Then, we consider neighbors of i one by one
and call function Rec so that it enumerates all feasible coalitions

with this neighbor, but without previously considered neighbors.

Function Rec is called with a reference to function UpdateOwen

which computes the Owen value based on Theorem 6.2. □

7 RELATEDWORK
The model of graph restrictions was extended to weighted graphs

by Calvo et al. [3]; however, only weights from [0, 1] are allowed.

Khmelnitskaya et al. [13] considered games restricted by directed

graphs. So far, however, no one considered a graph-restricted game

for sighed-graph games.

Computational properties of the Myerson value were studied

in a number of papers. Bilbao [2], Elkind [7] and Skibski et al.

[26] all proposed different formulas for the Myerson value that

traverse only induced connected subgraphs. Polynomial algorithms

for theMyerson/Shapley value for weighted voting games restricted

by trees [1] and graphs with bounded treewidth [25] were also

developed. In a recent paper, Greco et al. [10] considered the Shapley

value of games that results from matching problems; these games

can also be considered graph-restricted.

A recent application of coalitional games on graphs is the cen-

trality analysis. In particular, Skibski et al. [27] proposed a new

centrality measure, called the Attachment centrality, which is the

Myerson value of a specific game. Gangal et al. [8] proposed sev-

eral Shapley-value based centrality measures for signed graphs;

however, they do not comply with Myerson’s graph-restrictions.

For non-transferable coalitional games, a model in which every

player partitions other players into friends, enemies and neutral

agents have recently attracted attention in the literature [14, 17, 20].

Unlike our model, the relations therein are not symmetric.

8 CONCLUSIONS
In this paper, we proposed amodel of coalitional games restricted by

a signed graph.We extended the Myerson value to this setting using

the axiomatic approach and proposed an algorithm that works for

an arbitrary semivalue. Also, we considered the Owen value and

proposed a dedicated algorithm.

Our work can be extended in a number of ways. In particular,

directed graphs or hypergraphs can be considered. Also, following

the work by Meir et al. [15], it would be interesting to analyze how

negative edges affect the stability in graph games. Finally, coalition

structure generation problem can be considered in our model [31].
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