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ABSTRACT
Modeling and predicting human behavior pose a difficult challenge
for AI and other related fields. Some current techniques (e.g., cogni-
tive architectures) are able to model people’s goals and actions from
little data, but have poor predictive capabilities. Other methods (e.g.,
deep networks) have strong predictive capabilities but require large
amounts of data to train the model; such abundant empirical data
on human performance is not available for many human-based
tasks. We show a novel and general method of generating copious
synthetic data of human behavior using a cognitive architecture,
and then use the data to train a deep network classifier to predict
ensuing human actions. We test our approach by predicting human
actions on a supervisory control task; the results show that our
approach provides superior prediction when compared to training
a classifier with only (limited) empirical data.
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1 INTRODUCTION
We are interested in building predictive models of human behavior.
In the types of situations we envision, people perform a series
of actions with an overall objective or goal to accomplish. These
actions are, in a sense, discrete, such as picking up an object or
clicking an icon on a computer monitor. However, these actions are
discrete only at an abstract level; as part of clicking an icon on the
screen, a person has to to (1) decide what object to click, (2) visually
find the object, (3) move the mouse to that location, and (4) finally
click on the object. By taking advantage of the thought processes
that lead up to an action, we can presumably build models of the
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human behavior to predict the action before it occurs and provide
assistance to the human performing the task.

Modeling processes such as this, as well as of human-level behav-
ior and intelligence in general, is one of the core goals of artificial
intelligence (see [16] for a recent survey of current approaches).
Modeling techniques cover a wide variety of human behavior, data
types, and inference types (such as classifying behavior vs. pre-
dicting behavior). One way to delineate the space of models is by
distinguishing between those that focus on interpreting the out-
ward observations of behavior (such as statistical approaches), and
those that focus on understanding the internal processes driving
behavior (such as computational cognitive models).

The different emphases of these models lead to different data
requirements for training and validating them, as well as different
insights that they can provide. Computational cognitive models,
for example, are typically developed to capture human behavior on
a specific task (e.g., controlling a group of UAVs in a supervisory
control task). Conceptually, a cognitive model is like a special com-
puter program for a task that is executed within an encompassing
architecture that constrains the model’s execution to mimic human
behavior on that task (e.g., [3, 20, 27]), including the variability
of human behavior (e.g., human error). Developing such computa-
tional cognitive models typically relies heavily on the architecture
itself. Because much data and experimentation goes into developing
the architecture over the span of years, validating individual models
requires relatively little data on the model’s task compared to other
statistical AI approaches – an experiment or two of human behav-
ior on the task is not uncommon to be sufficient data to validate a
cognitive model [13, 28]. Because of their emphasis on maintaining
fidelity to the processes of human cognition, computational cogni-
tive models typically focus on explaining behavior, not predicting
it.

Current statistical approaches, in contrast, can provide strong
predictive models, but have relatively little process understanding
about why people behave the way they do. For this reason, these
approaches require very large amounts of data to train effectively,
even with current efforts striving to lessen it.

Generally, when considering tasks that involve human behav-
ior, there is very little clean and labeled empirical (e.g., human)
data available. For example, when considering supervisory control
tasks, the data takes the form of eye fixations (e.g., what a person is
looking at on their computer monitor) to provide insights into the
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thought processes leading up to human actions, and mouse clicks to
represent the actions themselves. Eye fixations are noisy indicators
of actions that people will take for a number of reasons: people can
look at something without fixating on it [9]; people use different
perceptual strategies and have different levels of spatial and declar-
ative memory; current eye-tracking sensors are still imperfect both
spatially and temporally; etc. Thus, data is expensive to collect and
difficult to label, making it extremely challenging to collect enough
data to train predictive statistical models on supervisory control
tasks. This challenge extends to other domains, as well.

To address this, we introduce a new, general methodology for
generating predictive models of human behavior that focuses on
combining the relatively low data needs of computational cognitive
models with the strong predictive capabilities of statistical models.
To this end, we begin by developing cognitive models of different
strategies people use to complete tasks, using the little empirical
data available. We can then use those cognitive models to generate
arbitrarily large amounts of synthetic data of human performance
on the tasks.

This synthetic data is a major contribution of this paper, and
can capture the variability of human performance on tasks both
because we can capture different strategies people use, as well as
because of the understanding of human variability that is part of
cognitive models. The data is also generated with labels in place,
since the cognitive model knows where it is looking, what it is
doing, and why.

This large amount of data, in turn, allows us to train robust
statistical learning models of human performance on the task that
can provide the predictive capabilities required to provide assistance
to human partners on these tasks.

We demonstrate and evaluate our methodology on a supervisory
control task, where a human operator is responsible for supervis-
ing and interacting with several UAVs concurrently. Behavior on
the task is recorded via eye fixations and mouse clicks. This is a
difficult task where, as we will show, it is extremely challenging
to collect and process even relatively small amounts of empirical
data. Because of the way in which cognitive models capture the
thought processes of human behavior, however, we can use cogni-
tive models of this task to generate data that takes the same form
as the human empirical data; namely, eye fixations leading up to
a mouse click and action. On this task, our approach results in a
classifier that provides superior prediction when compared to a
classifier trained with only the limited empirical data.

We next discuss background on different ways of modeling be-
havior, and the pros and cons of each.We then introduce the specific
supervisory control task we will use to demonstrate our approach.
Next, we discuss the specific cognitive architecture we employ,
cognitive model development, data generation, and training of a
statistical model. Finally, we describe howwe evaluate our approach,
and end with a discussion of the wider implications.

2 BACKGROUND
2.1 Modeling people’s internal processes
ACT-R [2, 3] is a computational cognitive architecture that enables
models of human behavior to be built with a high degree of fidelity
to human cognition. ACT-R focuses on capturing the same types of

representations, processes, and strategies that people use. ACT-R
has been used to model development, problem solving, memory, ro-
bot interaction, decision making, and many more. ACT-R’s strength
is in providing a process-level description of human experiments,
yielding performance that matches the experimental data (e.g., re-
action time). ACT-R is described more below; we use it in this paper
to model human behavior.

Other architectures and frameworks for capturing human cog-
nition also exist. Soar [20] is a different computational cognitive
architecture, but with a focus more on the computational building
blocks of intelligence rather than modeling the specific processes
and representations of humans. Soar has been used to model cate-
gorization, learning, language, both episodic and semantic memory,
interactive task learning, and many more. Soar’s strength is in cre-
ating models that can act intelligently while being computationally
efficient and scalable.

GOMS [17] is a framework that models the Goals, Operators,
Methods, and Selection Rules of a human performing an computer
interface. Each operator has a specific execution time; when the
operators are combined via goals, methods, and selection rules,
quantitative predictions of how long a specific task will take can
be made. GOMS has been used to model CAD design, telephone
workstation efficiency, and many more. GOMS’s strength is in de-
termining how long a specific interface action (or series of actions)
will take, and then comparing alternatives to determine the most
time-efficient approach.

There are, of course, many other approaches tomodeling people’s
internal processes and strategies. Mental model theory focuses on
how people reason [18]; BPL focuses on concept learning [21];
diffusion models focus on how people remember [26].

2.2 Modeling people’s outward actions
Other areas of AI have, in contrast, created strong methods for mod-
eling people’s outward actions without regard to how orwhy people
perform those actions. Statistical approaches like hidden Markov
models excel at inferring future actions that people will perform
(e.g., [24]). Various configurations of neural networks have also
been extremely successful at sequence prediction [33, 34] and activ-
ity recognition and classification [19]. However, most approaches
require substantial amounts of training data to perform adequately.
Deep neural networks, for example, typically require approximately
1000 instances per test case in order to develop accurate and effec-
tive models. In fact, one of the cottage industries within AI is to
construct and publish large datasets that can be used to train deep
neural networks. For example, MNIST [23] contains 60,000 hand-
written numbers, ImageNet [8] contains 1.5M images, Sentiment140
[11] contains 1.6M tweets, and more datasets are appearing at a
regular rate.

Even more critical to the amount of data generally available is
the need for the available data to be labeled. This presents an addi-
tional challenge that scientists have found several different ways
to address. For example, ImageNet used Amazon Mechanical Turk
to label images [8]. For MNIST, researchers directed participants
to write down specific numbers, so the data and labels were gener-
ated concurrently [12]. Sentiment140 did not hand-label sentiments,
instead using noisy labels (emoticons) to classify tweets [11].
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Together, these two aspects of statistical approaches imply that it
is extremely challenging to get sufficient empirical data in order to
train effective statistical models of human behavior. In part because
of this, there are no large datasets on human behavior like the
above standard dataset examples. We further discuss the involved
challenges next.

2.3 Learning from empirical human data
In addition to what is outlined above, there are a series of additional
challenges to address when training predictive statistical models on
empirical human data. These problems can be divided into a lack
of data challenge, a labeling challenge, a strategy challenge, and a
balanced data challenge. Each of these challenges is discussed below.
We revisit these challenges in the discussion section and discuss
how our approach addresses them.

Lack of data challenge: Human data collection is very ex-
pensive for highly skilled or technical tasks. Amazon Me-
chanical Turk has increased the ability to collect data from
relatively unskilled workers [25], but collecting data on how
skilled performers execute their tasks can become prohibi-
tively expensive in terms of money, time, or both [4]. Note
that there are some existing methods of data augmentation
to partially address this problem, but they generally do not
apply to human behavioral tasks.

Labeling challenge: Labeling an individual’s actions and goals
from behavioral observations like where a person is look-
ing is extremely challenging and requires a specialized set
of techniques, including knowledge of human thought pro-
cesses and cognition. Determining an individual’s purpose
for every observation is particularly difficult in dynamic
tasks or environments [32], and considering the noisy as-
pects of human cognition.

Strategy challenge: In order to achieve a particular objective,
people use a variety of strategies [10, 22]. Because of the
different strategies available on even very simple tasks, it
can be very difficult to interpret how specific actions lead
to a person’s goals or objectives; as above, this is especially
true given the noisiness of human cognition and behavior.

Balanced data challenge: When there is relatively little data,
and that data can be highly variable, the prediction classes
can be very imbalanced. While this can be a problem with
big data, it can be exacerbated when only smaller amounts of
data are available and there is less data available to capture
the true distribution. Thus, any classification or prediction
system will be biased to those more frequent classes, poten-
tially leading to incorrect results [30].

3 TASK DESCRIPTION
In order to address the above challenges for data on human behavior,
we turned to a supervisory control task. Specifically, we studied how
people performed when interacting with the Research Environment
for Supervisory Control of Heterogeneous Unmanned Vehicles
(RESCHU) [5] simulator. RESCHU is an interactive system that has
a variety of objectives and strategies and that uses complex decision
making, problem solving, and reasoning.

Figure 1: A screenshot of the RESCHU environment simula-
tor used in this experiment.

RESCHU is a heterogenous supervisory control task. The in-
terface of the supervisory control simulation, shown in Figure 1,
has three main sections: the map panel, the status panel, and the
payload panel. The map panel (Figure 1, right panel) displays UAVs
(blue half ovals), targets (red diamonds) towards which UAVs are
moving, and threats (yellow circles) which should be avoided by
UAVs. The status panel (Figure 1, bottom left panel) shows the sta-
tus of the UAVs and includes information on vehicle damage, time
until the vehicle reaches a waypoint or target, and time remaining
in the simulation. The payload panel (Figure 1, top left panel) is
used to perform a manual visual acquisition task once the UAV has
reached the target (this task is not critical to this work; for those
interested, it is more fully described in [6]).

The operator’s high level job in the simulation is to monitor
UAVs as they proceed to specific target areas in the map panel, and
to perform the manual visual acquisition task once the UAV has
reached the target. Throughout the session, 5 UAVs moved along
straight-line trajectories towards an automatically-assigned target.
There were always 5 targets present on the map. At the start of the
simulation the UAVs were randomly assigned to different targets;
thus, the UAVs might not be directed towards the optimal target.
After a target was reached and the visual acquisition payload task
was complete, the UAV was randomly assigned to a new currently-
unassigned target, which again might not be optimal.

There were also eighteen threat areas. Every four seconds, one of
the eighteen threats was randomly selected to change its position,
potentially in the path of a UAV. If the UAV passed through a threat,
it incurred damage, and would eventually become incapacitated if
it were damaged enough.

The simulation was a complex task with multiple events hap-
pening in parallel. More than one UAV could be waiting at their
respective targets for the operator to perform the payload task, and
more than one UAV could be on a path intersecting a threat area at
a time.

Operators could change the target of a UAV at any time by
clicking on the UAV and then clicking on the UAV’s new target.
Operators could also drag a UAV’s goal point to a different destina-
tion. Generally, this occurs when a UAV is heading to a suboptimal
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target, when a UAV’s path to a target brings it through a hazard
area, or to keep an area saturated or balanced with UAVs. This
action – changing the goal of a UAV to a different target – is thus
critical to the success of the operator. By being able to predict what
new target a user is going to send a UAV to, the system should ad-
ditionally be able to facilitate the interaction (e.g., by pre-selecting
the object or highlighting the object for easier selection). Therefore,
we focused our modeling and prediction on this specific component
of the supervisory control task.

The empirical data we consider here was based on ten partici-
pants using RESCHU. Participants were provided extensive training
on the RESCHU system, through an online tutorial, in-person in-
struction, and walk-throughs. Participants also had as much time
as they wanted to use the entire system until they were well-versed
in the intricacies of RESCHU. Participants were all volunteers (no
incentives), healthy, with age less than 30 years. Details on the
methodology of the study are available in [6].

After a participant was fully trained on RESCHU, they were
seated approximately 66 cm from the computer monitor and were
calibrated on an SMI eye tracker. Eye tracking data were collected
using an SMI RED eye tracker operating at 250 Hz. A fixation was
defined using the dispersion method based on a minimum of 15
eye samples within 60 ms and within 50 pixels (approximately 3° of
visual angle) of each other, calculated in Euclidian distance. The eye
tracker and the RESCHU simulation were synchronized, such that
the simulation sent the eye tracker an update of its state each time its
state was updated (i.e., every 500 ms). Fixations on specific objects
were automatically identified after all data collectionwas completed.
Fixation labels were manually checked in order to verify that the
eye-tracker was performing within tolerance. The simulation also
logged all mouse clicks, indicating (when appropriate) what object
was clicked on at different times.

All instances of changing a UAV’s target weremanually extracted
from the simulation. A total of 200 sequential process traces on this
subtask, with eye fixations and mouse clicks listed in chronological
sequence, were created by these participants. Collecting, extracting,
verifying, and labeling the data took, conservatively, 80 hours.

4 ACT-R/E
We chose the cognitive architecture ACT-R/E to model human
performance on the RESCHU task because we needed a cognitive
architecture that captures human behavior at a fine-grained level of
analysis (goals, eye fixations, physical actions, etc.), and because it
has a long history of providing detailed process descriptions of how
people perform tasks [2]. Additionally, it can easily model different
strategies and can generate large amounts of data with human-
like variability, an important component for training predictive
models [15]. Note, though, that our methodology should work with
any cognitive architecture, depending on the task and the level of
granularity desired.

ACT-R/E (Adaptive Character of Thought- Rational/Embodied)
is a hybrid symbolic/sub-symbolic production-based system based
on ACT-R [31]. For the purposes of this report there are no critical
differences between ACT-R and ACT-R/E. An ACT-R/E model is,
essentially, a set of if-then rules that make requests and access
information in the model’s working memory (which is designed

Figure 2: An architecture diagram of ACT-R/E.

to reflect people’s working memory). Depending on the current
contents of working memory, different if-then rules can fire, pro-
ducing behavior and potentially changing the contents of working
memory to encourage other if-then rules to fire. These sequences
of firing if-then rules capture the process of human cognition and,
via the contents of working memory, are influenced by what the
model sees, knows and does (just like people are).

More technically, ACT-R/E consists of a number of modules,
buffers (that collectively represent working memory), and a central
pattern matcher. Modules contain a relatively specific cognitive
faculty associated with a specific region of the brain. For each
module, there are one or more buffers that communicate directly
with that module as an interface to the rest of ACT- R/E. At any
point in time, there may be at most one item in any individual buffer;
thus, the module’s job is to decide what and when to put an object
into a buffer. The pattern matcher uses the contents of the buffer to
match specific productions (if-then rules). ACT-R/E interfaces with
the outside world through the visual module, the aural module,
the motor module, and the vocal module. Other current modules
include the intentional, imaginal, temporal and declarative modules.
ACT-R/E perceives the physical world by either robotic or virtual
sensors [31]. ACT-R/E’s goals are to maintain cognitive plausibility
as much as possible while providing a functional architecture to
create models of human-level intelligence.

We discuss themodules that are especially relevant to this project
below. Figure 2 shows a schematic of ACT-R/E, which is discussed
more fully in [31].

4.1 The Intentional Module
The intentional module is used to set, change, track, and remove
goals. Like people, ACT-R/E does not enforce a strong goal order
or goal-stack [1] and enables both top-down and bottom-up goal
execution.
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4.2 Declarative Module
The declarative module provides a method to encode, store, and
retrieve items from long-term memory into working memory. This
helps support, for example, step (4) above of visually acquiring
an object, below. Because people don’t always retrieve the correct
memory, it is critical in allowing cognitive models to capture how
long a specific memory takes to remember and the likelihood that
a specific memory is correctly retrieved. This provides another
important source of cognitively-plausible variability.

4.3 The Visual Module
The visual module is used to provide a model with information
about what can be seen in the current environment. This module
is what finds objects in the world that, for example, are needed
to perform an action. Critically, numerous empirical studies have
shown that there is a specific set of perceptual and declarative steps
that need to occur in order for a person to recognize, understand,
and identify an object in the world in order to take action on it [7]:

(1) People set a goal to search for specific features (e.g., color or
shape);

(2) People move their attention to objects that have those fea-
tures;

(3) People make a saccade to that object and identify it visually
(e.g., provide an internal label);

(4) People make memory retrievals in order to interpret what
that object is in the current context

Additionally, because perceptual attention is rarely on the same
thing for an extended period of time, there is a great deal of vari-
ability where people “look around” in environments, especially
dynamic ones. ACT-R/E is also able to capture this variability in a
cognitively plausible way.

4.4 Motor Module
ACT-R/E’s motion is controlled by the motor module. In this work,
motor is used to control physical actions (e.g., mouse movement
and clicks). It can be used to provide cognitively-plausible mouse
movements including timing and variability.

4.5 Model Trace Logging
Given an ACT-R/E model of a task, we can easily and readily ex-
ecute that model to generate synthetic observational data labeled
with observations, actions, and the goals behind those actions. Re-
call that when a model is executed in the surrounding architecture,
behavior is produced by firing if-then rules matching against the
fluctuating contents of working memory. At each step of the way,
the architecture can log what is occurring. It can log, for example,
what the model saw as it executed (such as by looking at the visual
module’s fixations), and what it did (such as by recording actions
taken by the motor module). Each time it logs these events, it can
also record the goal driving the events by inspecting the current
state of the intentional module. As we show below, this execution
and logging can happen very rapidly, allowing us to quickly gener-
ate multiple logged sequential process traces of simulated human
performance a model’s task.

5 MODEL DESCRIPTION
In this paper, we focus on an important component of the RESCHU
task: changing a UAV’s target. As discussed earlier, this action
occurs for a variety of reasons, including avoiding a hazard area,
or changing to a more efficient target. There were several different
interface methods for changing a UAV’s target, as described above.
Predicting what action a person is about to take (i.e., what target a
user will send a UAV to next) could allow the system to facilitate
the interaction by pre-selecting the object, or by suggesting a better
one.

People also use different cognitive strategies to change a UAV’s
target. The two strategies that we model here are a planning strat-
egy and an opportunistic strategy. Most people begin with a plan-
ning strategy and then switch (sometimes frequently) to an oppor-
tunistic strategy, especially in dynamic tasks [14, 29].

We next describe these two strategies, as well as our cognitive
models of each of them. We describe them here generally; for those
interested, we can share the model code upon request. Additionally,
note that these models were not complicated or difficult to build:
they relied on the architecture and common known programming
idioms for cognitive architectures.

5.1 Planning Strategy
The planning strategy captures that people sometimes plan a few
actions ahead, or search for the best action to do, before performing
the steps of action. For the goal of changing a UAV’s target, the
ACT-R/E model of this strategy uses the intentional module to
organize its actions and drive its behavior. The model first searches
for a UAV whose target needs to be changed (because it is on a
collision course with a threat or needs to move to a closer target,
etc.), primarily by leveraging the visual module to see and the
declarative module to interpret what it sees. It then has to hold this
target in its working memory while continuing on to search for an
appropriate new target (e.g., one that does not not intersect a hazard
or that is closer). The model then makes the appropriate interface
actions (e.g., clicking on the UAV, selecting a change-target from
a drop-down menu, and then clicking on the desired target) using
the goal and motor modules. The model additionally searches for
other threats and checks other UAVs throughout the execution of
the action.

5.2 Opportunistic Strategy
The opportunistic strategy recognizes that people sometimes do
not plan ahead, and just take the best or convenient action in that
moment. The ACT-R/E model of this strategy still has the goal, via
the intentional module, to re-route the UAV; however, it sequences
its actions differently. It first searches for a UAVwhose target needed
to be changed, and then clicks to select the UAV without a specific
target yet in mind, using the visual, declarative and motor modules.
Next, the model searches for a target where the UAV could be sent
using the visual and declarative modules. After the appropriate
target is found, it clicks on it to change the UAV to go to that target
using the motor module. The model additionally searches for other
threats and checked other UAVs throughout.

The differences between the two models are subtle, but they
reflect different cognitive strategies of accomplishing the human’s
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goals. These differences arise from human’s working memory con-
straints: the planning model requires searching for a target while
remembering which UAV needs to be selected, while the oppor-
tunistic models requires less memory but is less effective. These
subtle differences in strategy allow the models to collectively cap-
ture the variability of human behavior while executing the task.
A critical aspect of both models is that there is enough simulated
time to execute both strategies within the constraints of the task.

5.3 Synthetic Data Generation
With the two strategy models in hand, we are able to use them to
generate variable synthetic data of humans performing the task.
Critically, these models can generate traces of observational data
and actions that were identical in form to the traces that were
generated from the human participants, including eye fixations
and mouse clicks listed in chronological order. The models can
additionally attribute eye fixations and mouse clicks to the eventual
action that was driving that behavior (e.g., its eye gaze was fixating
on a specific target because it was considering sending a UAV
to it). Further, because of the way that the models accommodate
human variability, they can generate synthetic data reflecting that
variability, such as with noisy eye fixations, reaction times, etc. All
together, both the planning model and the opportunistic model
were each run 20,000 times to generate 20,000 individual, distinct
traces of synthetic human performance for each strategy. These
traces were stored in computer files alongside the saved traces from
the empirical data until they were preprocessed for the deep neural
network, described next.

6 DEEP NEURAL NETWORK
To predict a human’s next action, we turn to deep neural networks
as a common and effective way of performing statistical prediction.

Our goal was to take sequential process traces from either the
ACT-R/E models or empirical data and output a prediction of the
user’s upcoming action (here, again, which target that the user is
going to send a selected UAV to).

6.1 Model Inputs and Outputs
To begin, we converted each trace into a padded 200 length vector.
The vector consisted of each individual eye fixation and mouse click
in the trace. For example, “fixation-uav4”, “fixation-tar2”, “fixation-
carrier”, “action-select-uav1” (representing looking at UAV4, then
target 2, then the carrier, and then clicking on UAV1) could be part
of a vector that was fed into the network. The entire vector was the
input into the network. The predicted action of interest was not, of
course, part of the input vector.

The model then provided an output prediction of which target
was about to be selected.

6.2 Model Architecture
The overall architecture of the network is shown in Figure 3. The
first layer of the network, an embedding layer, generates a fixed-
length numerical representation of the input vector. For each value
of the vector, the layer outputs a matrix of floating points where
each original item in the vector is represented by a 5-dimensional

Figure 3: The predictive deep network architecture. It takes,
as input, vectors of consecutive eye fixations and mouse
clicks (actions); it outputs predictions of which target the
user is about to click on in order to send the UAV to it.

embedding vector. This simplifies the computations and representa-
tions needed, and allows for relationships across items in the input
vector.

The embedding layer is followed by a 1 dimensional convolu-
tional layer, a max pooling layer, and a fully-connected 30-unit
layer with a 20% dropout rate. The final layer was a fully-connected
output layer with a softmax activation to optimize the action with
the highest predicted value.

Note that a recurrent neural network was considered as an al-
ternative to the current architecture; because the structure of the
problem was not a next-item prediction, but rather an accumulation
of evidence prediction, the model above was a more appropriate
choice than a recurrent architecture.

7 EXPERIMENTS AND RESULTS
We developed our experiments to answer the following series of
questions. First, can a cognitive process model be used to facilitate
generating predictive models of human behavior? Second, how
effective were the different strategies in capturing the variability of
human behavior, both separately and together? Finally, does com-
bining the model and empirical data increase the overall predictive
power of the model versus training with one or the other alone?

To this end, we train deep networks under several different
conditions:

Baseline: The limited empirical data available was used to
train the model.

Planning: All synthetic data generated by the planning strat-
egy model was used to train the model.

Opportunistic: All synthetic data generated by the oppor-
tunistic strategy model was used to train the model.

Combined: Synthetic data from the planning strategy and
opportunistic strategy models were combined and used to
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train the model. In order to keep the amount of training
data constant across model-training scenarios, half of the
planning data and half of the opportunistic data was used in
all combined conditions.

Planning+Empirical: All synthetic data generated by the plan-
ning strategy model, as well as the the empirical data, were
used to train the model.

Opportunistic+Empirical: All synthetic data generated by
the opportunistic strategy model, as well as the empirical
data, were used to train the model.

Combined+Empirical: Synthetic data from the planning strat-
egy and opportunistic strategy models were combined and,
along with the empirical data, were used to train the model.

For all models, 10-fold cross validation was used to divide the
empirical data into training and testing data. All conditions used the
same folds for training and testing, and all models were evaluated
on the empirical data.

7.1 Results
Recall that correct performance is when themodel chooses the same
target chosen by the user. We consider four different baselines for
comparison.

The first two baselines we considered are simple heuristics for
predicting a person’s next action that did not require explicit models.
One possible naive heuristic that could predict what target was
acted upon could be “the last target looked at will be the one acted
upon.” However, this does not seem to be the case: only 30% of the
time was the last target actually selected as the UAV’s next goal.
Another possible heuristic could be “the target looked at the most
will be acted upon.” This also does not seem to be the case: only
23% of the time was the most frequent target selected as the UAV’s
next goal. Unsurprisingly, even on a moderately complex dynamic
task, simple heuristics can not predict final actions.

The third baseline we considered was that of the baseline deep
network trained with only empirical data. Its performance was not
particularly strong; it selected the correct target for the UAV 40% of
the time. While this was better than the simple heuristics above, it
is still not adequate. The reason this baseline deep network did not
perform well was almost assuredly because of the small amount of
available empirical data (as suggested above and discussed more
below).

The final baseline we considered was a naive Bayes model, which
can perform well on more limited data. The accuracy of the naive
Bayes model was, in fact, than the other baselines at 55% accuracy.
The naive Bayes model is not, however, as good as the combined
models described below.

The overall results are shown in Figure 4, including the baseline
deep network as the left-most bar and the better simple heuristic
shown as a horizontal line. This shows the percentage of test ex-
amples where the different deep networks correctly predicted the
target that the user would next assign to the UAV. We discuss the
results with respect to the questions above.

The most basic and important question is whether our overall
methodology – using a cognitive process model to generate syn-
thetic data that is then used to train a deep network – can be used
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Figure 4: Predictive model results. The X-axis indicates DL
models trained with different types of empirical and syn-
thetic data. The Y-axis is the trainedmodel’s accuracy on the
test data; the horizontal line is performance from a naive
approach. Details of each model condition, and the baseline,
are in the text.

to predict human behavior. As Figure 4 suggests, all synthetically-
trained models are superior to the empirically-trained model. Be-
cause predicting human behavior remains extremely challenging
for AI and cognitive science, this first result is encouraging.

We next consider the success of the cognitive model in capturing
people’s different strategies for the task. Both the opportunistic-
trained model and the planning-trained model were better than
the pure empirical-trained model, though the opportunistic model
perform much better than the planning model. This indicates that
we have successfully identified and modeled strategies that people
use on this task.

To see whether combining strategies increases the power of the
model, we next consider results where data from both strategies
is used to train the deep network (using the same amount of total
data). The results show that the combined model that used both
planning and opportunistic synthetic data to train the network
performed better than either strategy alone. This indicates that, for
complicated decision-making tasks, capturing different strategies
people use is a key facet of giving the statistical models enough
variability to capture user behavior and predict future actions.

The last critical question concerns combining some of the em-
pirical data with the synthetic data. This is of particular interest
because it is possible that the ACT-R models only approximate
the true distribution of what people actually do during this task;
additional strategies may have been missed; the modeling frame-
work may be lacking something, etc. One way to deal with this
possibility is to integrate a portion of the empirical data with the
synthetic data. As Figure 4 shows, integrating empirical data and
synthetic data did slightly increase prediction accuracy for all three
strategy conditions, indicating that including a little empirical data
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with the synthetic data can further boost performance. Statistically,
the Combined+Empirical model performed better than all other
models (p < 0.05) except the Combined model, where it performed
marginally better (p < 0.10).

8 DISCUSSION
We have introduced a novel system architecture that combines
cognitive and statistical AI models to predict human behavior from
limited amounts of data. The strength of our approach relies on
using a model that captures internal processes (cognitive models) to
generate data for a model that can predict behavior using outward
observations (deep networks). We used a computational cognitive
architecture (ACT-R/E) to model the internal states and different
strategies that people used in a dynamic supervisory control task.
The cognitive model was able to generate a large amount of diverse
data (traces of its behavior on the task) that could then be used to
train a deep network. The deep network was then able to predict
actions that a human will soon take as they perform their task. We
found that deep networks trained on synthetic data representing
only one strategy for completing the task was able to outperform
deep networks trained only on the limited empirical data; networks
trained on multiple strategies, however, far outperformed both of
those conditions.

Earlier we discussed several challenges that arise when predict-
ing human actions with relatively little empirical data. We revisit
these challenges below and describe how our work resolves each
of them.

Lack of data challenge: In this task, as in many other tasks
of human behavior, we had very little human data. We were
able to augment the data we had by building high fidelity
computational cognitivemodels to generate large amounts of
synthetic process traces. These process traces were identical
in form to the empirical data, which allowed us to integrate
them together. Note that there are other methods of data
augmentation to address this problem, but most of them
are not applicable to human behavioral tasks. For example,
rotating and cropping images to increase the training set does
not work on individual sequential process traces. Nor does
performing large-scale resampling and combinatorials to
increase the data. These approaches struggle with sequential
process traces we consider here because there is a strong
structure to the individual components in the sequence. The
structure is generated naturally by a cognitive model, but
more arbitrary methods of combining or mixing them do
not seem to be successful.

Labeling challenge: We used a mix of automatic and manual
methods to label and validate the empirical data (eye fixa-
tions, actions, etc.). The model data, however, did not have to
be manually labeled at all, because the labels are generated
automatically as part of the process traces of the cognitive
model. This automated labelling could also potentially help
to determine the impact of different strategies on human
performance, or to perform more detailed explanations of
human behavior.

Strategy challenge: Limited amounts of empirical data typi-
cally do have enough coverage for the diverse strategies that

people can bring to bear on sequential action tasks. Cognitive
models, however, can model those strategies and generate
arbitrary amounts of data for each. We found that using data
from different strategies allowed a better predictive model to
be built: not only were different strategies present in human
behavior, but the model was able to appropriately use the
features and representations it learned from being trained
on both strategies.

Balanced data challenge: With relatively little empirical data
that has high variance, it can be difficult to balance training
data so that the model learns close to the true distribution.
Generating arbitrary amounts of synthetic data, that is vari-
able in the way that people are variable solves this problem.
This is because the data is generated based on the true distri-
bution of human behavior, while also providing enough data
to be ensure that the predictive model learns the distribution.

8.1 Future work
There are several components of this methodology that could be
improved or explored further. For example, in terms of overall
performance, we may be able to improve prediction by adding
additional strategies. We could also explore why data generated
from the planning strategy was relatively unsuccessful compared
to data from the opportunistic strategy. Both of these actions would
help us better understand how strategies, in general, cover the span
of human behavior.

The current cognitive models capture a relatively small (though
critical) set of the actions people take when completing supervisory
control tasks. In future work, we plan to expand and generalize
this work to include more portions of the task tree. One way to
build more of the task tree would be to build cognitive models for
additional actions and then build a single deep network with an
integrated task model. Alternatively, explicitly switching between
different networks for task components, or giving them a hierar-
chical structure, may be necessary depending on the similarity or
complexity of the model.

Finally, we plan to use the results of the deep network to facili-
tate human actions. For example, in the supervisory control task, if
the network predicts that the person is searching for a UAV, high-
lighting all the UAVs could be very useful for overall performance.
Similarly, the cognitive model’s goals could be used to increase
explainability or transparency by showing the human what goal it
believes they are working on.
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