
Adaptive Knowledge Transfer based on Transfer Neural Kernel
Network

Pengfei Wei

National University of Singapore

dcsweip@nus.edu.sg

Xinghua Qu

Nanyang Technological University

XINGHUA001@e.ntu.edu.sg

Yiping Ke

Nanyang Technological University

ypke@ntu.edu.sg

Tze Yun Leong

National University of Singapore

leongty@nus.edu.sg

Yew Soon Ong

Nanyang Technological University

Singapore’s Agency for Science

Technology and Research

ASYSOng@ntu.edu.sg

ABSTRACT
Transfer agents are widely used in the challenging problems where

knowledge is cross-used among different tasks. One popular re-

search approach is to design a transfer kernel that controls the

strength of knowledge transfer based on the similarity of tasks. In

this paper, we propose a Transfer Neural Kernel Network (TNKN),

which enables flexible modeling of the task similarity. The pro-

posed TNKN is constructed by compositions of primitive kernels

and represented by a neural network. Two coupled compositional

kernel structures are used to characterize data covariance, one for

the intra-task data covariance and another for the inter-task one. A

sufficient condition that validates the transfer agent using TNKN

for any data is given. This condition also discloses the relationship

of the two compositional kernel structures, and can be used as a

constraint in the agent learning. Since the overall architecture of

TNKN is differentiable, the learning of the transfer agent using

TNKN is end-to-end trainable with gradient-based optimization.

Extensive experiments on various real-world datasets demonstrate

the transfer effectiveness of TNKN.

KEYWORDS
Transfer agent; Transfer kernel neural network; Compositional

kernel structures

ACM Reference Format:
Pengfei Wei, Xinghua Qu, Yiping Ke, Tze Yun Leong, and Yew Soon Ong.

2020. Adaptive Knowledge Transfer based on Transfer Neural Kernel Net-

work. In Proc. of the 19th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13,
2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Transfer agents aim to reuse knowledge across different but related

tasks, which can be used in many real-world applications, e.g., topic

classification problem [29], project scheduling problem [24], sim-

to-real robot modelling problem [33] and constraint satisfaction

problem [23], etc. Although existing transfer agents are mainly

proposed for classification problems, e.g., object identification [17]

and sentiment analysis [11], and reinforcement learning problems,

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

e.g., 3D games [21] and robotic jaco arms [14], transfer regression is

attracting increasing interests due to its popularity in the real-world

applications, e.g., Wi-Fi localization [30], mechanical modeling

analysis [16], and aerospace systems design [20]. In this work, we

deal with transfer regression problems. We focus on transfer agents

based on Gaussian process (GP) modelings, highly regarded for

their capability to handle prior beliefs on the characteristics of the

underlying functions.

Since brute-force transfer assuming tasks are always related may

cause negative transfer [22], a crucial problem for transfer agents is

to adaptively control the knowledge transfer strength based on the

relatedness of tasks. In GP-based transfer regression problems, this

is usually done by designing a transfer kernel. Different from the

conventional kernel that treats all instance pairs equally, a transfer

kernel discriminates the covariance of intra-task instance pairs

(the two instances are from the same task) from that of inter-task

instance pairs (the two instances are from different tasks).

Typically, a transfer kernel can be constructed by using two

different functions, i.e., using f and f ′ to calculate the covariance

of the intra-task instance pairs and the inter-task ones, respectively.

The form of f and f ′ determines the transfer capacity of the transfer

kernel. For instance, a transfer kernel kλ [3, 6, 7, 28] is developed

by using any kernel as f and setting f ′ = λf . This transfer kernel
is simple and enables the cheap GP modelling, but only models

a compromised similarity on a specific data characteristic across

tasks. To improve the expressive power of transfer kernel, Wei et

al. [30] propose a more flexible design, kmk , by exploiting multiple

kernel learning [2]. Specifically, f and f ′ are constructed by the

linear summation of several shared base kernels, but with different

construction coefficients. By allowing heterogeneous base kernel

coefficients, kmk can disclose similarities on the data characteristics

represented by the linear summation of base kernels.

Although the design of transfer kernel permits certain flexibility,

it must follow a fundamental principle. That is, a transfer kernel

must be positive semi-definite (PSD) so that the resulting GP based

transfer agent is applicable for any data. In some cases [8], this can

be done by applying some prior problem information. However,

for most real-world applications that are black-box problems, a

more general strategy that defines the valid set of a transfer kernel

is needed. For instance, Cao et al. [6] provide a value range of λ
(|λ | ≤ 1) to guarantee the positive semi-definiteness of kλ . Wei et

al. [30] propose a sufficient and necessary condition, where the

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1485

relationship of the coefficients are constrained, to ensure a PSD

kmk .

In this paper, we propose a more flexible and powerful transfer

kernel, called Transfer Neural Kernel Network (TNKN). On the one

hand, TNKN can approximate arbitrary stationary kernels, that is,

it can express the rich and complex data characteristics. On the

other hand, TNKN is capable of capturing the similarity of differ-

ent tasks on these diverse characteristics in a hierarchical manner.

More specifically, we develop an end-to-end neural network archi-

tecture to model the fine-grained similarity of different tasks layer

by layer. The proposed TNKN consists of two coupled neural kernel

network corresponding to f and f ′ respectively. Each of f and f ′

is a compositional kernel structure based on the composition rules

for kernels. Note that f and f ′ share the same network architecture

but with different network parameters. To ensure that TNKN is a

PSD kernel, we propose a sufficient condition that discloses the re-

lationship of f and f ′. We theoretically prove that TNKN is always

PSD as long as the network parameter of f ′ never goes beyond
the corresponding one of f . We also take such a relationship of

f and f ′ into account in the learning of the transfer agent using

TNKN. Since the overall architecture of TNKN is differentiable, the

transfer agent using TNKN is end-to-end trainable. We propose

to utilize the gradient-based optimization for the learning of the

transfer agent. The relationship of f and f ′ is used as a compu-

tationally inexpensive constraint in the learning process. In the

experiments, we show the effectiveness of our proposed TNKN by

comparing it with several state-of-the-art baselines on 1 time-series

and 4 regression real-world datasets.

The proposed TNKN is a general transfer method as it can be

applied in different models, e.g., SVM and kernel ridge regression

model, etc., and different tasks, e.g., causal inference, decision mak-

ing and planing, and also classification. In this work, our focus is to

show the effectiveness of TNKN by adapting it to GP models. We

leave more possible instantiations of TNKN on other models and

tasks in future studies.

2 RELATEDWORKS
The transfer performance of transfer agents highly depends on

the design of transfer kernel. One popular form of transfer kernels

is based on the intrinsic coregionalization model (ICM) from geo-

statistics [13]. This type of transfer kernels defines the covariance

of functions as the product of two covariances, one for the tasks

and are given by parametric similarity coefficient, and another for

the input data and are represented by standard parametric kernels.

Works [3, 6, 7, 28, 31] fall within the scope of this type of transfer

kernels. More specifically, in the works [3, 7], the authors handle

the multi-task problem, and propose a free-form similarity matrix

where each element encodes the similarity of two tasks. Cao et al.

[6] directly use a single parametric coefficient to model the simi-

larity of two tasks in the single source transfer problem. Wagle et

al. [28] follow the idea of the work [6], and improve the transfer

kernel by further distinguishing the source-to-source covariance

from the target-to-target covariance.Wei et al. [31] extend the trans-

fer kernel of the work [6] to the multiple source transfer problem

by assigning each source-target task pair a similarity coefficient.

Another line of transfer kernels is based on the linear model of

coregionalization (LMC) that is widely used in geostatistics [13],

multi-output learning [4], and multi-class learning [1]. It exploits

the multiple kernel learning [2] to enable a more flexible model-

ing on heterogeneous similarities. Wei et al. [30] utilize this form

of transfer kernels to capture the sub-similarity of tasks on each

base kernel. Another LMC based transfer kernel [26] is proposed

to model the relatedness of multiple time sequence data. A com-

positional kernel structure is used to model the data covariance,

and a non-parametric indicator matrix is used to model the task

covariance. However, the indicator matrix only allows the binary

values 0 and 1, which highly constrains the modeling of the task

relatedness.

Another challenge in the design of a transfer kernel is to ensure

its positive semi-definiteness. By using the binary values for the

similarity matrix, the transfer kernel proposed in the work [26]

naturally satisfies the positive semi-definiteness. In the works [3]

and [7], Cholesky decomposition [15] is used to decompose the

similarity matrix as the product of two low-triangular matrices.

This ensures the resulting transfer kernel matrix is PSD, but it lacks

of a clear-cut relationship between a given low-triangular matrix

and the elements in the original similarity matrix. This hampers the

control on the semantic meaning of the similarities during learning.

Moreover, the problem is exacerbated by the fact that the factor-

ization is not unique. To overcome these limitations, recent studies

explore a more holistic way to ensure the positive semi-definiteness.

Cao et al. [6] propose a sufficient condition that constrains the value

range of the similarity coefficient between -1 to 1. Such a condition

not only guarantees the positive semi-definiteness of the transfer

kernel, but also enables a semantic interpretation on the learned

similarity coefficient. Following the idea of the work [6], Wei et

al. [31] further provide a sufficient and necessary condition for

the positive semi-definiteness of the transfer kernel used in the

multiple-source transfer scenario, and demonstrates a pathology.

Wagle et al. [28] directly use the conclusions of [6] and [19] to

construct a PSD transfer kernel. Most recently, Wei et al. [30] prove

a sufficient and necessary condition for the complete valid set of

the transfer kernel using multiple kernel strategy. In this paper, we

are also interested in a similar holistic solution as proposed in the

works [6, 30, 31] to guarantee the positive semi-definiteness of our

proposed TNKN.

3 PROBLEM SETTING AND PRELIMINARIES
Problem Setting. We consider the transfer regression problem

with one source task S and one target task T . Sufficient source

labeled data, XS ∈ RnS×d with yS ∈ RnS , and only limited target

labeled data, XT ∈ RnT ×d with yT ∈ RnT , are available in the

training phase. Typically, nT ≪ nS . Our objective is to utilize

X = [XS
;XT] ∈ Rn×d and y = [yS ; yT] ∈ Rn , with n = nS +nT , to

build a transfer agent for the target task T .
Transfer Agent based on Gaussian Process. As stated in [32], a
GP is a collection of random variables, such that any finite num-
ber of which have the multivariate Gaussian distribution. A GP
model defines a multivariate Gaussian distribution over functions,

f ∼ N(µ,C), with mean vector µ and covariance matrix C that is

given by a parameterized kernel. Usually, µ = 0 is assumed, and

thus the GP model is completely specified by the kernel. Likewise,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1486

A transfer agent based on GP defines a joint Gaussian distribution

over the space of source and target functions. With the zero-mean

assumption, the GP based transfer agent is completely determined

by the transfer kernel. However, different from the conventional

kernel that treats all instance pair equally, the transfer kernel dif-

ferentiates the instance pair based on the tasks where they come

from.

Primitive Kernels. Kernels encode all assumptions about the form

of function that GP are modelling. In general, a kernel represents

some form of data characteristic, e.g., a linear kernel encodes the

linear relationship. Some primitive kernels are widely used in GP

models including:

• constant kernel: C(x, x′) = σ 2,

• linear kernel: LIN (x, x′) = σ 2xTx,
• polynomial kernel: POLY (x, x′) = σ 2(c + xTx)d ,
• radial basis function: RBF (x, x′) = σ 2exp(− | |x−x′ | |2

2l 2),

• rational quadratic: RQ(x, x′) = σ 2(1 +
| |x−x′ | |2
2αl 2)

1

α ,

• periodic: PER(x, x′) = σ 2exp(−
2sin2(π | |x−x′ | |/p)

l 2).

Neural Kernel Network. A neural kernel network [25] (NKN) is

a neural net that computes compositional kernel structures. It is

based on the well-known composition rules for kernels [12]: for

any two kernels k1 and k2, (1) λ1k1 + λ2k2 with the compositional

weights λ1, λ2 ≥ 0 is a kernel, and (2) the product k1k2 is a kernel. A
NKN consists of several linear and product layers. By setting all the

compositional weights non-negative, every unit of the network is a

kernel based on the composition rules. As proved by [12], NKN has

very powerful ability to approximate arbitrary stationary kernels.

4 TRANSFER NEURAL KERNEL NETWORKS
In this section, we introduce the transfer neural kernel network

(TNKN), a more flexible and powerful transfer kernel that can

model the fine-grained similarity of tasks in a hierarchical manner.

TNKN consists of two compositional kernel structures, one for

the covariance of intra-task instance pairs and another for the

covariance of inter-task ones. It is formally defined as:

ktnkn (x, x
′) =


kdcks (x, x

′), δ (x, x′) = 0,

kscks (x, x
′), δ (x, x′) = 1,

(1)

where δ (x, x′) = 1 if x and x′ are from the same task, otherwise

δ (x, x′) = 0. Regarding Eq. (1), we have the following remarks:

• Each individual kdcks or k
s
cks is a compositional kernel struc-

ture. However, either of them is not necessarily to be a

NKN since we do not specially constrain the compositional

weights to be non-negative.

• kdcks and k
s
cks are coupled to one single network, ktnkn , by

sharing the same compositional structure but with different

compositional weights. The data covariance is given by kdcks
if two instances are from different tasks, otherwise it is given

by kscks . The task covariance is modeled by the difference of

the combination weights of kdcks and k
s
cks .

• The positive semi-definiteness of ktnkn is not guaranteed. In

another words, to obtain a PSD ktnkn , we need to carefully

Figure 1: The architecture of a ktnkn . This ktnkn contains 3
primitive kernels, 3 linear layers and 2 product layers. The
red dash line arrow denotes the weights of the linear layer
forkdnkn , and the blue solid line arrow denotes theweights of
the linear layer forksnkn . The black solid line are connections
shared by kdnkn and ksnkn .

design the way of coupling kdcks and k
s
cks , specifically the

compositional weights of kdcks and k
s
cks .

4.1 Architecture
The first layer of ktnkn is a set of primitive kernels. Afterwards,

linear layer and product layer stack alternately. The kdcks and k
s
cks

share all product layers, but differentiate from each other on linear

layers. More specifically, each linear layer contains two sets of

compositional weights, one set for kdcks and another set for kscks .

The full architecture of one ktnkn example is shown in Figure 1.

The first layer of ktnkn consists of several primitive kernels.

These primitive kernels usually express the fundamental structural

motifs for GPs, e.g., linearity and periodicity. Every primitive ker-

nel is characterized by some hyper-parameters, and we propose

to learn these hyper-parameters together with the rest of network

parameters. Note that we utilize multiple copies of every primi-

tive kernel to enable diverse parametrization. The linear layer of

ktnkn is a fully-connected layer associated with sets of learnable

weights. Precisely, every linear layer includes two sets of compo-

sitional weights, one set for kscks and another set for kdcks . This
is significantly different from NKN that contains only one set of

compositional weights in every linear layer. Moreover, different

from NKN that can simply use non-negative compositional weights

to ensure the positive semi-definiteness, ktnkn needs to explore

more complex relationship of the weights between kscks and k
d
cks .

Note that simply using non-negative weights for both kscks and

kdcks does not ensure a PSD ktnkn . We present more details on the

positive semi-definiteness of ktnkn in the next section. The product

layer introduces multiplications to ktnkn . The connectivity pattern

is fixed and there is no trainable parameters in the product layers.

As proved in the work [25], this fixed structure does not restrict the

expressiveness of the network. Finally, we also include a nonlinear

activation function for every layer as the conventional deep neural

network does. We use the exponential function f (x) = ex where x
is the result of a linear combination or product.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1487

4.2 Positive Semi-definiteness
To ensure the GP based transfer agent using ktnkn are applicable

for any data, ktnkn must be PSD. We propose a sufficient condition

for the PSD ktnkn . The condition is given by Theorem 4.1.

Theorem 4.1. A transfer neural kernel network ktnkn consists of
nk primitive kernels (k1, ...,knk), nl linear layers, and np product
layers. The l-th (l = 1, 2, ...,nl) linear layer includes a non-negative
weight matrix Wsl ∈ Rn

l
I×n

l
O for kscks , and a weight matrix Wdl ∈

Rn
l
I×n

l
O forkdcks , wheren

l
I andn

l
O are the number of input and output

units for the l-th linear layer, respectively. Such a ktnkn is positive
semi-definite for any input data if for l = 1, 2, ...,nl , |w

dl
i j | ≤ w

sl
i j

with i = 1, 2, ...,nlI and j = 1, 2, ...,nlO wherewdl
i j (wsl

i j) is the element

of Wdl (Wsl) in the i-th row and j-th column.

Proof. To prove ktnkn is a PSD kernel under the above condi-

tion, we first prove every unit of the network is a PSD kernel. Then

the entire network is a PSD kernel according to the composition

rules for kernels. We start from the first linear layer, which is a

linear combination of the primitive kernels. The number of input

units is equal to that of the primitive kernels, i.e., n1I = nk . For

every output unit k1j , j = 1, ...,n1O , it has the following form:

k1j (x, x
′) =


∑n1

I
i=1w

d1
i j ki (x, x

′), δ (x, x′) = 0,

∑n1

I
i=1w

s1
i j ki (x, x

′), δ (x, x′) = 1.

(2)

The Gram matrix of eq. (2) is:

K1

j =


∑n1

I
i=1w

s1
i j K

i
SS

∑n1

I
i=1w

d1
i j K

i
ST∑n1

I
i=1w

d1
i j K

i
T S

∑n1

I
i=1w

s1
i j K

i
TT

 ,
where

Ki =
[
KiSS KiST
KiT S KiTT

]
is the kernel matrix calculated by the primitive kernel ki over the

input source and target data. Since when ws1
i j = 0, wd1

i j must be 0

(|w
dl
i j | ≤ w

sl
i j), we can rewrite:

K1

j =
∑n1

I

i=1
w
sl
i j

[
KiSS w

dl
i j /w

sl
i jK

i
ST

w
dl
i j /w

sl
i jK

i
T S KiTT

]
.

We now consider:

N = KiTT − (w
dl
i j /w

sl
i j)

2(KiST)
T(KiSS)

−1KiST

= [1 − (w
dl
i j /w

sl
i j)

2]KiTT

+ (w
dl
i j /w

sl
i j)

2[KiTT − (KiST)
T(KiSS)

−1KiST].

Since Ki is PSD, according to Schur complement theorem [34] we

have:

KiTT ⪰ 0 and KiTT − (KiST)
T(KiSS)

−1KiST ⪰ 0.

Furthermore, [1 − (w
dl
i j /w

sl
i j)

2] ≥ 0 since |w
dl
i j | ≤ w

sl
i j . We then

derive: N ⪰ 0. Considering KiSS ⪰ 0 andwsl
i j ≥ 0, based on Schur

complement theorem [34], we can derive: K1

j ⪰ 0. Equivalently, k1j
is a valid kernel.

Since the above proof is applicable for every k1j , j = 1, ...,n1O ,

we obtain that all the output units of the first linear layer are valid

kernels. These output units are the input units for the next product

layer. According to the composition rules for kernels, we induce

that all the output units of the product layer are also valid kernels.

Then these outputs are taken as the inputs for the next linear layer.

The similar proof can be applied to the following alternate linear

and product layers. To conclude, we can prove that all the units

of ktnkn are valid kernels when |w
dl
i j | ≤ w

sl
i j for l = 1, 2, ...,nl ,

i = 1, 2, ...,nlI and j = 1, 2, ...,nlO , and thus ktnkn is a valid kernel

under this condition. □

Note that we omit the exponential operation for every unit in

the proof since it does not change the positive semi-definiteness of

a unit. We now look into the semantic interpretation of Theorem

4.1. Given a linear layer, an output unit is a linear combination of

several input kernels. The weight represents the contribution of

an input kernel to the output unit, and thus implies how much

knowledge is exploited from this input kernel. Theorem 4.1 shows

that when the weights of kdcks do not go beyond that of k
s
cks , ktnkn

is PSD. This is reasonable as kscks is used to calculate the covariance
of two instances from the same task, and thus its weights imply the

maximum transfer capacity. It is worth noting that ktnkn greatly

enriches the width and depth of the similarity modeling across tasks.

Regarding the depth, ktnkn stacks multiple linear and product lay-

ers to enable the similarity modeling from the low level to the high

level. Regarding the width, ktnkn uses multiple linear combinations

to diversify the fine-grained modeling of the nuances across tasks.

All of these make ktnkn have a flexible and meticulous expressive

power, as well as similarity modeling, on the complex and heteroge-

nous data, and thus perform effective knowledge transfer in the

real-world problems.

4.3 Significance
In this section, we highlight the significance of ktnkn . Given the

primitive kernels {kj }
nk
j=1, ktnkn can be reformulated as follows:

ktnkn (x, x
′) =


∑T
t=1 ω

d
t
∏nk

j=1 kj (x, x
′)pt j , δ (x, x′) = 0,∑T

t=1 ω
s
t
∏nk

j=1 kj (x, x
′)pt j , δ (x, x′) = 1,

(3)

where each of kscks and k
d
cks is represented as a weighted polyno-

mial of primitive kernels. The number of polynomials T and the

degree pt j are determined by the architecture of ktnkn . The coeffi-

cients {ωs
t ,ω

d
t }

T
t=1 can be inferred from the weight matrices of the

linear layers. This reformulation shows that kscks and k
d
cks lie in the

same kernel function space expanded by some base kernels (i.e., the

polynomials of the primitive kernels), but they perform differently

on these base kernels. The coefficients {ωs
t }

T
t=1 and {ωdt }

T
t=1 fully

characterize kscks and k
d
cks , and their element-wise distance indi-

cates the similarity of the tasks on the corresponding base kernel.

Moreover, kscks is a NKN with {ωs
t ≥ 0}Tt=1. Based on the Theo-

rem 3 in [25], kscks can approximate arbitrary stationary kernels,

which again verifies the expressive power of ktnkn . Theorem 4.1

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1488

(a) The source and target data include similar patterns. (b) The TNKN structure: 3 linear layers and 2 product layers.

Figure 2: The data and the TNKN architecture for time series task.

also shows us ωdt can take negative values. In this case, the individ-

ual kdcks is not a NKN, and even may be not PSD at all. However,

by coupling with kscks , ktnkn become a PSD transfer kernel. This

demonstrates that ktnkn is not a simple extension of two NKNs,

but a specialized NKN-based design for the transfer purpose.

It is worth noting that the existing popular transfer kernels mo-

tivated from ICM, e.g., [6, 28, 31] or LMC. e.g., [26, 30], can be

taken as special cases of our ktnkn . For the transfer kernel used in

[6, 28, 31], it is the ktnkn with only one primitive kernel, ωs
t = 1,

andωdt = λ. For the transfer kernel proposed by [30], it is the ktnkn
where kscks and kdcks are the weighted primitive kernels. For the

transfer kernel in [26], it is the ktnkn where the combination coeffi-

cients {ωs
t ,ω

d
t }

T
t=1 are constrained to be 0 or 1. Compared with the

existing kernels, ktnkn outperforms on both the expressive power

(allowing diverse polynomial of primitive kernels) and the capac-

ity of similarity modelling (allowing rich and flexible combination

coefficients). In this sense, ktnkn is a more general and powerful

transfer kernel.

4.4 Learning
The overall architecture of ktnkn is differentiable, and thus the GP

based transfer agent using ktnkn is trainable using gradient-based

optimization. All the parameters include three categories: (1) hyper-

parameters in the primitive kernels, (2) weights matrices of the

linear layers, and (3) the noise variances of the source and target

tasks. We group all the parameters together, denoted as Θ, and
learn them jointly. Following [6], we focus on the target task, and

optimize the conditional distribution p(yT |X, yS). By denoting δ2S
and δ2T as the noise variance for the source and target tasks and K∗

as the kernel matrix calculated from ktnkn , we have p(yT |X, yS) ∼
N(µ∗,C∗) where

µ∗ = K∗
TS (K

∗
SS + δ

2

S I)
−1yS

C∗ = (K∗
TT + δ

2

T I) − K∗
TS (K

∗
SS + δ

2

S I)
−1K∗

ST .

Then, the log-likelihood is defined as:

L(Θ) = −
1

2

ln |C∗ | −
1

2

(yT − µ∗)
TC−1

∗ (yT − µ∗) −
n

2

ln(2π).

Note that we also need to take Theorem 4.1 into account in the

learning. Regarding the non-negative weights of ksnkn , we use

f (x) = loд(1 + exp(x)) to enforce the nonnegativity constraint. Re-

garding the inequality constraints on the weights of ksnkn and kdnkn ,
we can check the fulfilment of these constraints in each epoch, and

map the violatedw
dl
i j to a value that is close to the feasible bound-

ary. Alternatively, we can further constrainw
dl
i j as non-negative to

enforce kdnkn also a NKN. Then, we satisfy |w
dl
i j | ≤ w

sl
i j by setting

w
sl
i j = w

dl
i j + ϵli j

2

. In this case, w
dl
i j and ϵli j are the optimization

variables.

4.5 Complexity
The usage of ktnkn does not deteriorate the computation cost of the

transfer agent learning. Considering a ktnkn withm connections,

the computational cost of the forward pass is O(n2m). Note that

the computational cost of the kernel matrix inversions is O(n3). By
adequately designing the architecture of ktnkn (as what we have

done in the experiments), the number of parameters,m, is usually

much smaller than that of training data, n (in our experimental

studies, ktnkn has only tens of parameters, but the training points

are in hundreds and even thousands). In this case, the computa-

tional cost of the transfer agent learning is still dominated by the

kernel matrix inversions, which is the same as the conventional GP

learning.

5 EXPERIMENTAL STUDIES
We evaluate the transfer performance of the GP based transfer agent

using ktnkn , denoted as GPtnkn , on 5 real-world datasets including

1 time series dataset and 4 regression datasets. We compare it with

several state-of-the-art baselines with respect to the transfer perfor-

mance. All the experiments are done on a 64-bit operating system

with the processor Intel(R) Xeon(R) CPU E5-1650 0 @ 3.20GHz.

5.1 Time Series Extrapolation
We first conduct experiment on a time series dataset [12] to demon-

strate the transfer capacity of GPtnkn on the data extrapolation.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1489

(a) The results of GPtar . (b) The results of GPall .

(c) The results of GPmk . (d) The results of GPtnkn .

Figure 3: The black squares are the target training data. The yellow circles are the source training data. The blue ‘x’s are
the ground-truth of the target test points. The red line is the prediction mean and the green region represents the standard
deviation.

The dataset includes the airline passenger volume data, and we con-

struct two sets of data with different patterns. The task is to predict

the future data patterns. As shown in Figure 2(a), both the source

and target data include the periodic and increasing waves
1
. Specif-

ically, the wave appears periodically along a slope. The amplitude

of the wave is also growing with the period. However, it is worth

noting that the pattern characteristics of the waves are significantly

different between the source and target. The data in the source task

has longer period, flatter slope, and slower amplitude growth than

the the data in the target task. Our objective is to utilize sufficient

source data and limited target data to extrapolate the subsequent

unseen patterns for the target. In the experiment, we take the first

30 target points and 288 source points as the training data. The rest

target data (from 31 to 144) are used as the test points.

We design a TNKN with 3 linear layers and 2 product layers for

this problem. We use 2 LIN kernels, 2 RBF kernels, 2 PER kernels,

and 2 RQ kernels as the primitive kernels. The number of the input

and output units for the 3 linear layers are (8,8), (4,4), and (2,1).

Correspondingly, the numbers of the input and output units for the

two product layers are (8,4) and (4,2). The overall architecture is

1
A wave is a curve with the approximate contour ‘∧’.

shown in Figure 2(b). For the sake of brevity, we only show the con-

nections of the network without distinguishing between kscks and

kdcks . For this TNKN, the maximum degree of the polynomials of

primitive kernels is 4, and the number of the polynomials of degree

4 is 330 (C8−1
8+4−1

). We can see that such a TNKN can model rich and

complex data characteristics by these diverse polynomials of primi-

tive kernels, e.g., LIN
4
models the long-term smooth trend, PER

4

models the periodicity, and the more complex LIN×PER×RBF×RQ

models the periodic variation.

We implement our GPtnkn based on the GPflow package [18]

using python 3.6.5. We use ‘Adamoptimizer’ with the learning rate

as 0.001, and set the epoch number as 20000. We compare with

several baselines including GPtar that only uses 30 target data to

train a GP model, GPall that just simply combines the 30 target

training data and 288 source training data, and GPmk [30]. For

GPtar and GPall , we exploit a NKN with the same network struc-

ture as TNKN but only 1 set of weights as the kernel. For GPmk ,

we use the default model configurations as used in [30]. Root mean

squared error (RMSE) is used as the evaluation metric.

The numerical RMSE results are shown in table 1. It can be seen

that GPtnkn achieves the best performance, followed by GPall ,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1490

Table 1: Numerical results for time series extrapolation.

Transfer Agents GPtar GPall GPmk GPtnkn
RMSE 51.32 27.87 44.05 24.41

GPmk , and lastly GPtar . To have a more clear view of the extrapo-

lation, we plot the predictions of each method in Figure 3. As can

be seen from 3(a), GPtar can well fit the target training points, but

it fails to fit the subsequent target test points. Since no information

is available except for the 30 target training points, the predictions

proceed with the target training pattern. However, the amplitude

growth pattern is completely lost. Regarding GPall in Figure 3(b),

it also fails to do accurate extrapolation on the target test data, and

even worse, it fails to fit the target training data. Interestingly, we

observe that GPall generates a new pattern. That is, from the first

wave, every 3 waves form a period. In such a period, the amplitude

of the wave slowly grows larger, and achieves the largest at the

third wave. Afterwards, a new period starts, but the amplitude of

the first wave in the new period decreases compared with that of

the last wave in the former period. Such a new pattern is a negative

result of the brute-force data integration that completely ignores

the divergence between different tasks. For GPmk , which is a recent

adaptive transfer GP model, Figure 3(c) shows that it yields almost

the same results as GPtar . This implies that GPmk does not transfer

any knowledge from the source to the target task. The bad perfor-

mance is mainly due to the poor expressive power of GPmk . GPmk
uses a linear summation of the primitive kernels, and thus fails to

capture and transfer the knowledge that are represented by the

product of the primitive kernels. Moreover, GPmk obtains much

larger standard deviation than GPtar since the source data pull

down the prediction confidence. Finally, from Figure 3(d), we can

see that GPtnkn not only fits the target training data well, but also

generates sensible extrapolation. The predictions capture all the

patterns including the periodicity, linear increase, and amplitude

growth. Meanwhile, the standard deviations of the predictions are

small, which implies the source data indeed provide help for the

target task. These results demonstrate that GPtnkn can effectively

and adaptively transfer the knowledge across tasks. We also ob-

serve that GPtnkn models the amplitude growth much better in

the starting periods than in the subsequent ones. This is reasonable

since the source data has a slow amplitude growth pattern, and it

is transferred to the target task.

We further analyze the similarity of the weights directly learned

from GPtnkn . There are 3 linear layers in this TNKN, and we focus

on the weights of the first linear layer, i.e., the combination weights

of the primitive kernels. For each node, we calculate the ratio of the

weights ofkdcks over the corresponding ones ofk
s
cks as the similarity

of the primitive kernels to construct this node. Figure 4 shows the

heat map of the learned similarities on each primitive kernel for

the 8 nodes of the first linear layer. The y-axis denotes node index,

and the x-axis denotes primitive kernel. Thus, each row represents

the learned combination weights of the 8 primitive kernels for one

node. In a horizontal view, it can be observed that different nodes

have different similarity combinations of the primitive kernels. This

demonstrates the rich expressive power of ktnkn . In a vertical view,

we find that the two tasks are more similar on the linear kernel,

Figure 4: The heat map of the similarity for the first linear
layer.

Table 2: Similarity of some polynomial of primitive kernels.

Polynomials LIN1

4
PER1

4
RBF1

4
RQ1

4
LIN1×PER1×RBF1×RQ1

Similarity 0.9130 0.4354 0.4056 0.9453 0.6385

but less similar on the periodic kernel. This well corresponds to the

source and target patterns as shown is Figure 2. Moreover, we also

note that the similarities of the same type of primitive kernels can

be very different due to the different parametrization, e.g., PER1 vs.

PER2. All of these demonstrate the flexility of ktnkn in modelling

diverse similarities across tasks.

Except for the analysis of the learned linear layer weights, we

also investigate the weights of the polynomial of primitive kernels,

i.e., ωs and ωd in eq. (3), which can be inferred from the learned

weights of GPtnkn . Recall that this TNKN can express 330 polyno-

mials with degree 4, and we only investigate some representative

polynomials of primitive kernels. Specifically, we calculate ωs
t and

ωdt for LIN1

4
, PER1

4
, RBF1

4
, RQ1

4
, and LIN1×PER1×RBF1×RQ1.

We use the ratioωdt /ω
s
t to represent the similarity of different tasks

on the corresponding polynomial. Table 2 shows the similarity re-

sults. The high similarity on LIN1

4
and RQ1

4
correspond to the

similar long-term smooth trend and small-scale variations of the

source and target functions in Figure 2(a). In contrast, the low simi-

larity on PER1
4
and RBF1

4
reflects the dissimilar periodicity and

variation speed. Regarding the LIN1×PER1×RBF1×RQ1 that models

both the long-time trend and the short-time derivation, the simi-

larity is an intermediate value. All these results show that GPtnkn
can adaptively capture the fine-grained similarities across tasks.

5.2 Real-world Regression Problems
We further verify the effectiveness of ktnkn on four real-world

regression applications. We test on the following 4 real-world

datasets.

Wine Quality. The wine quality dataset includes red and white

wine samples [9]. Physicochemical variables, e.g. volatile acidity,

are used as features and the sensory variable is used as label. We

use the quality prediction on white wine (W) as the source task and

the quality prediction on red wine (R) as the target one. Specifically,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1491

Table 3: Comparison results (RMSE) on four real-world regression tasks.

Task GPtar GPall GPλ GPλvar GPmk GPtnkn
Wine Quality 1.7720 ± 0.0563 1.2634 ± 0.0156 1.0672 ± 0.0236 1.0635±0.0178 0.8395 ± 0.0125 0.7233 ± 0.0021
Energy Use 1.8939 ± 0.0154 1.9030 ± 0.0089 1.5120 ± 0.0108 1.4996±0.0069 1.2389 ± 0.0067 1.1660 ± 0.0027
Air Quality 0.9329 ± 0.0819 1.0134 ± 0.0059 0.9246 ± 0.0522 0.9180±0.0437 0.8172 ± 0.0268 0.7915 ± 0.0046

Building Location 0.2163 ± 0.0531 0.1177 ± 0.0046 0.1339 ± 0.0073 0.1296±0.0025 0.1023 ± 0.0421 0.0963 ± 0.0026

W includes 500 training data points, and R includes 10 training data

points and 500 test data points.

Appliance Energy Prediction. This dataset is used to predict the
appliance energy use in different months [5]. The house conditions

data, e.g. humidity, monitored by the sensors are used as features,

and the amount of appliance energy use is used as label. The data

of May (500 for training) is used as the source task, and the data of

January (5 for training and 500 for test) is used as the target task.

Air Quality. The air quality dataset [10] contains responses of gas

multisensor devices from different seasons. The averaged responses

from the metal oxide chemical sensors are features, and the ground-

truth provided by a co-located reference certified analyzer is used

as label. Data from Summer and Winter are used for the source and

target, respectively. The data configuration is the same as that of

wine quality dataset.

UJIIndoorLoc. This dataset covers signals from different buildings

of Universitat Jaume I [27]. The signal strength intensity from 520

wireless access points is used as features, and the location is used as

label. We use building 1 including 1000 training data as the source,

and we use building 2 including 25 training data and 1000 test data

as the target.

We design a TNKN with 2 linear layers and 1 product layer for

the regression problems. Two RBF kernels and 1 linear kernel are

used as the primitive kernels. The number of the input and output

units for the two linear layers is (3,4) and (2,1). Correspondingly,

the number of the input and output units for the product layer is

(4,2). We use ‘Adamoptimizer’ with the learning rate as 0.001 for

the training, and set the epoch number as 5000 for all the regression

problems. We run five restarts with different initializations, and

take the average root mean squared error (RMSE) as the final result.

We compare with state-of-the-art baselines, namely GPtar , GPall ,

GPλ [6], GPλvar [28], and GPmk [30].

The comparison results are shown in Table 3. As can be seen

from the table, the four adaptive transfer methods GPλ , GPλvar ,

GPmk and GPtnkn generally achieve better results than the other

two naive methods. Among these 4 methods, GPtnkn is the best,

followed by GPmk , and lastly GPλvar and GPλ . The deviation of

the transfer performance across these methods is due to the dif-

ference of their expressive power and capacity in modeling the

task similarity. GPλ uses a single similarity coefficient and a sin-

gle primitive kernel, which highly constrain its expressive power

and transfer capacity. GPλvar is a variant of GPλ , and it is only

applicable for RBF kernel to ensure the positive semi-definiteness.

GPmk uses a single linear layer, and thus can not express the data

characteristics represented by the product of the primitive kernels.

In contrast, our GPtnkn establishes a deep kernel neural network

that can approximate arbitrary stationary kernels. All the results

demonstrate our GPtnkn is a very promising method for transfer

regression problems.

6 CONCLUSIONS
In this paper, we propose a transfer neural kernel network (TNKN).

A transfer kernel ktnkn that is represented by a neural network

is presented to model the task similarity in a layer-to-layer man-

ner. A sufficient condition that validates ktnkn as a valid kernel

is proposed, and is then used as a constraint in the correspond-

ing GP based transfer agent learning. Experimental results on 1

time series extrapolation task and 4 real-world regression tasks

demonstrate the effectiveness of the proposed TNKN compared

with several state-of-the-art baselines. We emphasize that TNKN is

a general transfer method, although in this paper we demonstrate

its effectiveness by applying it to GP in regression problems.Wewill

study the potential application of TNKN to other models, e.g., SVM

and kernel ridge regression model, etc., and more problems, e.g.,

dynamic decision making and classification, etc., in future studies.

7 ACKNOWLEDGEMENT
This work was partially done when the first author worked in

Nanyang Technological University. This work was partially sup-

ported by an Academic Research Grant No. MOE2016-T2-2-068

from the Ministry of Education in Singapore.

REFERENCES
[1] Mauricio A Alvarez, Lorenzo Rosasco, Neil D Lawrence, et al. 2012. Kernels for

vector-valued functions: A review. Foundations and Trends® in Machine Learning
4, 3 (2012), 195–266.

[2] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. 2004. Multiple

Kernel Learning, Conic Duality, and the SMO Algorithm. In Proceedings of the
Twenty-first International Conference onMachine Learning (ICML ’04). ACM, 6–16.

[3] Edwin V. Bonilla, Kian M. Chai, and Christopher Williams. 2008. Multi-task

Gaussian Process Prediction. InAdvances in Neural Information Processing Systems
20. 153–160.

[4] Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Larrañaga. 2015. A

survey on multi-output regression. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 5, 5 (2015), 216–233.

[5] Luis M. Candanedo, Véronique Feldheim, and Dominique Deramaix. 2017. Data

driven prediction models of energy use of appliances in a low-energy house.

Energy and Buildings 140 (2017), 81–97.
[6] Bin Cao, Sinno Jialin Pan, Yu Zhang, Dit-Yan Yeung, and Qiang Yang. 2010.

Adaptive Transfer Learning. In Proceedings of the Twenty-Fourth AAAI Conference
on Artificial Intelligence. 407–712.

[7] Kian M Chai. 2009. Generalization errors and learning curves for regression

with multi-task Gaussian processes. In Advances in neural information processing
systems. 279–287.

[8] Trevor Cohn and Lucia Specia. 2013. Modelling annotator bias with multi-task

gaussian processes: An application to machine translation quality estimation.

In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 32–42.

[9] Paulo Cortez, António Cerdeira, Fernando Almeida, Telmo Matos, and José Reis.

2009. Modeling Wine Preferences by Data Mining from Physicochemical Proper-

ties. Decision Support Systems 47, 4 (2009), 547–553.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1492

[10] Saverio De Vito, Grazia Fattoruso, Matteo Pardo, Francesco Tortorella, and Giro-

lamo Di Francia. 2012. Semi-supervised learning techniques in artificial olfaction:

A novel approach to classification problems and drift counteraction. IEEE Sensors
Journal 12, 11 (2012), 3215–3224.

[11] Xin Dong and Gerard de Melo. 2018. A helping hand: Transfer learning for deep

sentiment analysis. In Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2524–2534.

[12] David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B Tenenbaum, and

Zoubin Ghahramani. 2013. Structure discovery in nonparametric regression

through compositional kernel search. ICML (2013), 1–9.

[13] Timothy C Haas. 1996. Multivariate Geostatistics: An Introduction With Appli-

cations. J. Amer. Statist. Assoc. 91, 435 (1996), 1375–1377.
[14] Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexan-

der Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner. 2017.

Darla: Improving zero-shot transfer in reinforcement learning. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70. JMLR. org,

1480–1490.

[15] Nicholas J Higham. 1990. Analysis of the Cholesky decomposition of a semi-definite
matrix. Oxford University Press.

[16] Min Jiang, Zhongqiang Huang, Liming Qiu, Wenzhen Huang, and Gary G Yen.

2018. Transfer learning-based dynamic multiobjective optimization algorithms.

IEEE Transactions on Evolutionary Computation 22, 4 (2018), 501–514.

[17] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. 2018.

Conditional adversarial domain adaptation. In Advances in Neural Information
Processing Systems. 1647–1657.

[18] Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke. Fujii,

Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James Hens-

man. 2017. GPflow: A Gaussian process library using TensorFlow. Journal of
Machine Learning Research (2017), 1–6.

[19] Arman Melkumyan and Fabio Ramos. 2011. Multi-kernel Gaussian processes. In

Twenty-Second International Joint Conference on Artificial Intelligence. 1408–1403.
[20] Alan Tan Wei Min, Ramon Sagarna, Abhishek Gupta, Yew-Soon Ong, and

Chi Keong Goh. 2017. Knowledge transfer through machine learning in air-

craft design. IEEE Computational Intelligence Magazine 12, 4 (2017), 48–60.
[21] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. 2015. Actor-

mimic: Deep multitask and transfer reinforcement learning. arXiv preprint
arXiv:1511.06342 (2015).

[22] David N Perkins, Gavriel Salomon, et al. 1992. Transfer of learning. International
encyclopedia of education 2 (1992), 6452–6457.

[23] Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. 2019. Learning Variable

Ordering Heuristics for Solving Constraint Satisfaction Problems. arXiv preprint
arXiv:1912.10762 (2019).

[24] Wen Song, Donghun Kang, Jie Zhang, Zhiguang Cao, and Hui Xi. 2019. A

sampling approach for proactive project scheduling under generalized time-

dependent workability uncertainty. Journal of Artificial Intelligence Research 64

(2019), 385–427.

[25] Shengyang Sun, Guodong Zhang, Chaoqi Wang, Wenyuan Zeng, Jiaman Li, and

Roger Grosse. 2018. Differentiable compositional kernel learning for Gaussian

processes. arXiv preprint arXiv:1806.04326 (2018).
[26] Anh Tong and Jaesik Choi. 2019. Discovering Latent Covariance Structures for

Multiple Time Series. In International Conference on Machine Learning. 6285–
6294.

[27] Joaquín Torres-Sospedra, Raúl Montoliu, Adolfo Martínez-Usó, Joan P. Avariento,

Tomás J. Arnau, Mauri Benedito-Bordonau, and Joaquín Huerta. 2014. UJIIndoor-

Loc: A new multi-building and multi-floor database for WLAN fingerprint-based

indoor localization problems.. In 2014 International Conference on Indoor Position-
ing and Indoor Navigation (IPIN). IEEE, 261–270.

[28] NeetiWagle and EricW Frew. 2017. Forward adaptive transfer of gaussian process

regression. Journal of Aerospace Information Systems 14, 4 (2017), 214–231.
[29] Pengfei Wei, Yiping Ke, and Chi Keong Goh. 2018. Feature Analysis of Marginal-

ized Stacked Denoising Autoenconder for Unsupervised Domain Adaptation.

IEEE transactions on neural networks and learning systems (2018), 1–14.
[30] Pengfei Wei, Ramon Sagarna, Yiping Ke, and Yew Soon Ong. 2018. Uncluttered

Domain Sub-Similarity Modeling for Transfer Regression. In 2018 IEEE Interna-
tional Conference on Data Mining (ICDM). IEEE, 1314–1319.

[31] Pengfei Wei, Ramon Sagarna, Yiping Ke, Yew-Soon Ong, and Chi-Keong Goh.

2017. Source-Target Similarity Modelings for Multi-Source Transfer Gaussian

Process Regression. In Proceedings of the 34th International Conference on Machine
Learning. PMLR, 3722–3731.

[32] Christopher Williams and Edward Rasmussen. 1996. Gaussian processes for

regression. In Advances in neural information processing systems. 514–520.
[33] Sergey Zakharov, Wadim Kehl, and Slobodan Ilic. 2019. DeceptionNet: Network-

Driven Domain Randomization. ICCV (2019), 1627–1634.

[34] Fuzhen Zhang. 2005. The Schur Complement and Its Applications. Vol. 4. Springer
Science & Business Media.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

1493

	Abstract
	1 Introduction
	2 Related Works
	3 Problem Setting and Preliminaries
	4 Transfer Neural Kernel Networks
	4.1 Architecture
	4.2 Positive Semi-definiteness
	4.3 Significance
	4.4 Learning
	4.5 Complexity

	5 Experimental Studies
	5.1 Time Series Extrapolation
	5.2 Real-world Regression Problems

	6 Conclusions
	7 Acknowledgement
	References

