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ABSTRACT
In many practical scenarios, a population is divided into disjoint
groups for better administration, such as electorates into political
districts and students into school districts. However, grouping peo-
ple arbitrarily may lead to biased partitions, raising concerns of
gerrymandering in political districting and racial segregation in
schools. To counter such issues, in this paper, we conceptualize
such problems in a voting scenario, and given an initial grouping,
we propose the Fair Regrouping problem to redistribute a given
set of people into k groups, where each person has a preferred
alternative and a set of groups they can be moved to, such that
the maximum margin of victory of any group is minimized. We
also propose the Fair Connected Regrouping problem which
additionally requires the people within each group to be connected.
We show that the Fair Regrouping problem is NP-complete for
plurality voting even if we have only 3 alternatives, but admits
polynomial time algorithms if everyone can be moved to any group.
We further show that the Fair Connected Regrouping problem
is NP-complete for plurality voting even if we have only 2 alterna-
tives and k = 2. Finally, we propose heuristic algorithms for both
problems and show their effectiveness in political districting in the
U.K. and in lowering racial segregation in public schools in the U.S.
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1 INTRODUCTION
Dividing a population into smaller groups is often a practical ne-
cessity for better administration. For example, in many democratic
countries (most notably, in countries following the Westminster
System like the U.K., Canada, India, Australia, or the Presidential
System like U.S., Brazil, Mexico, Indonesia), electorates are divided
into electoral districts; in many organizations, employees are di-
vided into administrative units like departments; students enrolled
in public schools in the U.S. are divided into school districts; and so
on. However, the population is not homogeneous, as it consists of
people with different attributes—gender, race, religion, or ideologi-
cal leaning. Dividing people arbitrarily may lead to biased grouping,
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disallowingminorities and underrepresented groups from accessing
the same services and opportunities as majority groups.

In electoral districting, given past voting patterns, ruling political
parties may draw district boundaries that favor them—a practice
termed as gerrymandering [39]. For example, they may want to
ensure that they enjoy a healthy lead over the opponents in many
districts, so that even if a handful of their supporters change sides, it
does not hamper the winnability. Alternatively, they can assign the
majority of the opposition supporters to others districts, making
them minorities in those districts and thus weakening their power.
There have been several instances of such manipulations in elec-
toral (re)districting in the U.S., starting as early as in 1812, by then
Massachusetts governor Elbridge Gerry (the term gerrymandering
originated after him) [33]. Since then, efficient (re)distribution of
voters into districts remains an open problem due to the complex
dynamics involving voter mobility constraints, social and financial
burdens, as well as the difficulty in testing the efficacy of proposed
interventions [4, 17, 33].

Public schools in the U.S. are governed by school boards repre-
senting local communities and are largely funded by local property
taxes [13, 19]. Most of the students go to school in the same dis-
trict they live in, with proximity playing an important role in the
school choice [21]. The way in which the students are distributed to
schools determines the racial composition of the schools, as well as
the revenues they earn. Several reports claim that wealthier, whiter
communities have pushed policies so that white families can live
in white-majority areas and attend white-majority schools [15, 49].
Despite the desegregating efforts following the landmark Supreme
Court verdict in Brown v. Board of Education case in 1954 (which
ruled racial segregation of children in public schools to be unconsti-
tutional), 63% of classmates of a white student are whites, compared
to 48% of all students being whites; similarly, 40% of black and His-
panic students attend schools where over 90% students are people
of color [29]. As an economic consequence, a recent report by an
educational non-profit EdBuild claimed that “non-white school dis-
tricts get $23 Billion less than white districts, despite serving the same
number of students” [22].

Aside from the offline world, bias in grouping users can exist in
online settings as well. For instance, social media platforms like
Facebook allow advertisers to target groups of users, raising con-
cerns over the targeting of political ads and housing, credit or job
opportunity ads in such platforms [2, 3, 31, 48, 52]. The option of
specifying a narrow target group can be maliciously exploited for
political benefits, where the campaigns can tailor their political
message solely to a single ideological group, potentially leading to
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more polarized and extreme messaging, and allowing misinforma-
tion to travel and be accepted more easily [23, 42, 51]. Worryingly,
recent reports claim that the political campaigns have utilized Face-
book’s advertising platform (e.g., its lookalike audience feature) to
microtarget even opposition supporters to spread (false) negative
propaganda about opposition candidates [23, 42]. Although Face-
book has since changed the way it allows advertisers to target
groups [26], recently Ali et al. [2] showed that even if an adver-
tiser specifies an unbiased target audience, due to the black box ad
matching mechanism in the platforms, demographic composition
of the final audience groups can be highly skewed. For example,
they found job ads for lumber industry to reach a group with 90%
male users, while job ads for supermarket cashier positions reached
85% female audience [2].

To counter such biases in dividing people into groups, we con-
ceptualize these problems in a voting scenario: the goal is to divide
n people, each having one preferred alternative (out of m), into
k groups. While the mapping of electoral districting or political
ad targeting into voting is direct and utilizes people’s ideological
preferences, we can think of a context-specific mapping in other
scenarios. For instance, in school assignment, we can think of stu-
dents having preference according to their sensitive attributes (such
as gender or race). Once the mapping is done, we utilize the concept
of margin of victory (defined as the number of people who need to
change their preference in order to change the winner) from com-
putational social choice to redistribute the population in groups in
a more equitable way, given certain constraints on the groups that
a user can be moved to. We propose the Fair Regrouping problem
to create k groups such that the maximum margin of victory of any
group is minimized, and the Fair Connected Regrouping prob-
lem which additionally requires people in each group to remain
connected in an underlying social graph.

Although by definition the margin of victory looks only at the
top two contenders, it could aid in situations where there is a mo-
nopolistic advantage, such as in segregated political areas or neigh-
borhoods. Reducing margin of victory conceptually leads to groups
in which there is no dominating opinion and thus everyone’s opin-
ion is valued, since the consensus of the group can be changed even
if a small number of people change their preferences. In political
districting, it would lead to higher accountability from the elected
candidate, incentivizing them to truly engage with their electorate
due to the competition created. Moreover, it could also help avoid-
ing certain gerrymandering practices by disallowing packing voters
into districts where one contender wins by a high margin. This
allows a minority group to have critical mass, thus indirectly giving
a better sense of security and belongingness among people in that
group. Similarly, it would lower racial segregation in schools.

For targeting political ads, a lower margin of victory would deter
political campaigns to resort to extreme political messaging, given
different points of view in the target audience. Note that our pro-
posal is aimed at the online platform (re)grouping individuals when
allowing political targeting from external organizations. In the of-
fline setting of local elections or school choice, people’s geography
and their social connections may constrain the groups they can be
a part of, whereas in the online setting such constraints may come
from users’ expressed interests.

1.1 Contributions
We make the following contributions in this paper.
• We show that the Fair Regrouping problem is NP-complete
even when we have only 3 alternatives and there is no constraint
on the size of individual groups [Theorem 4.1]. We complement
this intractability result by proving the existence of a polynomial
time (more specifically XP) algorithm when every voter can be
moved to any group (which we term as the Fair Regrouping_X
problem) [Theorem 4.5].
•We further show that the Fair Connected Regrouping problem
is NP-complete even when there are only 2 alternatives, 2 districts,
the maximum degree of any vertex in the underlying graph is 5,
and there is no constraint on the size of districts [Theorem 4.4].
This shows that, although both Fair Regrouping and Fair Con-
nected Regrouping problems are NP-complete, Fair Connected
Regrouping is computationally harder than Fair Regrouping.
• We propose heuristic algorithms for both Fair Regrouping and
Fair Connected Regrouping problems, and show their effective-
ness in reducing margin of victory in electoral districts in the U.K.,
as well as in lowering racial segregation in public schools in the
U.S.

2 BACKGROUND AND RELATEDWORK
Voting mechanisms have been at the center of historical, politi-
cal and sociological studies [5, 24, 40]. The problem of unfair dis-
tribution of voters into districts, i.e. gerrymandering, has received
significant attention [4, 11, 33, 35], setting geographical [39] and
social constraints [9, 17, 34] to population mobility. Puppe and Tas-
nádi [47], and Van Bevern et al. [53] proved the problem to be NP-
complete. Central to this problem is the concept of representation:
does a collective represent the choices or attributes of those com-
prising it? While recent papers conceptualize different measures
of representation in district-based elections [4, 14, 27, 28, 30, 35],
to our knowledge, we are the first to use the concept of margin of
victory for redistricting voters to achieve better representation.

Computing margin of victory for different voting rules has been
studied in [55]. Several works [8, 12, 20, 41] have attempted to infer
it in real elections, and showed that even estimation becomes diffi-
cult in establishing robust elections. A closely-related problem is
bribery and robustness, studied in [6, 10, 43, 44]. Yet, to our knowl-
edge, the problem of minimizing margin of victory has not attracted
much attention from both a theoretical and an application point of
view.

Another related area is achieving proportional representation as
a fairness goal in clustering, where every cluster contains the same
proportion of users from certain demographics as in the general pop-
ulation [16, 38, 50, 56]. Our paper differs from traditional clustering
as the objective here is not to maximize a similarity measure, but to
use geographical or social similarity as a constraint in minimizing
the margin of victory. Note that this is not equivalent to propor-
tional representation, but represents a different metric aiming at
better equity in elections. While desirable in certain cases, propor-
tional representation is also NP-complete in general settings [46]
and may dilute voter power across many electoral districts.
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These works show that the problem of grouping is a complex
one and that there is a gap between such measures of robustness,
proportional representation, and other gerrymandering metrics.
Minimizing the margin of victory aims to close this gap in the
current state of affairs that involve a deep inequality among ex-
isting groups. In our setting, minimizing the margin of victory
serves the purpose of eliminating monopolistic advantage, creating
a healthy competitive environment for the top contenders. While
we acknowledge the possibility of a higher risk for manipulation
due to small difference in votes, we hope that election audits and
other prevention measures can deter such practices. Given classic
gerrymandering concerns such as cracking and packing, we argue
that a minimal margin of victory prevents such practices in political
elections, while a proportional representation constraint may cor-
relate with cracking a minority voter population into all districts,
disallowing them from winning any district.

In case of school segregation, the current state of public schools
in many cities, including our dataset from Detroit, is of extreme
racial segregation, which can be abstractly viewed as a case of
monopoly, whichwe aim to alleviate throughminimizing themargin
of victory. In an ideal world, all schools would be composed of
demographics in a proportional and representative way, but we
are yet far from achieving such an ideal. What we can do is enact
policies that are effective in establishing more equitable access to
education and opportunity while being aware of the current state
of social inequality. Minimizing margin of victory aims to facilitate
the enactment of such policies (which have historical precedent
in the form of the desegregation busing decision of the Supreme
Court in 1971) with awareness of such inequality through process
fairness, considering existing social constraints.

3 PRELIMINARIES
Voting Setting: For a positive integer k , we denote the set

{1, 2, . . . ,k} by [k]. Let A = {ai : i ∈ [m]} be a set of m alter-
natives and V = {vi : i ∈ [n]} a set of n voters. Each voter has a
most preferred alternative whom the voter votes for. The plurality
voting rule chooses the set of winners as the set of alternatives
who are the most preferred alternative by the maximum number
of voters. The number of voters who prefer an alternative most is
called the plurality score of that alternative.

Margin of Victory: Themargin of victory is theminimum number
of votes that needs to be changed to change the election outcome.
With the exception of the case where the top two alternatives are
tied (where the margin of victory is 1), it easily follows that the
margin of victory of a plurality election is the ceiling of half the dif-
ference between the two highest plurality scores of the alternatives.
We now define our basic problem of Fair Regrouping.

Definition 3.1 (Fair Regrouping). Given a set A ofm alterna-
tives, a setV ofn voters alongwith their corresponding preferences,
initial partition of k groups H = {Hi , i ∈ [k]} along with the set
Vi of voters corresponding to each group Hi for i ∈ [k] such that
(Vi )i ∈[k ] forms a partition of V , a function π : V −→ 2H \ {∅}

denoting the set of groups that each voter can be part of, minimum
size smin and maximum size smax of every group, and a target t of
maximum margin of victory of any group, compute if there exists
a partition (V ′

i )i ∈[k ] of V into these k groups such that

(i) For every i ∈ [k] and v ∈ V ′
i , we have Hi ∈ π (v)

(ii) For every i ∈ [k], we have smin ⩽ |V ′
i | ⩽ smax

(iii) The margin of victory in the group Hi is at most t for every
i ∈ [k]

We denote an arbitrary instance of this problem by (A,V,k,H =
(Hi )i ∈[k ], (Vi )i ∈[k ],π , smin , smax , t).

An important special case of Fair Regrouping is when every
voter can be moved to any group; i.e., π (v) = H for every voterv ∈

V . We call this problem Fair Regrouping_X (where the subscript X
denotes that there is no user specificmobility constraint).We denote
an arbitrary instance of Fair Regrouping_X by (A,V,k,H =

(Hi )i ∈[k ], (Vi )i ∈[k ], smin , smax , t).
The Fair Regrouping problem is generalized to define the Fair

Connected Regrouping problem, where the input also have a
social graph defined on the set of voters, the given groups are all
connected, and we require the new groups to be connected as well.
We denote an arbitrary instance of Fair Connected Regrouping
by (A,V,G,k,H = (Hi )i ∈[k ] , (Vi )i ∈[k ] ,π , smin , smax , t). In this
paper, we study the above problems only for the plurality voting rule
and thus omit specifying it every time. The following observation
is immediate from the definitions.

Observation 1. Fair Regrouping_X many-to-one reduces to
Fair Regrouping which again many-to-one reduces to Fair Con-
nected Regrouping, both in polynomial-time.

4 THEORETICAL RESULTS
In this section, we present our basic theoretical results. Our first
result shows that Fair Regrouping is NP-complete even with 3
alternatives. For that we reduce from the well known SAT problem
which is known to be NP-complete.

Theorem 4.1. The Fair Regrouping problem is NP-complete
even if we have only 3 alternatives and there is no constraint on the
size of any group.

Proof. Fair Regrouping clearly belongs to NP. To
prove NP-hardness, we reduce from the SAT problem.
Let

(
X = {xi : i ∈ [n]} ,C =

{
Cj : j ∈ [m]

})
be an arbitrary

instance of SAT. Let us consider the following instance
(A,V,k,H = (Vi )i ∈[k ],π , smin = 0, smax = ∞, t = 2) of Fair
Regrouping.

A = {a,b, c},k = 3n +m′

H = {Xi , X̄i ,Zi : i ∈ [n]} ∪ {Yj : j ∈ [m′]}

∀i ∈ [n], Votes in Xi : m′ + 2 votes for a
m′ votes for b,m′ − 1 votes for c

∀i ∈ [n], Votes in X̄i : m′ + 2 votes for a
m′ votes for b,m′ − 1 votes for c

∀i ∈ [n], Votes in Zi : m′ + 2 votes for a
m′ + 1 votes for c

∀j ∈ [m′], Votes in Yj : m′ + 3 votes for a
m′ votes for b
t = 2

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1307



Let f be a function defined on the set of literals as f (xi ) = Xi
and f (x̄i ) = X̄i for every i ∈ [n]. We now describe the π function.
For i ∈ [n], no voter in Zi can move to any other group except
one voter who votes for the alternative c and she can move to Xi
and X̄i . For i ∈ [n], no voter voting for the alternatives a or c in
both Xi and X̄i leave their current groups; any number of voters
in Xi (X̄i respectively) who vote for the alternative b can move to
the group Yj for some j ∈ [m′] if the variable xi (x̄i respectively)
appears in the clause Cj . Finally no voter in the group Yj , j ∈ [m′]

leave their current group. This finishes the description of π and the
description of the instance of Fair Regrouping. We claim that the
two instances are equivalent.

In one direction, let us assume that the SAT instance is a yes
instance. Let д : X −→ {0, 1} be a satisfying assignment for the
SAT instance. Let us consider the following movement of the voters:
for i ∈ [n], if д(xi ) = 1, then one voter in the groupZi who votes
for the alternative c moves to the group Xi ; otherwise one voter in
the groupZi who votes for the alternative c moves to the group X̄i .
For j ∈ [m′], let the clauseCj be ℓ1 ∨ ℓ2 ∨ ℓ3 and д sets the literal ℓ1
to be 1 (we can assume this without loss of generality). Then one
voter from the group f (ℓ1) who votes for b moves to the group Yj .
Since the assignmentд satisfies all the clauses, the margin of victory
in the group Yj is 2 for every j ∈ [m′]. For i ∈ [n], if д(xi ) = 0
(д(xi ) = 1 respectively), then the margin of victory in the group
X̄i (Xi respectively) is 2 since it receives a voter voting for the
alternative c . The rest of the groups (for i ∈ [n],Xi if д(xi ) = 0 and
X̄i if д(x1) = 1) remain same and their margin of victory remains
to be 2. Hence the Fair Regrouping instance is also a yes instance.

In the other direction, let’s assume that the Fair Regrouping
instance is a yes instance. We define an assignment д : X −→ {0, 1}
to the variables in the SAT instance as follows. For i ∈ [n], if a
voter in the group Zi who votes for c moves to Xi , then we define
д(xi ) = 1; otherwise we define д(xi ) = 0. We claim that д is a
satisfying assignment for the SAT instance. Suppose not, then there
exists a clause Cj = ℓ1 ∨ ℓ2 ∨ ℓ3 for some j ∈ [m′] which д does
not satisfy. To make the margin of victory of the group Yj at most
2, one voter who votes for b must move into Yj either from group
f (ℓ1) or from f (ℓ2) or from f (ℓ3). However, since д does not set
any of ℓ1, ℓ2, or ℓ3 to 1, none of these groups receive any voter
who votes for the alternative c . Consequently, none of the groups
can send a voter who votes for the alternative b to the group Yj
since otherwise the margin of victory of group which sends a voter
who votes for the alternative b becomes at least 3 contradicting our
assumption that the Fair Regrouping_X instance is a yes instance.
Hence, the SAT instance is a yes instance. □

Due to Observation 1, it follows immediately from Theorem 4.1
that Fair Connected Regrouping problem for plurality voting
rule is also NP-complete. We next show that Fair Connected
Regrouping is NP-complete even if we simultaneously have 2
alternatives and 2 groups. For that, we reduce from 2-Disjoint
Connected Partitioning, defined as:

Definition 4.2 (2-Disjoint Connected Partitioning). Given
a connected graph G = (V, E) and two disjoint nonempty sets
Z1,Z2 ⊂ V , compute if there exists a partition (V1,V2) of V

such that Z1 ⊆ V1,Z2 ⊆ V2,G[V1] and G[V2] are both con-
nected. We denote an arbitrary instance of 2-Disjoint Connected
Partitioning by (G,Z1,Z2).

It is already known that the 2-Disjoint Connected Partition-
ing problem is NP-complete [54, Theorem 1]. However the proof
of Theorem 1 in [54] can be imitated as a reduction from the ver-
sion of SAT where every literal appears in exactly two clauses; this
restricted version of SAT is also known to be NP-complete [7]. This
proves the following.

Proposition 4.3. The 2-Disjoint Connected Partitioning
problem is NP-complete even if the maximum degree of the input
graph is 5.

Theorem 4.4. The Fair Connected Regrouping problem is NP-
complete even if we have only 2 alternatives, 2 groups, the maximum
degree of any vertex in the underlying graph is 5, and we do not have
any constraint on the size of groups.

Proof. The Fair Connected Regrouping problem is clearly
in NP. To prove NP-hardness, we reduce from 2-Disjoint Con-
nected Partitioning to Fair Connected Regrouping. Let (G′ =

(U, E ′),Z1,Z2) be an arbitrary instance of Fair Connected Re-
grouping. Without loss of generality, let’s assume that the degree
of every vertex in Z2 is 2; z2 be any arbitrary (fixed) vertex of
Z2. Let’s consider the following instance (A,V,G = (V, E),k =
2,H = (Hi )i ∈[2], (Vi )i ∈[2],π , smin = 0, smax = ∞, t = 1) of Fair
Connected Regrouping.

A = {x ,y}

V = {vz : z ∈ Z2}

∪ {vu ,wu : u ∈ V \ Z2}

∪ D,D = {di : i ∈ [|Z2 | + 1]}
E = {{va ,vb } : {a,b} ∈ E ′}

∪ {{vu ,wu } : u ∈ V[G′] \ Z2}

∪ {{di ,dj } : i, j ∈ [|Z2 | + 1] , j = i + 1}
∪ {{z2,d1}}

H2 = {di : i ∈ [|Z2 | + 1]}
H1 = V \H2

Vote of vu ,u ∈ V : x ≻ y

Vote ofwu ,u ∈ V \ Z2 : y ≻ x

Vote of di , i ∈ [|Z2 | + 1] : y ≻ x

π (vz ) = {H1}, z ∈ Z1
π (di ) = {H2}, i ∈ [|Z2 | + 1]
π (v) = {H1,H2} for every other vertex v

This finishes the description of the instance of Fair Connected
Regrouping. We now claim that the Fair Connected Regrouping
instance is equivalent to the 2-Disjoint Connected Partitioning
instance.

In one direction, let us assume that the 2-Disjoint Connected
Partitioning instance is a yes instance. Let (V1,V2) be a partition
of U such that Z1 ⊆ V1,Z2 ⊆ V2,G′[V1] and G′[V2] are both
connected. We consider the following new partition of the voters:

Voters of H1 : {vu ,wu : u ∈ V1}; voters of H2 : others
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Since G′[V1] is connected, it follows that G[H1] is also con-
nected. Similarly, since G′[V2] is connected, G[D] is connected,
and {z2,d1} ∈ E[G], it follows that G[H2] is also connected. In
H1, both the alternatives x and y receive the same number of votes
and thus the margin of victory of H1 is 1. In H2, the alternatives x
receives 1 less vote than the alternatives y and thus the margin of
victory ofH2 is 1. Thus the Fair Connected Regrouping instance
is also a yes instance.

In the other direction, let’s assume that there exists a valid parti-
tion (H ′

1 ,H
′
2) of the voters such that both G[H ′

1] and G[H ′
2] are

connected and the margin of victory of both H ′
1 and H ′

2 are 1. Let
us define V1 = {u ∈ V[G′] : vu ∈ H ′

1} and V2 = V[G′] \ V1. It
follows from the function π that we haveZ1 ⊆ V ′

1 ,Z2 ⊆ V ′
2 . Also

G′[V ′
1 ] is connected since the voters inH ′

1 are connected. We also
have G′[V ′

2 ] is connected since the voters inH
′
2 are connected, the

vertices in D forms a path, and there exists a pendant vertex in D.
We also haveZ2 ∈ V ′′

2 since the voters in {vu :∈ Z2} belongs to
H2; otherwise the margin of victory of H2 would be strictly more
than 1. Hence (V ′

1 ,V
′

2 ) is a solution of the 2-Disjoint Connected
Partitioning instance and thus the instance is a yes instance. □

We now complement our hardness results with polynomial time
algorithm for a particular case for the Fair Regrouping_X problem:

Theorem 4.5. The Fair Regrouping_X problem is polynomial
time solvable if the number of alternatives is a constant.

Proof. Let an arbitrary instance of Fair Regrouping_X be
(A,V,k,H = (Hi )i ∈[k] , (Vi )i ∈[k ] , smin , smax , t). For an alter-
native a ∈ A, let na be the number of votes that a receives.
We present a dynamic programming based algorithm for the
Fair Regrouping_X problem. The dynamic programming ta-
ble T

(
(ia ∈ {0, 1, . . . ,na })a∈A , ℓ ∈ [k]

)
is defined as follows –

T
(
(ia )a∈A , ℓ

)
is the minimum integer λ such that the voting pro-

file consisting ia number of voters voting for the alternative a can
be partitioned into ℓ groups such that the margin of victory of any
group is at most λ. For every ia ∈ {0, 1, . . . ,na },a ∈ A, we initial-
ize T

(
(ia )a∈A , 1

)
to be the margin of victory of the voting profile

which consists of ia number of voters voting for the alternative a
for a ∈ A. We update the entries in the table T as follows for every
ℓ ∈ {2, 3, . . . ,k}.

T
(
(ia )a∈A , ℓ

)
= min

(i′a )a∈A,i
′
a⩾0 ∀a∈A

smin⩽
∑
a∈A i′a⩽smax

max

mv

( (
i ′a
)
a∈A

)
,

T

( (
ia − i ′a

)
a∈A , ℓ − 1

)
In the above expression mv

( (
i ′a
)
a∈A

)
denotes the plurality

margin of victory of the profile which consists of i ′a number of
voters voting for the alternative a for a ∈ A. Updating each
entry of the table takes O

(∏
a∈A na

)
poly(m,n) time. The table

has k
∏

a∈A na entries. Hence the running time of our algorithm
is O

(∏
a∈A n2

a
)
poly(m,n) = O

(
n2mpoly(m,n)

)
which is nO(1)

when we havem = O(1). □

We can also prove that the Fair Regrouping problem is poly-
nomial time solvable if the number of groups is a constant (proof
omitted for space constraints). We observe that the polynomial

time algorithm in Theorem 4.5 shows that this problem belongs to
the complexity class known as XP parameterized by the number of
alternatives (and by the number of groups for the Fair Regrouping
problem with a constant number of groups). On the other hand,
the existence of tractable cases for the Fair Connected Regroup-
ing problem remains an open problem, together with the general
set-up of the Fair Regrouping_X problem, when the number of
alternatives is unbounded. In future, we plan to study the existence
of polynomial-time algorithms for these settings where the order
of the polynomial is independent of the number of alternatives and
the number of groups, respectively. In the next section, we develop
fast heuristics for our problems and exhibit their effectiveness in
real-world and synthetic data.

5 EXPERIMENTAL EVALUATION
Given the high complexity of the Fair Regrouping problems, in
this section, we propose faster greedy heuristics to minimize the
margin of victory bymoving people between an initial partition into
groups, while respecting mobility and connectedness constraints.

5.1 Greedy Algorithms
We develop three variants of a greedy heuristic, each including
different constraints related to one of the three defined problems.
Each heuristic starts from an initial grouping of people, meant to
mimic either a natural tendency of people with common interests or
geography to group, or an already existing administrative division.

The algorithms then greedily ‘move’ people from the group with
maximum margin of victory (Vmax ) to others iteratively: it loops
through all other district and checks if it can move any number
of people from those districts toVmax (or vice-versa) in order to
decrease the maximum margin of victory, as Algorithm 1 illustrates
in a general greedy framework. Note that V is the set of voters, A
the set of alternatives, π : V −→ 2H \{∅} denotes the set of groups
that each voter can be part of, smin and smax denote minimum
and maximum size, respectively, of every group,mv(·) denotes the
margin of victory of a group, and P(votersVi (A)) the power set of
the voters in group Vi whose top preference is A. The choice of π
models the different constraints we enforce:

▷ In Greedy Regrouping_X, π is unconstrained, as people
can move to any other group.

▷ In Greedy Regrouping, π models e.g. geographical con-
straints, allowing people to move to closest groups.

▷ In Greedy Connected Regrouping, π models the connec-
tions between people, allowing them to move such that no
group becomes a disconnected subgraph.1

Greedy Regrouping_X is most-suited for an online setting given
the lack of physical constraints. However, we are not advocating
for moving people from one online community to another, but
rather offer a framework that platforms can take into account for
creating audience groups with low margin of victory for adver-
tisers to target, as motivated in the beginning for settings such
as targeting of political or opportunity ads. In the offline world,
Greedy Regrouping selects people to move based on their mobil-
ity constraints (i.e., checking the list of groups each person can be
moved). Finally, Greedy Connected Regrouping ensures both
1Note that in this case the function π can be updated as the algorithm is running.
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Result: A partition of V into groups (Vi )i ∈[k ] with
minimal maximum margin of victory.

Input (Vi )i ∈[k ], π : V −→ 2H \ {∅}, smin , smax ;
Choose Vmax = arg maxi ∈[k ]mv(Vi ).
for v ∈ P(votersVmax (A)) do

if Vi ∈ π (v) then
if |Vmax \v | > smin and |Vi ∪v | < smax then

if max(mv(Vmax \v),mv(Vi ∪v)) <
max(mv(Vi ),mv(Vmax )) then

move v from Vmax to Vi ;
end

end
end

end
for Vi ∈ V and A ∈ A do

for v ∈ P(votersVi (A)) do
if Vmax ∈ π (v) then

if |Vi\v | > smin and |Vmax ∪v | < smax then
if max(mv(Vi\v),mv(Vmax ∪v)) <

max(mv(Vi ),mv(Vmax )) then
move v from Vi to Vmax ;

end
end

end
end

end
Algorithm 1: Greedy Algorithm

groups to remain connected in the underlying social graph when
moving people from one to another. Since the maximum margin
of victory is a positive number, all algorithms terminate, with a
termination condition defined as no movement between groups for
ten consecutive rounds (experimenting with different termination
conditions yields similar results).

5.2 Datasets and Experimental Results
To evaluate the applicability of greedy algorithms in real-world
scenarios, we consider three main datasets: a synthetic dataset
using graph models and two real ones, consisting of data from the
U.K. parliament elections in 2017 and demographic information
of students in public schools of Detroit, U.S. The synthetic dataset
can be thought of emulating both offline and online scenarios, for
which we evaluate all three greedy algorithms. In the political and
school datasets, we evaluate Greedy Regrouping_X and Greedy
Regrouping, but not Greedy Connected Regrouping, as we lack
the social graph.

5.2.1 Synthetic Data.
We used the line model to simulate voters, alternatives, and voters’
political affiliations [17]. For every node, we generated the prefer-
ence over alternatives according to the distance between the voter
and the alternatives. In addition to this, we simulated a set of graphs
based on the Erdős-Renyi (ER) graph model [25]. We then created
50 instances of the ER graph model, where each node represents
a voter and the edges are formed according to the model with an
added homophily factor based on the distance between nodes (as

simulated by the line model). Inputs to such graphs are the number
of voters n (100), number of alternativesm (5), number of groups
k (5), and homophily parameter α . We split the created graphs in
equally-sized groups assigning people to groups in the order given
by the line model, representing the initial partition.

Such models capture the network and clustering effects exhib-
ited by voter districts in real world [1, 18, 36], and can serve as
a simulation of online networks as well. We further add a base-
line algorithm that computes the optimal partition of people into
groups with minimal margin of victory through a brute-force ap-
proach, given a network, the groups’ size constraints, and mobility
constraints. Thus, given a population with their preferences, it takes
all possible groupings into consideration. This makes it computa-
tionally infeasible to scale at the size of the real data, but we use it
in synthetic scenarios for comparison with the greedy heuristics.

We simulated the greedy algorithms for each graph instance,
averaging over 10 iterations (yielding similar results as for a higher
number of iterations) the minimal maximum margin of victory that
it can reach and compared that to the baseline value. Whether we
aim to solve this problem in the online world or the offline one, all
these algorithms are effective in improving the maximummargin of
victory aggregated for all graph instances (Figure 1(b)) and the total
margin of victory (Figure 1(d)). For minimizing the total margin of
victory, we adapt Algorithm 1 to optimize over the sum of margin
of victory of all groups rather than the maximum, iterating over
all pairs of districts. For the graph creation process, we vary the
homophily factor between 0 and 1 (from totally non-homophilic to
fully homophilic. We allow groups to change up to 20% in size, for
a mobility constraint that allows people to move to the closest 2
groups, noting that each of the 5 groups starts with approximately
20 people (we experiment with different values and report this one,
as for k = 5 groups allowing people to move to the closest 2 repre-
sents an average case). We observe that no matter how homophilic
the initial graph is, the greedy heuristic is able to successfully reduce
the maximum margin of victory for all three algorithms: Greedy
Regrouping_X performs the best as it contains no constraints on
mobility, being evaluated close to the baseline value and reducing
maximum margin of victory by 35% on average (from 10 to 6–7),
Greedy Regrouping performs second-best, reducing it by 20% on
average (from 10 to 8), while Greedy Connected Regrouping
reduces it by 10% on average (from 10 to 9), performing worse than
the other two due to a tighter connectivity constraint. Figure 1(d)
shows the overall decrease in margin of victory, where the effect is
more significant: Greedy Regrouping_X and Greedy Regrouping
achieve a result close to the baseline, reducing the total margin of
victory by 75–80% (from 31–32 to 7–8), while Greedy Connected
Regrouping performs slightly worse, reducing the total margin of
victory of 46% on average (from 31–32 to an average of 13.6).

5.2.2 UK General Elections Data.
We collected data about the U.K. Parliament elections in 2017 from
The Electoral Commission (electoralcommission.org.uk), using
constituencies as groups and parties as alternatives. Although the
votes are cast for individuals, the number of seats for each party is
the number that counts in the Parliament, and thuswe are interested
in the effect of grouping on the distribution of votes over parties
rather than over individuals. Knowing the number of votes each
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Figure 1: Maximum margin of victory for all algorithms in (a) real data from the U.K. parliamentary elections and school
demographics in Detroit, USA, and (b) synthetic data. Total (sum) of margin of victory in (c) real data and (d) synthetic data.

party got in each constituency, we simulated the top preference of
the voters given a plurality voting mechanism.

We tested our heuristics on 10 neighboring constituencies out
of the 650 in the region of Scotland bordering Edinburgh, which
represents a very diverse area in terms of voting preferences. Indeed,
each of these constituencies had a clear majority (Figure 2).2 We
subsampled this dataset, working with a randomized sample of
approximately 50, 000 people and we recorded the center location of
each constituency. While we experimented with different mobility
constraints, results are qualitatively similar and thus we report an
average case, enforcing in Greedy Regrouping that voters can be
incentivized to move or to vote only in their closest two constituencies.

Figure 1(a) shows that both Greedy Regrouping and Greedy
Regrouping_X are able to reduce the maximum margin of victory
of this dataset by approximately 91–92%, from an initial 776 to 67
and 55, respectively. Figure 1(c) shows the effect greedy had on
minimizing the total margin of victory, showing an even larger
decrease by almost 95%, from an initial 2, 652 to 148 and 135, respec-
tively. Note that the total of 50, 000 sampled people are distributed
approximately equally among the 10 constituencies. Since Greedy
Regrouping represents the more realistic application given its em-
bedded mobility constraints, we show in Figure 2 its effect on the
voters’ distribution in East Lothian and Edinburgh East, showing
that it created a stronger opposition for the leading parties (Labour
in East Lothian and SNP in Edinburgh East).

5.2.3 US Public School Data.
Neighborhood racial segregation is still widespread in many places
in the US, trickling down to segregation in schools [29, 49]. Here,
we attempt to show that our algorithms can be used to increase
racial diversity in schools, if accompanied by government policies
that facilitate movement of students between schools [45].

We collected school data from the National Center for Educa-
tion Statistics (NCES: nces.ed.gov/ccd) about public schools in
Detroit, MI, which is still one of the cities with highest rate of
segregation, and most economic and social struggles encountered
by minorities [32, 37]. We gathered data from 61 schools in De-
troit, each containing between 40 and 5000 students, summing up
to 41, 834 students and their reported race. We modeled this data
2The 10 constituencies we sampled are: Dumfriesshire, Clydesdale and Tweeddale,
Berwickshire, Roxburgh and Selkirk, East Lothian, Midlothian, Edinburgh South, Edin-
burgh East, Edinburgh North and Leith, Edinburgh South West, Edinburgh West, and
Livingston, for which an interactive map with the vote distribution can be found at
https://www.bbc.com/news/election-2017-40176349.

in the form of an election, where the voters are the students, the
alternatives are their reported race (NCES data has 7 reported
races: Asian, Native American, Hispanic, Black, White, Hawaiian,
and Mixed-race), and the groups are the schools. Given each stu-
dent’s race, we modeled this ‘election’ as a plurality voting scenario,
where each student only ‘votes’ for their reported race. Further-
more, we recorded the location of each school, enforcing in Greedy
Regrouping that students can only go to their closest five schools.

Both algorithms decrease the maximum margin of victory by
11–12% on average, from an initial 2, 501 to 2, 213 and 2, 311, respec-
tively (Figure 1(a)), showing a significant decrease in the overall
margin of victory by 18–24%, from an initial 18, 870 to 15, 360 and
14, 376, respectively (Figure 1(c)). As Greedy Regrouping repre-
sents themore realistic scenario, we observe that schools containing
students from one predominant racial group become more equili-
brated (Figure 3). The initial racial distribution in these schools has
a clear majority of a certain race: Black for Dove Academic, White
for Universal Academy, and Hispanic for Cesar Chavez Academy.

Of course, since minimizing margin of victory only considers the
most predominant two races, we may need to enforce an additional
diversity constraint to preserve a minimum fraction of students
from other races in a school (e.g., the 2.5% Black students in Uni-
versal Academy may need to stay), which we leave for future work.
What we do notice, however, is that the demographic variance
(how the student demographics of individual schools are spread out
from the underlying population distribution, with smaller variance
denoting more equal demographic spread) decreases after apply-
ing Greedy Regrouping algorithm, by approximately 50% for all
three schools, from 54, 400 to 26, 324 for Universal Academy, from
27, 355 to 11, 266 for Cesar Chavez, and from 593, 367 to 313, 439
for Dove Academy. Other measures may also be used to compute
racial disparity effect of Greedy Regrouping.
Choice of mobility:We experimented with different settings in
these datasets, allowing students and voters to move between vari-
ous distances; our heuristics perform better if we allowmovement to
farther distances. Ultimately, the choice of mobility lies in the hands
of the policy-makers who implement measures for redistributing
the population. We hope that our conceptual framework enables
decision-makers in proposing effective policies for more equitable
outcomes, regardless of the exact choice of these constraints.
Group size: Since political districts as well as school sizes can not
be arbitrary, we set a parameter τ which models group resizing,
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Figure 2: Voters’ distribution in some the U.K. constituencies before and after applying Greedy Regrouping.
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Figure 3: Racial distribution of students in selected schools before and after applying Greedy Regrouping.

allowing the algorithm to move individuals in and out of a district
without changing its size by more than a τ factor of its original
size. Note that the choice of τ lies again in the hands of the policy-
makers. We experimented with values in [0.1, 0.5], and observed
qualitatively similar results (we report results for τ = 0.2). Further-
more, the size constraints can also be utilized to ensure balance in
group sizes.

In summary, Greedy Regrouping and Greedy Connected Re-
grouping are designed to portray the effect of governmental poli-
cies that incentivize physical regrouping of people, whether it is
through electoral redistricting or busing (moving students to differ-
ent schools), while Greedy Regrouping_X is intended as a version
of these with no mobility constraints, applicable in online settings
like political ad targeting.

6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we considered the problem of fairly dividing people
into groups through a voting scenario, with the goal of minimizing
the maximum margin of victory across groups. In doing so, we
provide a rigorous framework to reason about the complexity of
the problem, showing that redistributing people with constraints
on their mobility is NP-complete in general, and admits XP algo-
rithms for particular cases. Furthermore, our fast greedy heuristics
show significant improvement of the margin of victory in electoral
districting, school assignments, and synthetic experiments. In the

case of elections, minimizing margin of victory leads to better rep-
resentation of opposition parties in electoral districts. For school
assignment, we show that our greedy algorithms are able to provide
more diversity in highly segregated schools. While government
policies are ultimately crucial in reducing segregation, we hope
that this quantitative analysis can show their potential efficacy.

Multiple directions remain open for future work, such as ex-
tending synthetic experiments to real-world effects of political
advertising and analyzing the social connections in real datasets,
which may change people’s mobility constraints. Finally, it would
be worthwhile to measure the effect of minimizing the margin of
victory on different gerrymandering metrics as well as the effect of
decreasing racial segregation on school revenues.
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