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ABSTRACT
We consider the problem of forming a testbed of elections to be used

for numerical experiments (such as testing algorithms or estimating

the frequency of a given phenomenon). We seek elections that

come from well-known statistical distributions and are as diverse

as possible. To this end, we define a (pseudo)metric over elections,

generate a set of election instances, and measure distances between

them, to assess how diverse they are. Finally, we show how to use

these elections to test election-related algorithms.
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1 INTRODUCTION
Alongside theoretical research, experimental studies lie in the

very heart of computational social choice [9]. The computational

aspects of elections, such as the problems of winner determina-

tion [3, 5, 35, 53], finding various forms of manipulation [4, 15, 34],

control [6, 36], or bribery [18, 24], or measuring performance of

candidates (e.g., via the possible/necessary winner notions [39, 61]

or via the margin of victory notions [11, 51, 60]), are nowadays

often investigated through experiments. For example, researchers

evaluate running times of algorithms [30, 57, 59], or test what ap-

proximation ratios appear in practice [37, 53]. It is also common to

test non-computational properties of elections—for instance to eval-

uate how frequently a given voting rule is manipulable [22, 32, 57],

or how frequently particular candidates win [17] (naturally, the

papers cited here are just a few examples). Yet, designing convinc-

ing experiments is not easy and, in particular, it is not clear what

election data to use. Our goal is to propose a framework that can

help in choosing synthetically generated elections for such tasks.

Motivating Example Let us say that we are interested in the

Harmonic Borda [28] (HB) multiwinner voting rule. Under this rule

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
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we are given a set of candidates and a set of voters, where each

voter ranks the candidates from the most to the least desirable one.

The rule chooses a committee of k candidates that minimizes the

sum of dissatisfaction scores assigned by the voters (see Section 5

for a detailed definition; the rule is a variant of the classic pro-

portional approval voting rule, PAV [38, 55]). Finding a winning

committee under this rule is NP-hard [52], but such a committee

can be computed, e.g., using ILP solvers or using approximation

algorithms [25, 28]. We want to assess how quickly an ILP solver

can compute the winning committees and how good are the ap-

proximation algorithms.

Ideally, we should try all elections of a given size (for example,

elections with about 100 candidates and 100 voters are common in

the multiwinner literature [12, 17, 25]), but, of course, this is infea-

sible. Instead, a natural approach is to generate elections according

to several standard distributions, referred to as statistical cultures,
and test the algorithms on them.

1
Indeed, many of the above-cited

papers focus on some subset of the following four models (see

Section 2 for detailed descriptions of the distributions):

(1) The Impartial Culture (IC) model, where all votes are gener-

ated uniformly at random and independently [22, 32, 37, 53,

57, 59]; sometimes the Impartial Anonymous Culture model,

IAC, is also used, where votes are very mildly dependent.

(2) The Polya-Eggenberger urnmodel, which introduces specific

correlations (contagion) to the IC model [22, 30, 37, 53, 57];

the level of contagion is a parameter.

(3) The Mallows model (and its mixtures), which captures set-

tings with ground truth [32, 53]; the dispersion of the gener-

ated votes is specified as a parameter.

(4) The Euclidean model [20, 21], which views the space of

possible ideological positions in terms of Euclidean geome-

try [17, 30]; the way of generating the ideological positions

of the candidates and voters is the parameter of the model.

However, which of these models should we use and how should we

set their parameters? Perhaps we should use some other models as

well, possibly generating elections that are single-peaked [8], single-

crossing [46, 50], or are structured in some other way? Intuitively,

we would like to have a set of elections that would be as varied

as possible, so that, on the one hand, we would not spend too

much time on very similar elections—for which we expect nearly

1
It would also be natural to consider real-life elections (e.g., from PrefLib [44]). However,

such elections typically involve relatively few candidates (often just three or four [43,

56]) and this would not suffice for our experiments (yet, such data is useful in other

cases; see, e.g., the works of Brandt et al. [10] and Ayadi et al. [2]).
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identical results of the experiments—and, on the other hand, we

would not miss interesting families of elections—for which the

results would be hard to predict. In other words, we would like to

have a comprehensive testbed of elections that we could use in our

experiments, and which could also be useful in other contexts.

Contributions Our main contribution is building a testbed of

elections that satisfies the conditions specified above and that, as

we show, is useful in practice. As a consequence of the assumed

methodology, we also make a number of observations regarding

various statistical cultures and relations between them. Below we

describe our reasoning and resulting contributions in more detail.

To verify that our elections are not too similar to each other,

a notion of a distance between elections is needed. Furthermore,

this distance shall be neutral and anonymous—i.e., independent

of the names of the candidates and the voters—because we will

compare elections generated from statistical cultures in which this

information is random. In particular, we cannot rely on the distance

rationalizability framework [19, 45, 47] as its distances are not

neutral. Thus we provide a new distance, called positionwise, that
satisfies our desiderata and appears to give meaningful results.

We form our testbed as follows. First, we generate as many

elections from as many different statistical cultures, with as many

different parameter choices, as possible. Second, we compute the

distances between each pair of generated elections. Third, we com-

pute a mapping of the elections to the points in a 2D space in such

a way that the Euclidean distances between these points reflect

the positionwise distances between the respective elections (such

an embedding cannot be perfect, but still helps in understanding

the data). We present this mapping in Figure 2 and refer to it as

our map of elections. This map—together with the positionwise

distance—shows that the set of elections we generated is quite

diverse, although, perhaps, some types of elections are overrepre-

sented (such as, e.g., some Mallows elections). Further, along with

the original distances, it allows us to draw a number of conclusions

regarding various statistical cultures.

Finally, we show that both our testbed and the map are useful

in practice, by performing experiments regarding the Harmonic

Borda rule. For example, we measure the time needed for an ILP

solver to find winning committees and superimpose the results

on the map. We then see that the closer an election is to those

coming from the IC model, the more time the ILP solver needs.

We also obtain results regarding the quality of the committees

computed by two approximation algorithms; the results are more

varied here, but as the elections in the testbed are annotatedwith the

statistical cultures fromwhich they come, wemake some interesting

observations regarding the performance of our algorithms.

We believe that this paper is the first to provide a principled

framework for forming diverse collections of synthetic elections.

However, many other authors formed various other datasets, with

different ideas in mind, often based on real-life data [43, 44, 56].

Our data and tools are available on GitHub.
2

2 PRELIMINARIES
We write R+ to denote the set of non-negative real numbers. For

an integer n, we write [n] to denote the set {1, . . . ,n}.

2https://github.com/szufix/mapel

An election is a pair E = (C,V ), where C = {c1, . . . , cm } is a set

of candidates and V = (v1, . . . ,vn ) is a collection of voters. Each

voter vi has a preference order, i.e., a ranking of the candidates

from the most to the least desirable one. To simplify notation, vi
refers both to the voter and to his or her preference order; the exact

meaning will always be clear from the context. We writev : a ≻ b to
indicate that voterv ranks candidate a ahead of candidate b, and we
write posv (c) to denote the position of candidate c inv’s preference
order (the top-ranked candidate has position 1, the next one has

position 2, and so on). For an election E = (C,V ) and two candidates

a,b ∈ C , we writeME (a,b) to denote the fraction of voters inV who

prefer a to b. By dswap(v,u) we denote the swap distance between

votes u and v (over the same candidate set C), i.e., the minimal

number of swaps of adjacent candidates needed to turn vote u into

vote v . By dSpear(v,u) we denote the Spearman’s distance between

v andu. It is defined as dSpear(v,u) =
∑
c ∈C |posv (c)−posu (c)|. Let

C1 and C2 be two equal-sized candidate sets. If v is a preference

order overC1 and δ : C1 → C2 is a bijection betweenC1 andC2, then

by δ (v) we mean a preference order obtained from v by replacing

each candidate c ∈ C1 with candidate δ (c) ∈ C2.

2.1 Structured Preferences
We often consider elections where the voters’ preferences have

some particular structure, e.g., are single-peaked (or, single-peaked
on a circle (SPOC)), single-crossing, or come from some Euclidean
domain. Such elections are studied in the literature, e.g., to model

various features observed in real-life scenarios (see the overview

by Elkind [16] for more references on structured preferences).

Single-peaked preferences, introduced by Black [8], capture set-

tings where it is possible to order the candidates in such a way

that as we move along this order, then each voter’s appreciation

for the candidates first increases and then decreases (one typical

example of such an order is the classic left-to-right spectrum of

political opinions). Recently, Peters and Lackner [48] introduced

the notion of preferences single-peaked on a circle, where instead of

ordering the candidates in a line, we arrange them cyclically (such

preferences may appear, e.g., when choosing a video-conference

time and the voters are in different time zones) .

Definition 2.1 (Black [8], Peters and Lackner [48]). Let C be a

set of candidates and let c1 ◁ c2 ◁ · · · ◁ cm be a strict, total order

over C , referred to as the societal axis. Let v be a preference order

over C . We say that v is single-peaked with respect to ◁ if for each

ℓ ∈ [m] the set of ℓ top ranked candidates according to v forms an

interval within ◁. We say that v is single-peaked on a circle if for
each ℓ ∈ [m], the set of ℓ top ranked candidates either forms an

interval within ◁ or a complement of an interval. An election is

single-peaked (is single-peaked on a circle) if there is an axis such

that each voter’s preference order is single-peaked (single-peaked

on a circle) with respect to this axis.

We note that if an election is single-peaked then each voter

ranks one of the two extreme candidates from the societal axis last.

Elections single-peaked on a circle are not restricted in this way.

Example 2.2. Consider candidate set {a,b, c,d} and the axis a ◁
b ◁ c ◁ d . Vote b ≻ c ≻ a ≻ d is single-peaked with respect to ◁
(sets {b}, {b, c}, {a,b, c}, and {a,b, c,d} form intervals within ◁),
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whereas b ≻ a ≻ d ≻ c is single-peaked on a circle with respect

to ◁, but is not single-peaked ({a,b,d} is not an interval). Vote a ≻

c ≻ b ≻ d is not even single-peaked on a circle with respect to ◁.

Euclidean preferences, discussed in detail by Enelow and

Hinich [20, 21], are based on a similar idea as the single-peaked

ones, but are defined geometrically: Each candidate and each voter

corresponds to a point in a Euclidean space and voters form their

preferences by ranking the candidates with respect to their distance.

Definition 2.3. Let t be a positive integer. An election E = (C,V )

is t-Euclidean if it is possible to associate each candidate and each

voter with his or her ideal point in the t-dimensional Euclidean

space Rt in such a way that the following holds: For each voter v
and each two candidates a,b ∈ C , v prefers a to b if and only if v’s
point is closer to the point of a than to the point of b.

Naturally, 1-dimensional Euclidean elections are single-peaked.

We also note that in a 2-dimensional election where the ideal points

are arranged on a circle, the voters have SPOC preferences.

Finally, we consider single-crossing elections, introduced by

Mirrlees [46] and Roberts [50] in the context of taxation.

Definition 2.4 (Mirrlees [46], Roberts [50]). An election E = (C,V )

is single crossing if it is possible to order the voters in such a way

that for each pair of candidates a,b ∈ C , the set of voters that prefer
a to b either forms a prefix or a suffix of this order.

We say that a set of preference orders D is a single-crossing
domain if every election where each voter has a preference order

fromD is single-crossing. For a recent discussion of single-crossing

domains, see the work of Puppe and Slinko [49].

2.2 Statistical Cultures
Below we describe a number of ways of generating random elec-

tions (i.e., statistical cultures). For each of the models we either

describe explicitly how an election withm candidates and n voters

is generated, or we describe the process of generating a single vote

(and then it is implicit that this process is repeated n times).

Impartial Culture and Related Models Under the Impartial

Culture model (IC), every preference order appears with the same

probability. That is, to generate a vote we choose a preference or-

der uniformly at random. Under Impartial Anonymous Culture

(IAC), we require that each voting situation appears with the same

probability (a voting situation specifies how many votes with a

given preference order are present in a profile; thus IAC gener-

ates anonymized preference profiles uniformly at random). The

Imapartial Anonymous Neutral Culture (IANC) model additionally

abstracts away from the names of the candidates [23]. For elections

with 100 candidates, these three models are nearly the same and,

so, we focus on IC.

Polya-Eggenberger Urn Model The Polya-Eggenberger urn

model [7] is parametrized with a nonnegative number α , the level
of contagion, and proceeds as follows: Initially, we have an urn with

one copy of each of them! possible preference orders. To generate a

vote, we draw a preference order from the urn uniformly at random

(this is the generated vote), and we return it to the urn together with

additional αm! copies. For larger αs the generated votes are more

correlated. For α = 0 the model is equivalent to IC, for α = 1/m! it is

equivalent to IAC, and for α = ∞ it produces unanimous elections.

Mallows Model The Mallows model [42] is parameterized by

a value ϕ ∈ [0, 1] and a center preference order v (we choose it

uniformly at random and then use for all generated votes). We

generate each vote independently at random, where the probability

of generating vote u is proportional to ϕdswap(v,u). For ϕ = 1, the

model is equivalent to IC, whereas for ϕ = 0 all generated votes are

identical to the center v . See the work of Lu and Boutilier for an

effective algorithm for sampling from the Mallows model [41].

Single-Peaked Models We consider two ways of generating

single-peaked elections, one studied by Walsh [58] and one studied

by Conitzer [14]; thus we refer to them as the Walsh model and
the Conitzer model. Under both models, we first choose the axis

(uniformly at random). To generate a vote, we proceed as follows:

(1) Under Walsh’s model, we choose a single-peaked preference

order (under the given axis) uniformly at random.Walsh [58]

provided a sampling algorithm for this task.

(2) To generate a vote under the Conitzer model for the axis

c1 ◁ c2 ◁ · · · ◁ cm , we first choose some candidate ci (uni-
formly at random) to be ranked on top (so, at this point, ci
is the only ranked candidate). Then, we performm − 1 steps

as follows: Let {c j , c j+1, . . . , ck } be the set of the currently
ranked candidates. We choose the next-ranked candidate

from the set {c j−1, ck+1} uniformly at random.

To generate a single-peaked on a circle vote, we use the Conitzer

model, except that we take into account that the axis is cyclical.

EuclideanModels To generate a t-Euclidean election, we choose
the ideal points for the candidates and the voters, and then derive

the voters’ preferences as in Definition 2.3. Given t ∈ {1, 2, . . .}, we

consider the following two ways of generating the ideal points:

(1) In the t-dimensional hypercube model (tD-Hypercube), we
choose all the ideal points uniformly at random from [−1, 1]t .

(2) In the t-dimensional hypersphere model (tD-Hypersphere),
we choose all the ideal points uniformly at random from the

hypersphere centered at (0, . . . , 0), with radius 1.

For t ∈ {1, 2, 3}, we refer to tD-Hypercube models as 1D-Interval,

2D-Square, and 3D-Cube, respectively. Similarly, by 2D-Circle and

3D-Sphere we mean the tD-Hypersphere models for t ∈ {2, 3}.

Single-Crossing Models We would like to generate single-

crossing elections uniformly at random, but we are not aware of an

efficient sampling algorithm. Thus, to generate a single-crossing

election, we first generate a single-crossing domain D and then

draw n votes from it uniformly at random. To generate this do-

main for a candidate set C = {c1, . . . , cm }, we use the following

procedure:

(1) We let v be a preference order c1 ≻ c2 ≻ · · · ≻ cm and we

output v as the first member of our domain.

(2) We repeat the following steps until we output cm ≻ cm−1 ≻

· · · ≻ c1: (a) We draw candidate c j uniformly at random and

we let ci be the candidate ranked right ahead of ci in v (if c j
is ranked on top, then we repeat); (b) If i < j then we swap

ci and c j in v and output the new preference order.

(3) We randomly permute the names of the candidates.

Our domains always have cardinality (1/2)m(m − 1) + 1.
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3 DISTANCES BETWEEN ELECTIONS
In this section we discuss four natural pseudometrics between

elections and select one to use in the remainder of the paper.

Formally, for a given set X , a pseudometric over X is a func-

tion d : X × X → R+ such that for each x ,y, z ∈ X it holds that

(1) d(x ,x) = 0, (2) d(x ,y) = d(y,x), and (3) d(x , z) ≤ d(x ,y)+d(y, z).
In our case, we take X to be the set of all elections with a given

number of candidates and a given number of voters. As our goal

is to compare elections generated from statistical cultures, where

the names of the candidates or the voters are chosen randomly,

we require distances that are invariant under permutations of the

names of candidates and voters; we refer to such distances as neu-

tral/anonymous (neutrality refers to invariance with respect to

permuting candidate names and anonymity has the same meaning

for the case of voters); this is also why we seek pseudometrics and

not metrics. So far, neutral/anonymous distances did not receive

much attention in the literature, but recently Faliszewski et al. [26]

introduced the class of isomorphic distances.

3.1 dswap/dSpear-Isomorphic Distances
The main idea of isomorphic distances is that given two elections,

we find mappings between their candidates and between their vot-

ers, and then we sum up the distances between the individual pairs

of matched votes (using, e.g., the swap distance or the Spearman’s

distance); we seek mappings that give the smallest final distance.

Definition 3.1. Let E1 = (C1,V1) and E2 = (C2,V2) be two elec-

tions such that |C1 | = |C2 | and |V1 | = |V2 |. Let δ : C1 → C2 and

σ : V1 → V2 be two bijections.
3
For D ∈ {dswap, dSpear}, we define

dδ,σD -ID(E1,E2) =
∑
v1∈V1

dD (δ (v1),σ (v1)), and let dD -ID(E1,E2)

be the minimum of the dδ,σD -ID(E1,E2) values, taken over δ and σ .

Example 3.2. Consider two elections, E1 and E2, over candidate
sets C1 = {a,b, c} and C2 = {x ,y, z}. Election E1 contains voters
v1,v2,v3 and election E2 contains voters u1,u2,u3:

v1 : a ≻ b ≻ c, v2 : b ≻ a ≻ c, v3 : b ≻ c ≻ a,

u1 : x ≻ y ≻ z, u2 : z ≻ x ≻ y, u3 : y ≻ x ≻ z.

We define δ (a) = x , δ (b) = y, and δ (c) = z. Further, we let σ (v1) =
u1, σ (v2) = u3, and σ (v3) = u2. We note that δ (v1) = x ≻ y ≻

z, so dSpear(δ (v1),σ (v1)) = 0. Similarly, dSpear(δ (v2),σ (v2)) = 0.

However, dSpear(δ (v2),σ (v2)) = 4 because δ (v3) = y ≻ z ≻ x and

σ (v3) = z ≻ x ≻ y. All in all, dδ,σ
Spear

-ID(E1,E2) = 4. An exhaustive

search over δ and σ shows that, indeed, dSpear-ID(E1,E2) = 4.

The isomorphic distances, dswap-ID and dSpear-ID, are intuitively
very appealing—they capture even the smallest differences in the

structure between elections and have very natural interpretations—

but they are impractical; according to Faliszewski et al. [26], cur-

rently there is no simple way of computing dSpear-ID for elections

with more than a handful of candidates and voters. (the problem is

NP-hard, hard to approximate, and the known FPT algorithms are

too slow). Computing the dswap-ID distance is usually even harder.

Thus, while we would have liked to use dswap-ID or dSpear-ID, we
need a different distance.

3
Note that σ is a bijection over voter names so even if some two voters in V1 have the

same preference orders, σ maps them to different voters in V2 .

3.2 Positionwise and Pairwise Distances
We now introduce two new neutral/anonymous distances. The first

one is based on analyzing how frequently the candidates are ranked

on particular positions, and we call it the positionwise distance.
For an election E = (C,V ), a candidate c ∈ C and a position

i ∈ [|C |], we write ψE (c, i) to denote the fraction of votes from V
that rank c on the i-th position. We define the candidate distribution
vector of a candidate c as ΨE (c) = (ψE (c, 1),ψE (c, 2), . . . ,ψE (c,n)).
Given two vectors x = (x1, . . . ,xn ) ∈ R

n
and y = (y1, . . . ,yn ) ∈

Rn , we write EMD(x ,y) to denote the earth mover’s distance be-

tween x and y. Intuitively, this is the minimal cost of turning x into

y, where the cost of moving a value ∆ from position i to position j
in the vector is ∆ · |i − j |. Our EMD distance can be computed using

a well-known greedy polynomial-time algorithm.

Definition 3.3. Let E1 = (C1,V1) and E2 = (C2,V2) be two elec-

tions such that |C1 | = |C2 |. For a bijection δ : C1 → C2, we define

δ -POS(E1,E2) =
∑
c ∈C1

EMD(ΨE1 (c),ΨE2 (δ (c))). The positionwise
distance between elections E1 and E2, POS(E1,E2), is the minimum

of the δ -POS(E1,E2) values, taken over δ .

We use EMD in Definition 3.3 because it captures the idea that

being ranked on the top position is more similar to being ranked

on the second position than to being ranked on the bottom one, but

we could have used some other metric between vectors as well.

Example 3.4. Consider elections E1 and E2 from Example 3.2.

The distribution vectors for our candidates are as follows (we omit

the subscripts for Ψ to avoid clutter):

Ψ(a) = (1/3, 1/3, 1/3), Ψ(b) = (2/3, 1/3, 0), Ψ(c) = (0, 1/3, 2/3),

Ψ(x) = (1/3, 2/3, 0), Ψ(y) = (1/3, 1/3, 1/3), Ψ(z) = (1/3, 0, 2/3).

We see that EMD(Ψ(a),Ψ(y)) = 0, EMD(Ψ(b),Ψ(x)) = 1/3 because

to transform Ψ(b) into Ψ(x), we need to move value 1/3 from the

first position to the second one (so we multiply 1/3 by 1), and

EMD(Ψ(c),Ψ(z)) = 1/3. Thus for δ (a) = y, δ (b) = x , and δ (c) = z
we have δ -POS(E1,E2) = 2/3 and, in fact, POS(E1,E2) = 2/3.

The positionwise distance is based on the idea that the most

valuable information about a candidate can be extracted from the

positions that he or she occupies in the voters’ preference rankings.

In this sense this distance is related to the family of positional

scoring rules. Next we define the pairwise distance, which is inspired
by a class of voting rules that rely on analyzing the results of head-

to-head majority contests between the candidates.

Definition 3.5. Let E1 = (C1,V1) and E2 = (C2,V2) be two elec-

tions such that |C1 | = |C2 |. For a bijection δ : C1 → C2, we define

δ -PAIR(E1,E2) =
∑
(c,d )∈C1×C1

��ME1 (c,d) − ME2 (δ (c),δ (d))
��
. The

pairwise distance between elections E1 and E2, PAIR(E1,E2), is the
minimum value of the δ -PAIR(E1,E2) values, taken over δ .

Example 3.6. Let us again consider the two elections from Exam-

ple 3.2. The matrices of head-to-head competitions look as follows:

ME1 =


a b c

a 0 1/3 2/3

b 2/3 0 1

c 1/3 0 0

 ME2 =


x y z

x 0 2/3 2/3

y 1/3 0 2/3

z 1/3 1/3 0


For δ (a) = y, δ (b) = x , and δ (c) = z, the δ -PAIR(E1,E2) = 2/3, and

this is also the value of PAIR(E1,E2).
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(a) Positional distance vs dSpear-
ID; PCC = 0.937

(b) Pairwise distance vs dSpear-ID;
PCC = 0.786

Figure 1: Comparison of our distances. Each point on the
plots corresponds to a pair of elections, itsx coordinate gives
either their positionwise or pairwise distance, and its y co-
ordinate gives their dSpear-ID distance.

Both the positionwise distance and the pairwise distance are

pseudometrics defined to be neutral/anonymous. Yet, we can com-

pute positionwise distances in polynomial-time, but the pairwise

distance is intractable (indeed, it is similar to the NP-complete Ap-

proximate Graph Isomorphism problem [1, 33]). Nonetheless, we

can compute the pairwise distance by formulating it as an integer

linear program (we omit the details); in practice, this allows us to

compute distances between elections of up to around 20 candidates.

Proposition 3.7. There is a polynomial-time algorithm for com-
puting the positionwise distance. The decision variant of the problem
of computing the pairwise distance is NP-complete.

3.3 Choosing the Distance
Our computational results suggest that the positionwise distance is

our only option if we want to consider elections with 100 candidates

and 100 voters. Yet, we want to get an idea as to how meaningful

its results are, to find out if, perhaps, we should have relaxed our

ambitions and considered smaller elections.

To this end, we have generated 100 elections with 8 candidates

and 8 voters each,
4
and we have computed the dSpear-ID, position-

wise, and pairwise distances between each two (this gives 4950 pairs;

we have looked at elections with only 8 voters and 8 candidates to

be able to computedSpear-ID in reasonable time). In Figure 1 we plot

the comparison of the results between dSpear-ID and the position-

wise distance, and between dSpear-ID and the pairwise distance. In

these plots, each point corresponds to a single pair of elections, the

x coordinate is their positionwise distance (their pairwise distance,

respectively), and the y-coordinate is their dSpear-ID distance.

Already the visual inspection of Figure 1 indicates that dSpear-ID
is more strongly correlated with the positionwise distance thanwith

the pairwise one. In order to obtain a more substantial evidence,

we have ordered our pairs of elections (in an arbitrary way) and

formed three 4950-dimensional vectors of their distances, according

to dSpear-ID, the positionwise, and the pairwise distance. Then we

computed the Pearson Correlation Coefficient (PCC) between the

4
We have generated 10 elections from each of the following statistical cultures:

Impartial Culture, the Urn model with α ∈ 0.1, 0.2, the Mallows model with

ϕ = 0.01, 0.05, 0.1, 1D-Interval, 2D-Square, Conitzer’s single-peaked model, the

single-crossing model.

vector for dSpear-ID and the vectors for the positionawise and the

pairwise distance, respectively. For two vectors x = (x1, . . . ,xt )
and y = (y1, . . . ,yt ), their PCC is defined as (x is the arithmetic

average of the values from x ; y is defined analogously):

PCC(x ,y) = (
∑t
i=1(xi−x )(yi−y))/

√∑t
i=1(xi−x )2

∑t
i=1(yi−y)2.

PCC measures the level of linear correlation between two random

variables and takes values between −1 and 1 (its absolute value

gives the level of correlation and the sign indicates positive or

negative correlation; in our case, the closer a value to 1, the better).

The PCC for dSpear-ID and the positionewise distances turned

out to be 0.937, and for dSpear-ID and the pairwise distances, to

be 0.786. Thus, for our application, where we compare elections

sampled from statistical cultures, using positionwise distance is

likely to be meaningful, at least to the extent to which we can draw

conclusions based on small elections. (However, in general, the

positionwise distance and dSpear can differ arbitrarily as dSpear is
hard to approximate in polynomial time [26]).

4 CHARTING THE MAP OF ELECTIONS
We are ready to present our election testbed and its visualization.

To build it, we proceeded as follows. First, we assembled a number

of elections generated using the statistical cultures from Section 2.2;

we list the exact distributions, their parameters, and numbers of

generated elections in Table 1. All in all, we generated 800 elections

(each with 100 candidates and 100 voters), some from very popular

statistical cultures, and some from less typical ones, such as SPOC.

Then, we computed the positionwise distance between each pair

of them. We show statistics regarding (some of) these distances in

Figure 3. For each set of elections listed there, we give their average

distance to the elections from the other sets (or to the elections

within the set, on the diagonal), divided by 10 and rounded.

With the concrete values of the positionwise distances in hand,

we computed a mapping of the generated elections to a 2D space so

that the Euclidean distances between the points in this mapping re-

flect the positionwise distances between the elections. To compute

the embedding, we used the force-directed algorithm of Fruchter-

man and Reingold [31]. We present this visualization in Figure 2

and refer to it as our map of elections. We stress that the algorithm

does not explicitly optimize the embedding so that the distances

there are as proportional to the positionwise ones as possible. In-

stead, it seeks a compromise between the clarity of the presentation

and the quality of the embedding. Yet, we have hand-verified for a

number of elections that the map, indeed, roughly corresponds to

the computed positionwise distances. Thus the map can be used as

a source of intuitions, which, nonetheless, need to be verified.

4.1 Observations from the Map
Our map of elections (Figure 2) leads to a number of observations,

both regarding how election-related algorithms and social choice

phenomena should be tested, and regarding the statistical cultures

themselves. We have verified that our conclusions are supported

by the positionwise distances as well.

Impartial Culture and Urn Elections. Elections generated

from the Impartial Culture model cover a relatively small area of our

map. This confirms the well-accepted intuition that limiting one’s
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Table 1: Elections generated to form our testbed.

Model parameter # of Elections

Impartial Culture — 30

Urn model

α ∈ {0.01, 0.02, 0.05} 30 for each α
α ∈ {0.1, 0.2, 0.5} 30 for each α

Mallows model

ϕ ∈ {0.999, 0.99} 20 for each ϕ
ϕ ∈ {0.95, 0.75, 0.5} 20 for each ϕ
ϕ ∈ {0.25, 0.1, 0.05} 20 for each ϕ
ϕ ∈ {0.01, 0.001} 20 for each ϕ

Single-Peaked (Con.) — 30

Single-Peaked (Wal.) — 30

SPOC (Con.) — 30

Single-Crossing — 30

xD-Hypercube x ∈ {1, 2, 3, 5, 10, 20} 30 for each x
xD-Hypersphere x ∈ {2, 3, 5} 30 for each x

experiments to this model is likely to produce biased results. On the

other hand, if we consider the urn model (even for a few values of

the parameter α , as in our case), then we cover quite a diverse set of

elections. Indeed, in our experiment, the average distance between

the urn elections was the largest among the considered statistical

cultures. We believe that this is a strong argument to include urn

elections in experimental research on elections. Nonetheless, the

urn elections—as well as most other types of elections—have their

own, particular structure. Indeed, even though the urn elections

surround Mallows elections (for ϕ = 0.99) or the xD-Hypercube
elections, they almost never appear between them.

Mallows Model. The results concerning the Mallows model are

intriguing. For values of ϕ that are not very close to 1, the Mallows

model generates “islands” of elections that are similar to each other,

but quite different from most other elections (except for single-

peaked elections from the Walsh model; see below). In retrospect,

this behavior is easy to explain: For each value of ϕ, the generated
preference orders are, on the average, at some swap distance from

the center order; the Mallows elections for different values of ϕ
differ from each other because for them this average distance is

different, and differ from the other models because this kind of

correlation between the votes (which corresponds to the existence

of ground truth) does not appear in these models.

If one wants to use the Mallows model and it is not clear what

ϕ to use, then one might generate elections for random ϕ’s. One
natural approach, sometimes taken in the literature [32, 53], is to

choose the ϕ values uniformly at random. As in our map we used

values of ϕ that, roughly speaking, change exponentially, but our

Mallows “islands” are, roughly speaking, equally spaced, we also

suggest the following way of generating ϕ values: We first draw ϕ ′

from an exponential distribution, with probability density function

f (x) = (1/β) exp(−x/β) and set ϕ = 1 − ϕ ′ (repeat if ϕ < 0).

We have generated 200 elections using the two approaches (for

the latter, we used β = 0.5), as well as 10 Impartial Culture elections

and a single unanimous election, for comparison; then we computed

their visualizations—as for the full map—presented in Figure 4 (note

that, due to our visualization technique, the maps are not aligned

and, e.g., the positions of the Impartial Culture elections are not

Figure 2: Visual representation of the election testbed. Each
election is a dot whose colors give the statistical culture
from which it was generated (the color of the statistical cul-
ture’s label matches the color of its elections). For Urn and
Mallows elections we also provide the value of their ϕ and
α parameter.

Figure 3: Average distances between elections generated us-
ing some of our statistical cultures. Each cell gives the aver-
age positionwise distance between elections generated from
respective models, divided by 10 and rounded (diagonal
gives the average distance between elections from the given
distributions).

the same). Apparently, the latter approach gives more uniformly

spaced elections and, thus, might be preferable in experiments.
5

Single-Peaked and 1D-Interval Elections. First, we note that

single-peaked elections generated using the Conitzer model are

nearly indistinguishable from those generated using the 1D-Interval

model (as far as the positionwise distances go). Indeed, if we draw

5
To verify this, for both sets of elections we have computed each election’s average

distance to all the other ones in the set. Then, for these sets of values, we have computed

the Gini inequality index (its values are between 0 and 1; the closer to 0, the more

equal are the values). We expected that for a more uniform distribution we would get

a value closer to 0 and, indeed, for the exponential distribution we got 0.218 and for

the uniform one, we got 0.276. Thus the improvement is meaningful, but not huge.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

1346



Figure 4: Two maps of Mallows elections for two distribu-
tions of the ϕ value (uniform distribution on the left, expo-
nential distribution on the right). Each dot is an election; its
color specifies the ϕ value used (the darker, the closer to 1).

the ideal points of the candidates and voters uniformly at random

from an interval, then the process of forming the preference orders

of the voters is similar to the one used in the Conitzer model, except

that in the 1D-Interval model there are more correlations: A given

voter v ranks the candidate with the closest ideal point on top,

the next ranked candidate is either to the left or to the right of

the first one, and this happens with probability close to 1/2, and so

on. The correlations occur because the decisions regarding which

candidate should be ranked next are not made independently for

each voter, but are derived from the positions of the ideal points; still,

apparently, they are sufficiently small not to be easily detectable

using the positionwise distances between elections.

Our second observation is that single-peaked elections generated

using the Walsh model are very different from those generated

using the Conitzer one and, in fact, are much closer to those from

the Mallows model for ϕ = 0.75 (and, even though the map does

not show it clearly, are also quite close to Mallows elections for

smaller values of ϕ). To understand why this is a natural result, let

us consider a candidate set C = {lm , . . . , l1, c, r1, . . . rm } and the

corresponding societal axis lm ◁ · · · ◁ l1 ◁ c ◁ r1 ◁ · · · ◁ rm . Under

the Conitzer model, the probability of generating a vote with a

given candidate on top is 1/2m+1 (by definition of the model), but in

Walsh’s model these probabilities differ drastically. The probability

of a vote with lm on top (or, with rm on top) is 1/22m (because there

are 2
2m

different single-peaked votes for this axis, each of them is

drawn uniformly at random, and only one of them starts with lm ),

whereas the probability of generating a votewith c on top isΘ(1/
√
m)

(we omit the calculations). Generally,Walsh’s model generates votes

that are similar to c ≻ {l1, r1} ≻ {l2, r2} ≻ · · · ≻ {lm , rm }; i.e., they

are close to having a center order, as in the Mallows model.

Hypercube Elections. We observe that the x-dimensional hy-

percube elections are quite similar to each other, for a given x , and
also fairly similar to hypercube elections generated for other di-

mensions. One exception is that the 1D-Interval elections are more

different from the other hypercube one. This is understandable

since 1D-Interval elections are single-peaked and single-crossing,

whereas the other hypercube elections are not. Interestingly, the

positionwise distances were sufficient to recognize this difference.

Generally, hypercube elections form a large and diverse class, and

we recommend using them in experiments (in particular, using both
the 1D-Interval model and some model for a higher dimension).

Hypersphere and SPOC Elections. Similar observations as for

the hypercube elections apply to hypersphere elections. Yet, it is

quite interesting that hypersphere elections are generally much

more similar to the IC ones than to the hypercube ones. This con-

firms that the distribution of the ideal points in the Euclidean mod-

els has a strong impact on the generated elections. Further studies

are needed to recommend distributions that should be used in ex-

periments (as some may lead to particularly appealing classes of

elections, or to elections that are close to those appearing in reality).

The similarity between SPOC and hypersphere elections is re-

assuring. Indeed, 2D-Circle elections are, by their nature, a subset

of SPOC ones, and for higher dimensions we would not expect big

changes. Yet, the fact that SPOC/hypersphere elections are similar

to the IC ones is intriguing, because the former ones have quite rigid

structure, and the latter ones have none. The reason for this simi-

larity is that both under the IC model and the SPOC/hypersphere

models, if we look at a single candidate, then he or she appears at

each position in a vote with roughly the same probability (though,

in the SPOC/hypersphere models there are strong correlations be-

tween the positions of particular candidates). Thus elections gener-

ated from these models are similar with respect to the positionwise

distance. While this may look worrisome, in Section 5 we show

that this similarity is, in fact, meaningful.

Single-Crossing Elections. Elections generated using our

single-crossing model are fairly close to the Mallows elections (for

ϕ = 0.95) and not too far away from urn elections (for α = 0.5)

and hypercube ones. Interestingly, 1D-Interval elections—which

also are single-crossing—are farther away than higher-dimensional

hypercube ones. We do not have a good explanation for these facts.

5 TESTING THE TESTBED
To demonstrate the usefulness of our testbed, we apply it to answer

two questions regarding the Harmonic Borda (HB) voting rule [28].

Given an election and committee size k , the rule outputs a set of
k candidates, referred to as the winning committee. It chooses this
committee as follows: Consider a committee S , i.e., a subset of k
candidates, a voter v , and denote by p1, . . . ,pk the positions of

the members of S , sorted from the smallest (most preferred) to the

largest (e.g., for a vote v : c2 ≻ c3 ≻ c1 and committee S = {c1, c3},
we would have p1 = 2, p2 = 3). Then the dissatisfaction of v is∑
i ∈[k ] (pi−1)/i . HB selects a committee S that minimizes the sum

of the voters’ dissatisfaction values.

Rules such as HB have received quite some attention from the

research community (e.g., see the chapter of Faliszewski et al. [29];

HB is an OWA-based [40] committee scoring rule [27]). Unfortu-

nately, identifying a winning committee under HB is NP-hard [28],

but we can try to overcome this issue, e.g, by (1) formulating the

problem as an integer linear program (ILP) and solving it with an

off-the-shelf ILP solver, or by (2) designing polynomial-time ap-

proximation algorithms that find committees with close-to-optimal

dissatisfaction values. We show how our testbed can be helpful

in establishing how feasible is the ILP approach (i.e., how quickly

can we compute winning committees) and which of two given

approximation algorithms performs better.

Evaluating ILP Performance For each of the elections in our

testbed, we computed a winning committee of size 10 using an
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ILP solver (CPLEX; we used the ILP formulation for OWA-based

rules of Skowron et al. [52], applied to the case of HB). We report

the achieved running times in Figure 5, where the dots correspond

to the elections—arranged as in Figure 2—and the colors give the

running times (the darker a color, the longer the computation time;

we also ran this experiment for the PAV rule [38, 55] and we found

that the ILP solver needed very little time for each election).

Perhaps themost visible phenomenon is that the ILP solver needs

most time on Impartial Culture elections, and the farther elections

we consider (in terms of the positionwise distance) the less time

is needed. Thus, even though we were surprised to see SPOC and

hypersphere elections next to Impartial Culture ones, apparently

their common features make them difficult for our task.

Our results say that if we wanted to analyze the pessimistic run-

ning time of the ILP solver in more detail (e.g., for different election

sizes), then it would suffice to consider IC elections. Without the

testbed, reaching and justifying this conclusion would be harder.

Evaluating Approximation Algorithms Two natural approxi-

mation algorithms for HB areGreedyHB and RemovalHB. GreedyHB
starts with an empty committee and works in k iterations, where in

each of them it adds to the committee a single candidate, so that the

resulting committee has as small total dissatisfaction as possible.

RemovalHB proceeds similarly, but it starts with a committee con-

taining all candidates and works inm−k iterations, in each of them

removing a single candidate, so the resulting committee has as small

total dissatisfaction as possible. Both algorithms are well-known in

the literature and are used for various voting rules [25, 52, 54].

We ask which of the algorithms achieves better results. To this

end, for each election in the testbed we (1) compute a committee of

size 10 using both algorithms, and (2) for each of these committees

we compute its misrepresentation ratio, i.e., we divide the dissatis-
faction it provides by the dissatisfaction of the winning committee.

The lower the misrepresentation ratio (i.e., the closer it is to 1), the

better is the committee. We show our results in Figure 6, where the

dots represent the elections—arranged as in Figure 2—their color

specifies the algorithm which achieved lower misrepresentation

ratio (blue for GreedyHB, red for RemovalHB, green for a tie; these

are usually the cases where both algorithms computed the same

committee), and the intensity specifies the achieved misrepresenta-

tion ratio (the darker the color, the higher it is).

The results are not as conclusive as before, but still useful. Fore-

most, we see that there is no clear winner among the algorithms and

both perform similarly (technically, one cannot draw this conclu-

sion from Figure 6, but we verified that in the areas where blue and

red dots are interleaved, both algorithms perform very similarly).

Yet, there are some surprises. For example, RemovalHB performs

significantly better on 1D-Interval/Conitzer’s single-peaked elec-

tions, whereas GreedyHB is significantly better on 2D-Square and

3D-Cube elections (for higher dimensions, this effect diminishes).

Also, RemovalHB performs somewhat better for SPOC/hypersphere

elections, but not for Impartial Culture ones (so, sometimes the

structural differences between these elections are significant).

Generally, GreedyHB and RemovalHB are complementary and

we should use them both. Indeed, in 90% of our elections the better

of the algorithms achieved misrepresentation ratio below 1.05; in

many cases the other algorithm gave a notably worse result.

Figure 5: Map of elections, where the color corresponds to
the running time of the ILP solver for Harmonic Borda on a
given election (the darker, the longer the running time).

Figure 6: Map of elections, where the color corresponds to
the algorithm achieving lowermisrepresentation ratio (blue
for GreedyHB, red for RemovalHB, green for a tie); the in-
tensity of the color corresponds to the value of this algo-
rithms’ misrepresentation ratio (the darker, the higher).

6 FUTUREWORK
Our work leads to a number of open problems, such as: (1) How to

evaluate the quality of neutral/anonymous distances? What further

distances to consider? (Perhaps, the ideas regarding compiling vot-

ing rules [13] may be inspiring.) (2) How to generate single-crossing

elections uniformly at random?How to generate single-peaked elec-

tions between those of Conitzer’s and Walsh’s models? (3) What

real-life elections are similar to those from our testbed?
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